spacer
spacer

PDBsum entry 1hf2

Go to PDB code: 
protein Protein-protein interface(s) links
Cell division protein PDB id
1hf2

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
196 a.a. *
206 a.a. *
Waters ×660
* Residue conservation analysis
PDB id:
1hf2
Name: Cell division protein
Title: Crystal structure of the bacterial cell-division inhibitor minc from t. Maritima
Structure: Septum site-determining protein minc. Chain: a, b, c, d. Synonym: minc. Engineered: yes
Source: Thermotoga maritima. Organism_taxid: 2336. Cellular_location: cytoplasm. Gene: minc. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008. Expression_system_variant: c41.
Biol. unit: Homo-Dimer (from PDB file)
Resolution:
2.20Å     R-factor:   0.237     R-free:   0.300
Authors: S.C.Cordell,R.E.Anderson,J.Lowe
Key ref:
S.C.Cordell et al. (2001). Crystal structure of the bacterial cell division inhibitor MinC. EMBO J, 20, 2454-2461. PubMed id: 11350934 DOI: 10.1093/emboj/20.10.2454
Date:
27-Nov-00     Release date:   30-May-01    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q9X0D7  (MINC_THEMA) -  Probable septum site-determining protein MinC from Thermotoga maritima (strain ATCC 43589 / DSM 3109 / JCM 10099 / NBRC 100826 / MSB8)
Seq:
Struc:
210 a.a.
196 a.a.
Protein chains
Pfam   ArchSchema ?
Q9X0D7  (MINC_THEMA) -  Probable septum site-determining protein MinC from Thermotoga maritima (strain ATCC 43589 / DSM 3109 / JCM 10099 / NBRC 100826 / MSB8)
Seq:
Struc:
210 a.a.
206 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: Chains A, B, C, D: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1093/emboj/20.10.2454 EMBO J 20:2454-2461 (2001)
PubMed id: 11350934  
 
 
Crystal structure of the bacterial cell division inhibitor MinC.
S.C.Cordell, R.E.Anderson, J.Löwe.
 
  ABSTRACT  
 
Bacterial cell division requires accurate selection of the middle of the cell, where the bacterial tubulin homologue FtsZ polymerizes into a ring structure. In Escherichia coli, site selection is dependent on MinC, MinD and MINE: MinC acts, with MinD, to inhibit division at sites other than the midcell by directly interacting with FTSZ: Here we report the crystal structure to 2.2 A of MinC from Thermotoga maritima. MinC consists of two domains separated by a short linker. The C-terminal domain is a right-handed beta-helix and is involved in dimer formation. The crystals contain two different MinC dimers, demonstrating flexibility in the linker region. The two-domain architecture and dimerization of MinC can be rationalized with a model of cell division inhibition. MinC does not act like SulA, which affects the GTPase activity of FtsZ, and the model can explain how MinC would select for the FtsZ polymer rather than the monomer.
 
  Selected figure(s)  
 
Figure 2.
Figure 2 Ribbon drawings of MinC. (A) An asymmetric unit contains two different MinC dimers, highlighting the flexibility of the linker region (linker, grey; N-terminal domain, yellow; C-terminal domain, blue). Face 'A' of the triangular C-terminal domain forms the dimer interface alone in dimer AB (top). (B) Stereo drawing of the N-terminal domain (residues 1 -95) with the flexible linker (residues 96 -102). (C) Top and side view of the C-terminal domain. The domain folds into a small triangular, right-handed -helix with a hydrophobic core. The length of the sides is: A, four; B, three; and C, five residues in -conformation. The strands in the domain have been numbered to reflect their position with respect to the turn number and the side of the -helix. Made with MOLSCRIPT and RASTER3D (Kraulis, 1991; Merritt and Bacon, 1997).
Figure 5.
Figure 5 Structural alignment of the N-terminal domain of MinC from T.maritima, SpoIIAA from B.subtilis (PDB 1AUZ; Kovacs et al., 1998) and FtsA from T.maritima (PDB 1E4F; van den Ent and Löwe, 2000). FtsA shows the highest DALI score of 3.7, r.m.s.d. 3.2 Å over 74 residues. SpoIIAA has a DALI score against the N-terminal domain of MinC of 3.5, r.m.s.d. 3.6 Å over 72 almost consecutive residues. Aligned stretches are coloured, all other residues are shown in grey. Made with MOLSCRIPT and RASTER3D (Kraulis, 1991; Merritt and Bacon, 1997).
 
  The above figures are reprinted from an Open Access publication published by Macmillan Publishers Ltd: EMBO J (2001, 20, 2454-2461) copyright 2001.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21231967 W.Wu, K.T.Park, T.Holyoak, and J.Lutkenhaus (2011).
Determination of the structure of the MinD-ATP complex reveals the orientation of MinD on the membrane and the relative location of the binding sites for MinE and MinC.
  Mol Microbiol, 79, 1515-1528.
PDB code: 3q9l
20398219 G.B.Kang, H.E.Song, M.K.Kim, H.S.Youn, J.G.Lee, J.Y.An, J.S.Chun, H.Jeon, and S.H.Eom (2010).
Crystal structure of Helicobacter pylori MinE, a cell division topological specificity factor.
  Mol Microbiol, 76, 1222-1231.
PDB codes: 3ku7 3mcd
20711458 I.F.de Oliveira, A.de Sousa Borges, V.Kooij, J.Bartosiak-Jentys, J.Luirink, and D.J.Scheffers (2010).
Characterization of ftsZ mutations that render Bacillus subtilis resistant to MinC.
  PLoS One, 5, e12048.  
19415799 B.Shen, and J.Lutkenhaus (2009).
The conserved C-terminal tail of FtsZ is required for the septal localization and division inhibitory activity of MinC(C)/MinD.
  Mol Microbiol, 72, 410-424.  
18291654 A.Dajkovic, G.Lan, S.X.Sun, D.Wirtz, and J.Lutkenhaus (2008).
MinC spatially controls bacterial cytokinesis by antagonizing the scaffolding function of FtsZ.
  Curr Biol, 18, 235-244.  
19141479 J.A.Gregory, E.C.Becker, and K.Pogliano (2008).
Bacillus subtilis MinC destabilizes FtsZ-rings at new cell poles and contributes to the timing of cell division.
  Genes Dev, 22, 3475-3488.  
17085577 D.Shiomi, and W.Margolin (2007).
The C-terminal domain of MinC inhibits assembly of the Z ring in Escherichia coli.
  J Bacteriol, 189, 236-243.  
17326815 I.Barák, and A.J.Wilkinson (2007).
Division site recognition in Escherichia coli and Bacillus subtilis.
  FEMS Microbiol Rev, 31, 311-326.  
17328675 J.Lutkenhaus (2007).
Assembly dynamics of the bacterial MinCDE system and spatial regulation of the Z ring.
  Annu Rev Biochem, 76, 539-562.  
17161598 M.A.Schumacher (2007).
Structural biology of plasmid segregation proteins.
  Curr Opin Struct Biol, 17, 103-109.  
17287984 V.Greco-Stewart, S.Ramirez-Arcos, M.Liao, and J.R.Dillon (2007).
N terminus determinants of MinC from Neisseria gonorrhoeae mediate interaction with FtsZ but do not affect interaction with MinD or homodimerization.
  Arch Microbiol, 187, 451-458.  
15987687 E.Sauvage, R.Herman, S.Petrella, C.Duez, F.Bouillenne, J.M.Frère, and P.Charlier (2005).
Crystal structure of the Actinomadura R39 DD-peptidase reveals new domains in penicillin-binding proteins.
  J Biol Chem, 280, 31249-31256.
PDB codes: 1w79 1w8q 1w8y
15805531 H.Zhou, and J.Lutkenhaus (2005).
MinC mutants deficient in MinD- and DicB-mediated cell division inhibition due to loss of interaction with MinD, DicB, or a septal component.
  J Bacteriol, 187, 2846-2857.  
16260766 W.Sun, X.Xu, M.Pavlova, A.M.Edwards, A.Joachimiak, A.Savchenko, and D.Christendat (2005).
The crystal structure of a novel SAM-dependent methyltransferase PH1915 from Pyrococcus horikoshii.
  Protein Sci, 14, 3121-3128.
PDB code: 2as0
14973039 H.Zhou, and J.Lutkenhaus (2004).
The switch I and II regions of MinD are required for binding and activating MinC.
  J Bacteriol, 186, 1546-1555.  
15060045 J.E.Johnson, L.L.Lackner, C.A.Hale, and P.A.de Boer (2004).
ZipA is required for targeting of DMinC/DicB, but not DMinC/MinD, complexes to septal ring assemblies in Escherichia coli.
  J Bacteriol, 186, 2418-2429.  
15139810 J.Löwe, F.van den Ent, and L.A.Amos (2004).
Molecules of the bacterial cytoskeleton.
  Annu Rev Biophys Biomol Struct, 33, 177-198.  
15037301 L.A.Amos, F.van den Ent, and J.Löwe (2004).
Structural/functional homology between the bacterial and eukaryotic cytoskeletons.
  Curr Opin Cell Biol, 16, 24-31.  
15090526 S.Ramirez-Arcos, V.Greco, H.Douglas, D.Tessier, D.Fan, J.Szeto, J.Wang, and J.R.Dillon (2004).
Conserved glycines in the C terminus of MinC proteins are implicated in their functionality as cell division inhibitors.
  J Bacteriol, 186, 2841-2855.  
12626683 J.Errington, R.A.Daniel, and D.J.Scheffers (2003).
Cytokinesis in bacteria.
  Microbiol Mol Biol Rev, 67, 52.  
12675792 J.Lutkenhaus, and M.Sundaramoorthy (2003).
MinD and role of the deviant Walker A motif, dimerization and membrane binding in oscillation.
  Mol Microbiol, 48, 295-303.  
12533449 L.L.Lackner, D.M.Raskin, and P.A.de Boer (2003).
ATP-dependent interactions between Escherichia coli Min proteins and the phospholipid membrane in vitro.
  J Bacteriol, 185, 735-749.  
12486056 Z.Hu, C.Saez, and J.Lutkenhaus (2003).
Recruitment of MinC, an inhibitor of Z-ring formation, to the membrane in Escherichia coli: role of MinD and MinE.
  J Bacteriol, 185, 196-203.  
12003935 J.E.Johnson, L.L.Lackner, and P.A.de Boer (2002).
Targeting of (D)MinC/MinD and (D)MinC/DicB complexes to septal rings in Escherichia coli suggests a multistep mechanism for MinC-mediated destruction of nascent FtsZ rings.
  J Bacteriol, 184, 2951-2962.  
11983867 Z.Hu, E.P.Gogol, and J.Lutkenhaus (2002).
Dynamic assembly of MinD on phospholipid vesicles regulated by ATP and MinE.
  Proc Natl Acad Sci U S A, 99, 6761-6766.  
11673440 T.H.Szeto, S.L.Rowland, and G.F.King (2001).
The dimerization function of MinC resides in a structurally autonomous C-terminal domain.
  J Bacteriol, 183, 6684-6687.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer