spacer
spacer

PDBsum entry 1h4w

Go to PDB code: 
protein ligands metals links
Hydrolase PDB id
1h4w

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
224 a.a. *
Ligands
BEN
Metals
_CA
Waters ×125
* Residue conservation analysis
PDB id:
1h4w
Name: Hydrolase
Title: Structure of human trypsin iv (brain trypsin)
Structure: Trypsin iva. Chain: a. Engineered: yes. Other_details: benzamidine
Source: Homo sapiens. Human. Organism_taxid: 9606. Variant: a form. Organ: brain. Expressed in: escherichia coli. Expression_system_taxid: 469008.
Resolution:
1.70Å     R-factor:   0.188     R-free:   0.203
Authors: G.Katona,G.I.Berglund,J.Hajdu,L.Graf,L.Szilagyi
Key ref:
G.Katona et al. (2002). Crystal structure reveals basis for the inhibitor resistance of human brain trypsin. J Mol Biol, 315, 1209-1218. PubMed id: 11827488 DOI: 10.1006/jmbi.2001.5305
Date:
15-May-01     Release date:   11-Feb-02    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P35030  (TRY3_HUMAN) -  Trypsin-3 from Homo sapiens
Seq:
Struc:
304 a.a.
224 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 2 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: E.C.3.4.21.4  - trypsin.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Preferential cleavage: Arg-|-Xaa, Lys-|-Xaa.

 

 
DOI no: 10.1006/jmbi.2001.5305 J Mol Biol 315:1209-1218 (2002)
PubMed id: 11827488  
 
 
Crystal structure reveals basis for the inhibitor resistance of human brain trypsin.
G.Katona, G.I.Berglund, J.Hajdu, L.Gráf, L.Szilágyi.
 
  ABSTRACT  
 
Severe neurodegradative brain diseases, like Alzheimer, are tightly linked with proteolytic activity in the human brain. Proteinases expressed in the brain, such as human trypsin IV, are likely to be involved in the pathomechanism of these diseases. The observation of amyloid formed in the brain of transgenic mice expressing human trypsin IV supports this hypothesis. Human trypsin IV is also resistant towards all studied naturally occurring polypeptide inhibitors. It has been postulated that the substitution of Gly193 to arginine is responsible for this inhibitor resistance. Here we report the X-ray structure of human trypsin IV in complex with the inhibitor benzamidine at 1.7 A resolution. The overall fold of human trypsin IV is similar to human trypsin I, with a root-mean square deviation of only 0.5 A for all C(alpha) positions. The crystal structure reveals the orientation of the side-chain of Arg193, which occupies an extended conformation and fills the S2' subsite. An analysis of surface electrostatic potentials shows an unusually strong clustering of positive charges around the primary specificity pocket, to which the side-chain of Arg193 also contributes. These unique features of the crystal structure provide a structural basis for the enhanced inhibitor resistance, and enhanced substrate restriction, of human trypsin IV.
 
  Selected figure(s)  
 
Figure 4.
Figure 4. Electrostatic potential mapped onto the molecular surface of (a) human trypsin IV, (b) human trypsin I, (c) rat anionic trypsin and (d) bovine cationic trypsin. The contouring level of electrostatic potential is -18 kT/e (red) and 18 kT/e (blue). The orientation of the molecules is the same as in Figure 1(a).
Figure 5.
Figure 5. (a) View of the N-terminal loop of human trypsin IV. The SigmaA weighted 2mF[o] - DF[c] electron density map is contoured at 1s level. (b) Structural comparison of the N-terminal loops in human trypsin IV (black), human trypsin I (green), rat trypsin (cyan), bovine trypsin (magenta). Two alternative conformations are shown for Leu27.
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (2002, 315, 1209-1218) copyright 2002.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20035377 A.Hockla, D.C.Radisky, and E.S.Radisky (2010).
Mesotrypsin promotes malignant growth of breast cancer cells through shedding of CD109.
  Breast Cancer Res Treat, 124, 27-38.  
20696921 K.M.Dunse, Q.Kaas, R.F.Guarino, P.A.Barton, D.J.Craik, and M.A.Anderson (2010).
Molecular basis for the resistance of an insect chymotrypsin to a potato type II proteinase inhibitor.
  Proc Natl Acad Sci U S A, 107, 15016-15021.  
19920152 M.A.Salameh, J.L.Robinson, D.Navaneetham, D.Sinha, B.J.Madden, P.N.Walsh, and E.S.Radisky (2010).
The amyloid precursor protein/protease nexin 2 Kunitz inhibitor domain is a highly specific substrate of mesotrypsin.
  J Biol Chem, 285, 1939-1949.  
20128688 P.Wu, J.Weisell, M.Pakkala, M.Peräkylä, L.Zhu, R.Koistinen, E.Koivunen, U.H.Stenman, A.Närvänen, and H.Koistinen (2010).
Identification of novel peptide inhibitors for human trypsins.
  Biol Chem, 391, 283-293.  
18186617 A.E.Schmidt, M.F.Sun, T.Ogawa, S.P.Bajaj, and D.Gailani (2008).
Functional role of residue 193 (chymotrypsin numbering) in serine proteases: influence of side chain length and beta-branching on the catalytic activity of blood coagulation factor XIa.
  Biochemistry, 47, 1326-1335.  
18692070 E.Zakharova, M.P.Horvath, and D.P.Goldenberg (2008).
Functional and structural roles of the Cys14-Cys38 disulfide of bovine pancreatic trypsin inhibitor.
  J Mol Biol, 382, 998.
PDB codes: 2fi3 2fi4 2fi5
18077447 M.A.Salameh, A.S.Soares, A.Hockla, and E.S.Radisky (2008).
Structural basis for accelerated cleavage of bovine pancreatic trypsin inhibitor (BPTI) by human mesotrypsin.
  J Biol Chem, 283, 4115-4123.
PDB codes: 2r9p 2ra3
17480209 A.L.Németh, P.Medveczky, J.Tóth, E.Siklódi, K.Schlett, A.Patthy, M.Palkovits, J.Ovádi, N.Tõkési, P.Németh, L.Szilágyi, and L.Gráf (2007).
Unconventional translation initiation of human trypsinogen 4 at a CUG codon with an N-terminal leucine. A possible means to regulate gene expression.
  FEBS J, 274, 1610-1620.  
17406981 J.Tóth, E.Siklódi, P.Medveczky, K.Gallatz, P.Németh, L.Szilágyi, L.Gráf, and M.Palkovits (2007).
Regional distribution of human trypsinogen 4 in human brain at mRNA and protein level.
  Neurochem Res, 32, 1423-1433.  
17436323 J.Tóth, Z.Simon, P.Medveczky, L.Gombos, B.Jelinek, L.Szilágyi, L.Gráf, and A.Málnási-Csizmadia (2007).
Site directed mutagenesis at position 193 of human trypsin 4 alters the rate of conformational change during activation: role of local internal viscosity in protein dynamics.
  Proteins, 67, 1119-1127.  
17623652 W.Knecht, G.S.Cottrell, S.Amadesi, J.Mohlin, A.Skåregärde, K.Gedda, A.Peterson, K.Chapman, M.D.Hollenberg, N.Vergnolle, and N.W.Bunnett (2007).
Trypsin IV or mesotrypsin and p23 cleave protease-activated receptors 1 and 2 to induce inflammation and hyperalgesia.
  J Biol Chem, 282, 26089-26100.  
16759229 E.Szepessy, and M.Sahin-Tóth (2006).
Human mesotrypsin exhibits restricted S1' subsite specificity with a strong preference for small polar side chains.
  FEBS J, 273, 2942-2954.  
16492676 J.Tóth, L.Gombos, Z.Simon, P.Medveczky, L.Szilágyi, L.Gráf, and A.Málnási-Csizmadia (2006).
Thermodynamic analysis reveals structural rearrangement during the acylation step in human trypsin 4 on 4-methylumbelliferyl 4-guanidinobenzoate substrate analogue.
  J Biol Chem, 281, 12596-12602.  
16740631 M.Debela, V.Magdolen, N.Schechter, M.Valachova, F.Lottspeich, C.S.Craik, Y.Choe, W.Bode, and P.Goettig (2006).
Specificity profiling of seven human tissue kallikreins reveals individual subsite preferences.
  J Biol Chem, 281, 25678-25688.  
16903872 Y.Wang, W.Luo, T.Wartmann, W.Halangk, M.Sahin-Tóth, and G.Reiser (2006).
Mesotrypsin, a brain trypsin, activates selectively proteinase-activated receptor-1, but not proteinase-activated receptor-2, in rat astrocytes.
  J Neurochem, 99, 759-769.  
15890651 K.M.Bobofchak, A.O.Pineda, F.S.Mathews, and E.Di Cera (2005).
Energetic and structural consequences of perturbing Gly-193 in the oxyanion hole of serine proteases.
  J Biol Chem, 280, 25644-25650.
PDB codes: 1z8i 1z8j
16029158 M.Sahin-Tóth (2005).
Human mesotrypsin defies natural trypsin inhibitors: from passive resistance to active destruction.
  Protein Pept Lett, 12, 457-464.  
16231009 Z.Grishina, E.Ostrowska, W.Halangk, M.Sahin-Tóth, and G.Reiser (2005).
Activity of recombinant trypsin isoforms on human proteinase-activated receptors (PAR): mesotrypsin cannot activate epithelial PAR-1, -2, but weakly activates brain PAR-1.
  Br J Pharmacol, 146, 990-999.  
15855826 Z.Nemoda, N.Teich, C.Hugenberg, and M.Sahin-Tóth (2005).
Genetic and biochemical characterization of the E32del polymorphism in human mesotrypsinogen.
  Pancreatology, 5, 273-278.  
15090552 A.E.Schmidt, T.Ogawa, D.Gailani, and S.P.Bajaj (2004).
Structural role of Gly(193) in serine proteases: investigations of a G555E (GLY193 in chymotrypsin) mutant of blood coagulation factor XI.
  J Biol Chem, 279, 29485-29492.  
15456490 A.Zivelin, T.Ogawa, S.Bulvik, M.Landau, J.R.Toomey, J.Lane, U.Seligsohn, and D.Gailani (2004).
Severe factor XI deficiency caused by a Gly555 to Glu mutation (factor XI-Glu555): a cross-reactive material positive variant defective in factor IX activation.
  J Thromb Haemost, 2, 1782-1789.  
14726524 G.S.Cottrell, S.Amadesi, E.F.Grady, and N.W.Bunnett (2004).
Trypsin IV, a novel agonist of protease-activated receptors 2 and 4.
  J Biol Chem, 279, 13532-13539.  
14507909 R.Szmola, Z.Kukor, and M.Sahin-Tóth (2003).
Human mesotrypsin is a unique digestive protease specialized for the degradation of trypsin inhibitors.
  J Biol Chem, 278, 48580-48589.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer