spacer
spacer

PDBsum entry 1h3u

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Immune system PDB id
1h3u

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
208 a.a. *
Ligands
NAG-NAG-BMA-MAN-
MAN-FUL
NAG-NAG-BMA-BMA-
MAN-FUL
Waters ×145
* Residue conservation analysis
PDB id:
1h3u
Name: Immune system
Title: Crystal structure of the human igg1 fc-fragment,glycoform (m3n2f)2
Structure: Ig gamma-1 chain c region. Chain: a, b. Fragment: ch2, ch3, residues 225-447. Synonym: ighg1
Source: Homo sapiens. Human. Organism_taxid: 9606
Biol. unit: Dimer (from PDB file)
Resolution:
2.40Å     R-factor:   0.253     R-free:   0.289
Authors: S.Krapp,Y.Mimura,R.Jefferis,R.Huber,P.Sondermann
Key ref:
S.Krapp et al. (2003). Structural analysis of human IgG-Fc glycoforms reveals a correlation between glycosylation and structural integrity. J Mol Biol, 325, 979-989. PubMed id: 12527303 DOI: 10.1016/S0022-2836(02)01250-0
Date:
19-Sep-02     Release date:   23-Jan-03    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
P01857  (IGHG1_HUMAN) -  Immunoglobulin heavy constant gamma 1 from Homo sapiens
Seq:
Struc:
399 a.a.
208 a.a.*
Key:    Secondary structure  CATH domain
* PDB and UniProt seqs differ at 7 residue positions (black crosses)

 

 
DOI no: 10.1016/S0022-2836(02)01250-0 J Mol Biol 325:979-989 (2003)
PubMed id: 12527303  
 
 
Structural analysis of human IgG-Fc glycoforms reveals a correlation between glycosylation and structural integrity.
S.Krapp, Y.Mimura, R.Jefferis, R.Huber, P.Sondermann.
 
  ABSTRACT  
 
Antibodies may be viewed as adaptor molecules that provide a link between humoral and cellular defence mechanisms. Thus, when antigen-specific IgG antibodies form antigen/antibody immune complexes the effectively aggregated IgG can activate a wide range of effector systems. Multiple effector mechanisms result from cellular activation mediated through a family of IgG-Fc receptors differentially expressed on leucocytes. It is established that glycosylation of IgG-Fc is essential for recognition and activation of these ligands. IgG antibodies predominate in human serum and most therapeutic antibodies are of the IgG class.The IgG-Fc is a homodimer of N-linked glycopeptide chains comprised of two immunoglobulin domains (Cgamma2, Cgamma3) that dimerise via inter-heavy chain disulphide bridges at the N-terminal region and non-covalent interactions between the C-terminal Cgamma3 domains. The overall shape of the IgG-Fc is similar to that of a "horseshoe" with a majority of the internal space filled by the oligosaccharide chains, only attached through asparagine residues 297.To investigate the influence of individual sugar (monosaccharide) residues of the oligosaccharide on the structure and function of IgG-Fc we have compared the structure of "wild-type" glycosylated IgG1-Fc with that of four glycoforms bearing consecutively truncated oligosaccharides. Removal of terminal N-acetylglucosamine as well as mannose sugar residues resulted in the largest conformational changes in both the oligosaccharide and in the polypeptide loop containing the N-glycosylation site. The observed conformational changes in the Cgamma2 domain affect the interface between IgG-Fc fragments and FcgammaRs. Furthermore, we observed that the removal of sugar residues permits the mutual approach of Cgamma2 domains resulting in the generation of a "closed" conformation; in contrast to the "open" conformation which was observed for the fully galactosylated IgG-Fc, which may be optimal for FcgammaR binding. These data provide a structural rationale for the previously observed modulation of effector activities reported for this series of proteins.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. The carbohydrate sequence attached at Asn297 of human IgG1-Fc. Numbers attributes only sugars that have been observed in the electron density. The sugars in bold belong to the oligosaccharide core which is found in all naturally occurring glycoforms, the addition of the other sugar residues is variable. The biantennary mannose residues Man5 and Man8 that are glycosidically linked to Man4 form the a(1-6) and a(1-3) arms, respectively. A bisecting (GlcNAc)* occurs naturally in 5-10% of normal human IgG but not in IgG Cri used here. The arrows point to the termini of respective glycoforms that have been prepared by enzymatic truncation of native IgG-Fc fragments. The native^** oligisaccharide is not fully sialylated, but is a mixture of G0F, G1F, G2F and monosialylated one.
Figure 4.
Figure 4. The role of GlcNAc6 in stabilisation of carbohydrate-protein interactions. The structure of the oligosaccharide moiety (chain A) of Fc-glycoform (G2F)[2] in space group C222[1] (green) and P2[1]2[1]2[1] (blue) are shown. In contrast to Man5 and Gal7, GlcAc6 maintains a contact to the Cg2 domain in both structures. For GlcNAc6 of the structure in space group C222[1] the 2F[o] -F[c] electron density map is shown contoured at 0.8s.
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (2003, 325, 979-989) copyright 2003.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20561245 A.Loos, B.Van Droogenbroeck, S.Hillmer, J.Grass, R.Kunert, J.Cao, D.G.Robinson, A.Depicker, and H.Steinkellner (2011).
Production of monoclonal antibodies with a controlled N-glycosylation pattern in seeds of Arabidopsis thaliana.
  Plant Biotechnol J, 9, 179-192.  
21208406 B.Teylaert, E.Meurice, M.Bobowski, A.Harduin-Lepers, C.Gaucher, A.Fontayne, S.Jorieux, and P.Delannoy (2011).
Molecular cloning, characterization, genomic organization and promoter analysis of the α1,6-fucosyltransferase gene (fut8) expressed in the rat hybridoma cell line YB2/0.
  BMC Biotechnol, 11, 1.  
21321549 S.Meier, and J.Duus (2011).
Carbohydrate dynamics: Antibody glycans wiggle and jiggle.
  Nat Chem Biol, 7, 131-132.  
20949542 V.Kayser, N.Chennamsetty, V.Voynov, K.Forrer, B.Helk, and B.L.Trout (2011).
Glycosylation influences on the aggregation propensity of therapeutic monoclonal antibodies.
  Biotechnol J, 6, 38-44.  
19733585 A.I.Taylor, B.J.Sutton, and R.A.Calvert (2010).
Mutations in an avian IgY-Fc fragment reveal the locations of monocyte Fc receptor binding sites.
  Dev Comp Immunol, 34, 97.  
20506289 C.Q.Reid, A.Tait, H.Baldascini, A.Mohindra, A.Racher, S.Bilsborough, C.M.Smales, and M.Hoare (2010).
Rapid whole monoclonal antibody analysis by mass spectrometry: An ultra scale-down study of the effect of harvesting by centrifugation on the post-translational modification profile.
  Biotechnol Bioeng, 107, 85-95.  
20450403 G.Brajović, G.Stefanović, V.Ilić, S.Petrović, N.Stefanović, N.Nikolić-Jakoba, and N.Milosević-Jovcić (2010).
Association of fibronectin with hypogalactosylated immunoglobulin G in gingival crevicular fluid in periodontitis.
  J Periodontol, 81, 1472-1480.  
20845446 G.D.Pipes, P.Campbell, P.V.Bondarenko, B.A.Kerwin, M.J.Treuheit, and H.S.Gadgil (2010).
Middle-down fragmentation for the identification and quantitation of site-specific methionine oxidation in an IgG1 molecule.
  J Pharm Sci, 99, 4469-4476.  
20178128 H.U.Scherer, D.van der Woude, A.Ioan-Facsinay, H.el Bannoudi, L.A.Trouw, J.Wang, T.Häupl, G.R.Burmester, A.M.Deelder, T.W.Huizinga, M.Wuhrer, and R.E.Toes (2010).
Glycan profiling of anti-citrullinated protein antibodies isolated from human serum and synovial fluid.
  Arthritis Rheum, 62, 1620-1629.  
20665659 I.J.del Val, C.Kontoravdi, and J.M.Nagy (2010).
Towards the implementation of quality by design to the production of therapeutic monoclonal antibodies with desired glycosylation patterns.
  Biotechnol Prog, 26, 1505-1527.  
19506910 K.S.Nandakumar (2010).
Pathogenic antibody recognition of cartilage.
  Cell Tissue Res, 339, 213-220.  
20022755 M.J.Feige, L.M.Hendershot, and J.Buchner (2010).
How antibodies fold.
  Trends Biochem Sci, 35, 189-198.  
20080725 S.T.Jung, S.T.Reddy, T.H.Kang, M.J.Borrok, I.Sandlie, P.W.Tucker, and G.Georgiou (2010).
Aglycosylated IgG variants expressed in bacteria that selectively bind FcgammaRI potentiate tumor cell killing by monocyte-dendritic cells.
  Proc Natl Acad Sci U S A, 107, 604-609.  
20506277 S.T.Jung, T.H.Kang, and G.Georgiou (2010).
Efficient expression and purification of human aglycosylated Fcgamma receptors in Escherichia coli.
  Biotechnol Bioeng, 107, 21-30.  
20162626 W.Burkitt, P.Domann, and G.O'Connor (2010).
Conformational changes in oxidatively stressed monoclonal antibodies studied by hydrogen exchange mass spectrometry.
  Protein Sci, 19, 826-835.  
  19920917 A.Natsume, R.Niwa, and M.Satoh (2009).
Improving effector functions of antibodies for cancer treatment: Enhancing ADCC and CDC.
  Drug Des Devel Ther, 3, 7.  
19212958 C.Huhn, M.H.Selman, L.R.Ruhaak, A.M.Deelder, and M.Wuhrer (2009).
IgG glycosylation analysis.
  Proteomics, 9, 882-913.  
19744865 C.W.Damen, W.Chen, A.B.Chakraborty, M.van Oosterhout, J.R.Mazzeo, J.C.Gebler, J.H.Schellens, H.Rosing, and J.H.Beijnen (2009).
Electrospray ionization quadrupole ion-mobility time-of-flight mass spectrometry as a tool to distinguish the lot-to-lot heterogeneity in N-glycosylation profile of the therapeutic monoclonal antibody trastuzumab.
  J Am Soc Mass Spectrom, 20, 2021-2033.  
19621379 D.Vanderschaeghe, E.Debruyne, H.Van Vlierberghe, N.Callewaert, and J.Delanghe (2009).
Analysis of gamma-globulin mobility on routine clinical CE equipment: exploring its molecular basis and potential clinical utility.
  Electrophoresis, 30, 2617-2623.  
19181623 D.Vanderschaeghe, W.Laroy, E.Sablon, P.Halfon, A.Van Hecke, J.Delanghe, and N.Callewaert (2009).
GlycoFibroTest is a highly performant liver fibrosis biomarker derived from DNA sequencer-based serum protein glycomics.
  Mol Cell Proteomics, 8, 986-994.  
19688751 J.Stadlmann, A.Weber, M.Pabst, H.Anderle, R.Kunert, H.J.Ehrlich, H.Peter Schwarz, and F.Altmann (2009).
A close look at human IgG sialylation and subclass distribution after lectin fractionation.
  Proteomics, 9, 4143-4153.  
18952826 M.Shibata-Koyama, S.Iida, A.Okazaki, K.Mori, K.Kitajima-Miyama, S.Saitou, S.Kakita, Y.Kanda, K.Shitara, K.Kato, and M.Satoh (2009).
The N-linked oligosaccharide at Fc gamma RIIIa Asn-45: an inhibitory element for high Fc gamma RIIIa binding affinity to IgG glycoforms lacking core fucosylation.
  Glycobiology, 19, 126-134.  
19247305 R.Jefferis (2009).
Glycosylation as a strategy to improve antibody-based therapeutics.
  Nat Rev Drug Discov, 8, 226-234.  
19552968 R.Jefferis (2009).
Recombinant antibody therapeutics: the impact of glycosylation on mechanisms of action.
  Trends Pharmacol Sci, 30, 356-362.  
19478090 R.Strasser, A.Castilho, J.Stadlmann, R.Kunert, H.Quendler, P.Gattinger, J.Jez, T.Rademacher, F.Altmann, L.Mach, and H.Steinkellner (2009).
Improved virus neutralization by plant-produced anti-HIV antibodies with a homogeneous beta1,4-galactosylated N-glycan profile.
  J Biol Chem, 284, 20479-20485.  
19544580 S.Sinha, L.Zhang, S.Duan, T.D.Williams, J.Vlasak, R.Ionescu, and E.M.Topp (2009).
Effect of protein structure on deamidation rate in the Fc fragment of an IgG1 monoclonal antibody.
  Protein Sci, 18, 1573-1584.  
20037630 V.Voynov, N.Chennamsetty, V.Kayser, B.Helk, K.Forrer, H.Zhang, C.Fritsch, H.Heine, and B.L.Trout (2009).
Dynamic fluctuations of protein-carbohydrate interactions promote protein aggregation.
  PLoS One, 4, e8425.  
18344326 C.N.Scanlan, D.R.Burton, and R.A.Dwek (2008).
Making autoantibodies safe.
  Proc Natl Acad Sci U S A, 105, 4081-4082.  
18096172 D.Ren, G.Pipes, G.Xiao, G.R.Kleemann, P.V.Bondarenko, M.J.Treuheit, and H.S.Gadgil (2008).
Reversed-phase liquid chromatography-mass spectrometry of site-specific chemical modifications in intact immunoglobulin molecules and their fragments.
  J Chromatogr A, 1179, 198-204.  
18216124 E.R.Sprague, H.Reinhard, E.J.Cheung, A.H.Farley, R.D.Trujillo, H.Hengel, and P.J.Bjorkman (2008).
The human cytomegalovirus Fc receptor gp68 binds the Fc CH2-CH3 interface of immunoglobulin G.
  J Virol, 82, 3490-3499.  
18815375 H.Albert, M.Collin, D.Dudziak, J.V.Ravetch, and F.Nimmerjahn (2008).
In vivo enzymatic modulation of IgG glycosylation inhibits autoimmune disease in an IgG subclass-dependent manner.
  Proc Natl Acad Sci U S A, 105, 15005-15009.  
18646009 J.N.Arnold, R.Saldova, U.M.Hamid, and P.M.Rudd (2008).
Evaluation of the serum N-linked glycome for the diagnosis of cancer and chronic inflammation.
  Proteomics, 8, 3284-3293.  
18655055 J.Stadlmann, M.Pabst, D.Kolarich, R.Kunert, and F.Altmann (2008).
Analysis of immunoglobulin glycosylation by LC-ESI-MS of glycopeptides and oligosaccharides.
  Proteomics, 8, 2858-2871.  
18566325 M.Peipp, J.J.Lammerts van Bueren, T.Schneider-Merck, W.W.Bleeker, M.Dechant, T.Beyer, R.Repp, P.H.van Berkel, T.Vink, J.G.van de Winkel, P.W.Parren, and T.Valerius (2008).
Antibody fucosylation differentially impacts cytotoxicity mediated by NK and PMN effector cells.
  Blood, 112, 2390-2399.  
18931413 P.Prabakaran, B.K.Vu, J.Gan, Y.Feng, D.S.Dimitrov, and X.Ji (2008).
Structure of an isolated unglycosylated antibody C(H)2 domain.
  Acta Crystallogr D Biol Crystallogr, 64, 1062-1067.
PDB code: 3dj9
19036920 R.M.Anthony, F.Wermeling, M.C.Karlsson, and J.V.Ravetch (2008).
Identification of a receptor required for the anti-inflammatory activity of IVIG.
  Proc Natl Acad Sci U S A, 105, 19571-19578.  
19074274 S.L.Sazinsky, R.G.Ott, N.W.Silver, B.Tidor, J.V.Ravetch, and K.D.Wittrup (2008).
Aglycosylated immunoglobulin G1 variants productively engage activating Fc receptors.
  Proc Natl Acad Sci U S A, 105, 20167-20172.  
18707900 S.Sinha, G.Pipes, E.M.Topp, P.V.Bondarenko, M.J.Treuheit, and H.S.Gadgil (2008).
Comparison of LC and LC/MS methods for quantifying N-glycosylation in recombinant IgGs.
  J Am Soc Mass Spectrom, 19, 1643-1654.  
18606225 T.S.Raju (2008).
Terminal sugars of Fc glycans influence antibody effector functions of IgGs.
  Curr Opin Immunol, 20, 471-478.  
18560159 V.Oganesyan, C.Gao, L.Shirinian, H.Wu, and W.F.Dall'Acqua (2008).
Structural characterization of a human Fc fragment engineered for lack of effector functions.
  Acta Crystallogr D Biol Crystallogr, 64, 700-704.
PDB code: 3c2s
18771295 Y.Wei, C.Li, W.Huang, B.Li, S.Strome, and L.X.Wang (2008).
Glycoengineering of human IgG1-Fc through combined yeast expression and in vitro chemoenzymatic glycosylation.
  Biochemistry, 47, 10294-10304.  
17120087 B.Gasser, and D.Mattanovich (2007).
Antibody production with yeasts and filamentous fungi: on the road to large scale?
  Biotechnol Lett, 29, 201-212.  
17220317 D.O.Beenhouwer, E.M.Yoo, C.W.Lai, M.A.Rocha, and S.L.Morrison (2007).
Human immunoglobulin G2 (IgG2) and IgG4, but not IgG1 or IgG3, protect mice against Cryptococcus neoformans infection.
  Infect Immun, 75, 1424-1435.  
17485663 F.Nimmerjahn, R.M.Anthony, and J.V.Ravetch (2007).
Agalactosylated IgG antibodies depend on cellular Fc receptors for in vivo activity.
  Proc Natl Acad Sci U S A, 104, 8433-8437.  
17621682 H.S.Gadgil, P.V.Bondarenko, G.Pipes, D.Rehder, A.McAuley, N.Perico, T.Dillon, M.Ricci, and M.Treuheit (2007).
The LC/MS analysis of glycation of IgG molecules in sucrose containing formulations.
  J Pharm Sci, 96, 2607-2621.  
17029568 J.N.Arnold, M.R.Wormald, R.B.Sim, P.M.Rudd, and R.A.Dwek (2007).
The impact of glycosylation on the biological function and structure of human immunoglobulins.
  Annu Rev Immunol, 25, 21-50.  
17970733 K.Takata, C.Hirata-Fukae, A.G.Becker, S.Chishiro, A.J.Gray, K.Nishitomi, A.H.Franz, G.Sakaguchi, A.Kato, M.P.Mattson, F.M.Laferla, P.S.Aisen, Y.Kitamura, and Y.Matsuoka (2007).
Deglycosylated anti-amyloid beta antibodies reduce microglial phagocytosis and cytokine production while retaining the capacity to induce amyloid beta sequestration.
  Eur J Neurosci, 26, 2458-2468.  
17727329 R.Jefferis (2007).
Antibody therapeutics: isotype and glycoform selection.
  Expert Opin Biol Ther, 7, 1401-1413.  
17240158 S.Sibéril, C.A.Dutertre, W.H.Fridman, and J.L.Teillaud (2007).
FcgammaR: The key to optimize therapeutic antibodies?
  Crit Rev Oncol Hematol, 62, 26-33.  
16675551 H.Bakker, G.J.Rouwendal, A.S.Karnoup, D.E.Florack, G.M.Stoopen, J.P.Helsper, R.van Ree, I.van Die, and D.Bosch (2006).
An antibody produced in tobacco expressing a hybrid beta-1,4-galactosyltransferase is essentially devoid of plant carbohydrate epitopes.
  Proc Natl Acad Sci U S A, 103, 7577-7582.  
16631376 H.S.Gadgil, G.D.Pipes, T.M.Dillon, M.J.Treuheit, and P.V.Bondarenko (2006).
Improving mass accuracy of high performance liquid chromatography/electrospray ionization time-of-flight mass spectrometry of intact antibodies.
  J Am Soc Mass Spectrom, 17, 867-872.  
16531813 K.Barbin, J.Stieglmaier, D.Saul, K.Stieglmaier, B.Stockmeyer, M.Pfeiffer, P.Lang, and G.H.Fey (2006).
Influence of variable N-glycosylation on the cytolytic potential of chimeric CD19 antibodies.
  J Immunother (1997), 29, 122-133.  
17128273 K.M.Cox, J.D.Sterling, J.T.Regan, J.R.Gasdaska, K.K.Frantz, C.G.Peele, A.Black, D.Passmore, C.Moldovan-Loomis, M.Srinivasan, S.Cuison, P.M.Cardarelli, and L.F.Dickey (2006).
Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor.
  Nat Biotechnol, 24, 1591-1597.  
17049014 M.Satoh, S.Iida, and K.Shitara (2006).
Non-fucosylated therapeutic antibodies as next-generation therapeutic antibodies.
  Expert Opin Biol Ther, 6, 1161-1173.  
17033662 R.Jefferis (2006).
A sugar switch for anti-inflammatory antibodies.
  Nat Biotechnol, 24, 1230-1231.  
16187338 D.Warnock, X.Bai, K.Autote, J.Gonzales, K.Kinealy, B.Yan, J.Qian, T.Stevenson, D.Zopf, and R.J.Bayer (2005).
In vitro galactosylation of human IgG at 1 kg scale using recombinant galactosyltransferase.
  Biotechnol Bioeng, 92, 831-842.  
15743766 J.Hunt, R.L.Beavil, R.A.Calvert, H.J.Gould, B.J.Sutton, and A.J.Beavil (2005).
Disulfide linkage controls the affinity and stoichiometry of IgE Fcepsilon3-4 binding to FcepsilonRI.
  J Biol Chem, 280, 16808-16814.  
17173636 J.Nuttall, J.K.Ma, and L.Frigerio (2005).
A functional antibody lacking N-linked glycans is efficiently folded, assembled and secreted by tobacco mesophyll protoplasts.
  Plant Biotechnol J, 3, 497-504.  
15867145 K.Ko, Z.Steplewski, M.Glogowska, and H.Koprowski (2005).
Inhibition of tumor growth by plant-derived mAb.
  Proc Natl Acad Sci U S A, 102, 7026-7030.  
16081651 L.Wang, G.Amphlett, W.A.Blättler, J.M.Lambert, and W.Zhang (2005).
Structural characterization of the maytansinoid-monoclonal antibody immunoconjugate, huN901-DM1, by mass spectrometry.
  Protein Sci, 14, 2436-2446.  
15609351 M.Cuccioloni, M.Amici, A.M.Eleuteri, M.Biagetti, S.Barocci, and M.Angeletti (2005).
Binding of recombinant PrPc to human plasminogen: kinetic and thermodynamic study using a resonant mirror biosensor.
  Proteins, 58, 728-734.  
15903235 R.Jefferis (2005).
Glycosylation of recombinant antibody therapeutics.
  Biotechnol Prog, 21, 11-16.  
15651043 S.Godoy, S.Violot, P.Boullanger, M.N.Bouchu, B.D.Leca-Bouvier, L.J.Blum, and A.P.Girard-Egrot (2005).
Kinetics study of Bungarus fasciatus venom acetylcholinesterase immobilised on a Langmuir-Blodgett proteo-glycolipidic bilayer.
  Chembiochem, 6, 395-404.  
15040582 J.M.Woof, and D.R.Burton (2004).
Human antibody-Fc receptor interactions illuminated by crystal structures.
  Nat Rev Immunol, 4, 89-99.  
15352059 N.Yamane-Ohnuki, S.Kinoshita, M.Inoue-Urakubo, M.Kusunoki, S.Iida, R.Nakano, M.Wakitani, R.Niwa, M.Sakurada, K.Uchida, K.Shitara, and M.Satoh (2004).
Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity.
  Biotechnol Bioeng, 87, 614-622.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer