 |
PDBsum entry 1grl
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Chaperonin
|
 |
|
Title:
|
 |
The crystal structure of the bacterial chaperonin groel at 2.8 angstroms
|
|
Structure:
|
 |
Groel (hsp60 class). Chain: a, b, c, d, e, f, g. Engineered: yes. Mutation: yes
|
|
Source:
|
 |
Escherichia coli. Organism_taxid: 562. Strain: dh5. Expressed in: escherichia coli. Expression_system_taxid: 562.
|
|
Biol. unit:
|
 |
40mer (from
)
|
|
Resolution:
|
 |
|
2.80Å
|
R-factor:
|
0.326
|
R-free:
|
0.368
|
|
|
Authors:
|
 |
K.Braig,Z.Otwinowski,R.Hegde,D.C.Boisvert,A.Joachimiak,A.L.Horwich, P.B.Sigler
|
|
Key ref:
|
 |
K.Braig
et al.
(1994).
The crystal structure of the bacterial chaperonin GroEL at 2.8 A.
Nature,
371,
578-586.
PubMed id:
|
 |
|
Date:
|
 |
|
07-Mar-95
|
Release date:
|
15-Oct-95
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
P0A6F5
(CH60_ECOLI) -
Chaperonin GroEL from Escherichia coli (strain K12)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
548 a.a.
518 a.a.*
|
|
|
|
|
|
|
|
|
 |
 |
|
|
Key: |
 |
PfamA domain |
 |
 |
 |
Secondary structure |
 |
 |
CATH domain |
 |
|
*
PDB and UniProt seqs differ
at 3 residue positions (black
crosses)
|
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
E.C.5.6.1.7
- chaperonin ATPase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
ATP + H2O + a folded polypeptide = ADP + phosphate + an unfolded polypeptide
|
 |
 |
 |
 |
 |
ATP
|
+
|
H2O
|
+
|
folded polypeptide
|
=
|
ADP
|
+
|
phosphate
|
+
|
unfolded polypeptide
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
|
Nature
371:578-586
(1994)
|
|
PubMed id:
|
|
|
|
|
| |
|
The crystal structure of the bacterial chaperonin GroEL at 2.8 A.
|
|
K.Braig,
Z.Otwinowski,
R.Hegde,
D.C.Boisvert,
A.Joachimiak,
A.L.Horwich,
P.B.Sigler.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The crystal structure of Escherichia coli GroEL shows a porous cylinder of 14
subunits made of two nearly 7-fold rotationally symmetrical rings stacked
back-to-back with dyad symmetry. The subunits consist of three domains: a large
equatorial domain that forms the foundation of the assembly at its waist and
holds the rings together; a large loosely structured apical domain that forms
the ends of the cylinder; and a small slender intermediate domain that connects
the two, creating side windows. The three-dimensional structure places most of
the mutationally defined functional sites on the channel walls and its outward
invaginations, and at the ends of the cylinder.
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
W.A.Hendrickson
(2013).
Evolution of diffraction methods for solving crystal structures.
|
| |
Acta Crystallogr A,
69,
51-59.
|
 |
|
|
|
|
 |
F.A.Rey,
and
W.I.Sundquist
(2011).
Macromolecular assemblages.
|
| |
Curr Opin Struct Biol,
21,
221-222.
|
 |
|
|
|
|
 |
I.G.Muñoz,
H.Yébenes,
M.Zhou,
P.Mesa,
M.Serna,
A.Y.Park,
E.Bragado-Nilsson,
A.Beloso,
G.de Cárcer,
M.Malumbres,
C.V.Robinson,
J.M.Valpuesta,
and
G.Montoya
(2011).
Crystal structure of the open conformation of the mammalian chaperonin CCT in complex with tubulin.
|
| |
Nat Struct Mol Biol,
18,
14-19.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
L.Skjaerven,
A.Martinez,
and
N.Reuter
(2011).
Principal component and normal mode analysis of proteins; a quantitative comparison using the GroEL subunit.
|
| |
Proteins,
79,
232-243.
|
 |
|
|
|
|
 |
A.Albert,
C.Yunta,
R.Arranz,
A.Peña,
E.Salido,
J.M.Valpuesta,
and
J.Martín-Benito
(2010).
Structure of GroEL in complex with an early folding intermediate of alanine glyoxylate aminotransferase.
|
| |
J Biol Chem,
285,
6371-6376.
|
 |
|
|
|
|
 |
B.Sielaff,
K.S.Lee,
and
F.T.Tsai
(2010).
Crystallization and preliminary X-ray crystallographic analysis of a GroEL1 fragment from Mycobacterium tuberculosis H37Rv.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
66,
418-420.
|
 |
|
|
|
|
 |
G.A.Frank,
M.Goomanovsky,
A.Davidi,
G.Ziv,
A.Horovitz,
and
G.Haran
(2010).
Out-of-equilibrium conformational cycling of GroEL under saturating ATP concentrations.
|
| |
Proc Natl Acad Sci U S A,
107,
6270-6274.
|
 |
|
|
|
|
 |
J.L.England,
and
V.S.Pande
(2010).
Charge, hydrophobicity, and confined water: putting past simulations into a simple theoretical framework.
|
| |
Biochem Cell Biol,
88,
359-369.
|
 |
|
|
|
|
 |
J.Zhang,
M.L.Baker,
G.F.Schröder,
N.R.Douglas,
S.Reissmann,
J.Jakana,
M.Dougherty,
C.J.Fu,
M.Levitt,
S.J.Ludtke,
J.Frydman,
and
W.Chiu
(2010).
Mechanism of folding chamber closure in a group II chaperonin.
|
| |
Nature,
463,
379-383.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
N.R.Voss,
and
M.Gerstein
(2010).
3V: cavity, channel and cleft volume calculator and extractor.
|
| |
Nucleic Acids Res,
38,
W555-W562.
|
 |
|
|
|
|
 |
R.Sabate,
N.S.de Groot,
and
S.Ventura
(2010).
Protein folding and aggregation in bacteria.
|
| |
Cell Mol Life Sci,
67,
2695-2715.
|
 |
|
|
|
|
 |
T.B.Eronina,
N.A.Chebotareva,
S.G.Bazhina,
S.Y.Kleymenov,
I.N.Naletova,
V.I.Muronetz,
and
B.I.Kurganov
(2010).
Effect of GroEL on thermal aggregation of glycogen phosphorylase b from rabbit skeletal muscle.
|
| |
Macromol Biosci,
10,
768-774.
|
 |
|
|
|
|
 |
T.Kanzaki,
S.Ushioku,
A.Nakagawa,
T.Oka,
K.Takahashi,
T.Nakamura,
K.Kuwajima,
A.Yamagishi,
and
M.Yohda
(2010).
Adaptation of a hyperthermophilic group II chaperonin to relatively moderate temperatures.
|
| |
Protein Eng Des Sel,
23,
393-402.
|
 |
|
|
|
|
 |
T.Rao,
and
P.A.Lund
(2010).
Differential expression of the multiple chaperonins of Mycobacterium smegmatis.
|
| |
FEMS Microbiol Lett,
310,
24-31.
|
 |
|
|
|
|
 |
T.W.Knapman,
V.L.Morton,
N.J.Stonehouse,
P.G.Stockley,
and
A.E.Ashcroft
(2010).
Determining the topology of virus assembly intermediates using ion mobility spectrometry-mass spectrometry.
|
| |
Rapid Commun Mass Spectrom,
24,
3033-3042.
|
 |
|
|
|
|
 |
Y.Li,
Z.Zheng,
A.Ramsey,
and
L.Chen
(2010).
Analysis of peptides and proteins in their binding to GroEL.
|
| |
J Pept Sci,
16,
693-700.
|
 |
|
|
|
|
 |
A.Korkut,
and
W.A.Hendrickson
(2009).
A force field for virtual atom molecular mechanics of proteins.
|
| |
Proc Natl Acad Sci U S A,
106,
15667-15672.
|
 |
|
|
|
|
 |
A.L.Horwich,
and
W.A.Fenton
(2009).
Chaperonin-mediated protein folding: using a central cavity to kinetically assist polypeptide chain folding.
|
| |
Q Rev Biophys,
42,
83.
|
 |
|
|
|
|
 |
B.Singh,
and
R.S.Gupta
(2009).
Conserved inserts in the Hsp60 (GroEL) and Hsp70 (DnaK) proteins are essential for cellular growth.
|
| |
Mol Genet Genomics,
281,
361-373.
|
 |
|
|
|
|
 |
C.M.Kumar,
G.Khare,
C.V.Srikanth,
A.K.Tyagi,
A.A.Sardesai,
and
S.C.Mande
(2009).
Facilitated oligomerization of mycobacterial GroEL: evidence for phosphorylation-mediated oligomerization.
|
| |
J Bacteriol,
191,
6525-6538.
|
 |
|
|
|
|
 |
C.Weiss,
A.Bonshtien,
O.Farchi-Pisanty,
A.Vitlin,
and
A.Azem
(2009).
Cpn20: Siamese twins of the chaperonin world.
|
| |
Plant Mol Biol,
69,
227-238.
|
 |
|
|
|
|
 |
D.K.Clare,
P.J.Bakkes,
H.van Heerikhuizen,
S.M.van der Vies,
and
H.R.Saibil
(2009).
Chaperonin complex with a newly folded protein encapsulated in the folding chamber.
|
| |
Nature,
457,
107-110.
|
 |
|
|
|
|
 |
D.Yamamoto,
N.Nagura,
S.Omote,
M.Taniguchi,
and
T.Ando
(2009).
Streptavidin 2D crystal substrates for visualizing biomolecular processes by atomic force microscopy.
|
| |
Biophys J,
97,
2358-2367.
|
 |
|
|
|
|
 |
H.M.Lu,
and
J.Liang
(2009).
Perturbation-based Markovian transmission model for probing allosteric dynamics of large macromolecular assembling: a study of GroEL-GroES.
|
| |
PLoS Comput Biol,
5,
e1000526.
|
 |
|
|
|
|
 |
K.Ayada,
K.Yokota,
K.Kobayashi,
Y.Shoenfeld,
E.Matsuura,
and
K.Oguma
(2009).
Chronic infections and atherosclerosis.
|
| |
Clin Rev Allergy Immunol,
37,
44-48.
|
 |
|
|
|
|
 |
O.Kolaj,
S.Spada,
S.Robin,
and
J.G.Wall
(2009).
Use of folding modulators to improve heterologous protein production in Escherichia coli.
|
| |
Microb Cell Fact,
8,
9.
|
 |
|
|
|
|
 |
R.F.Khairullin,
A.G.Mikhailova,
T.Y.Sebyakina,
N.L.Lubenets,
R.H.Ziganshin,
I.V.Demidyuk,
T.Y.Gromova,
S.V.Kostrov,
and
L.D.Rumsh
(2009).
Oligopeptidase B from Serratia proteamaculans. I. Determination of primary structure, isolation, and purification of wild-type and recombinant enzyme variants.
|
| |
Biochemistry (Mosc),
74,
1164-1172.
|
 |
|
|
|
|
 |
R.Kanno,
A.Koike-Takeshita,
K.Yokoyama,
H.Taguchi,
and
K.Mitsuoka
(2009).
Cryo-EM structure of the native GroEL-GroES complex from thermus thermophilus encapsulating substrate inside the cavity.
|
| |
Structure,
17,
287-293.
|
 |
|
|
|
|
 |
T.Nojima,
and
M.Yoshida
(2009).
Probing open conformation of GroEL rings by cross-linking reveals single and double open ring structures of GroEL in ADP and ATP.
|
| |
J Biol Chem,
284,
22834-22839.
|
 |
|
|
|
|
 |
V.V.Marchenkov,
and
G.V.Semisotnov
(2009).
GroEL-Assisted Protein Folding: Does It Occur Within the Chaperonin Inner Cavity?
|
| |
Int J Mol Sci,
10,
2066-2083.
|
 |
|
|
|
|
 |
Y.Li,
X.Gao,
and
L.Chen
(2009).
GroEL Recognizes an Amphipathic Helix and Binds to the Hydrophobic Side.
|
| |
J Biol Chem,
284,
4324-4331.
|
 |
|
|
|
|
 |
A.Koike-Takeshita,
M.Yoshida,
and
H.Taguchi
(2008).
Revisiting the GroEL-GroES Reaction Cycle via the Symmetric Intermediate Implied by Novel Aspects of the GroEL(D398A) Mutant.
|
| |
J Biol Chem,
283,
23774-23781.
|
 |
|
|
|
|
 |
C.C.Jolley,
S.A.Wells,
P.Fromme,
and
M.F.Thorpe
(2008).
Fitting low-resolution cryo-EM maps of proteins using constrained geometric simulations.
|
| |
Biophys J,
94,
1613-1621.
|
 |
|
|
|
|
 |
C.Dong,
L.Shao,
J.Guo,
and
J.Ren
(2008).
Host-guest interaction of chaperonin GroEL and water-soluble CdTe quantum dots and its size-selective inclusion.
|
| |
Chemphyschem,
9,
2245-2251.
|
 |
|
|
|
|
 |
C.L.Lawson,
S.Dutta,
J.D.Westbrook,
K.Henrick,
and
H.M.Berman
(2008).
Representation of viruses in the remediated PDB archive.
|
| |
Acta Crystallogr D Biol Crystallogr,
64,
874-882.
|
 |
|
|
|
|
 |
C.R.Booth,
A.S.Meyer,
Y.Cong,
M.Topf,
A.Sali,
S.J.Ludtke,
W.Chiu,
and
J.Frydman
(2008).
Mechanism of lid closure in the eukaryotic chaperonin TRiC/CCT.
|
| |
Nat Struct Mol Biol,
15,
746-753.
|
 |
|
|
|
|
 |
D.K.Clare,
S.Stagg,
J.Quispe,
G.W.Farr,
A.L.Horwich,
and
H.R.Saibil
(2008).
Multiple states of a nucleotide-bound group 2 chaperonin.
|
| |
Structure,
16,
528-534.
|
 |
|
|
|
|
 |
D.Madan,
Z.Lin,
and
H.S.Rye
(2008).
Triggering Protein Folding within the GroEL-GroES Complex.
|
| |
J Biol Chem,
283,
32003-32013.
|
 |
|
|
|
|
 |
E.Kurimoto,
Y.Nishi,
Y.Yamaguchi,
T.Zako,
R.Iizuka,
N.Ide,
M.Yohda,
and
K.Kato
(2008).
Dynamics of group II chaperonin and prefoldin probed by 13C NMR spectroscopy.
|
| |
Proteins,
70,
1257-1263.
|
 |
|
|
|
|
 |
F.M.Codoñer,
S.O'Dea,
and
M.A.Fares
(2008).
Reducing the false positive rate in the non-parametric analysis of molecular coevolution.
|
| |
BMC Evol Biol,
8,
106.
|
 |
|
|
|
|
 |
G.A.Frank,
Y.Kipnis,
E.Smolensky,
S.S.Daube,
A.Horovitz,
and
G.Haran
(2008).
Design of an optical switch for studying conformational dynamics in individual molecules of GroEL.
|
| |
Bioconjug Chem,
19,
1339-1341.
|
 |
|
|
|
|
 |
G.M.Altschuler,
and
K.R.Willison
(2008).
Development of free-energy-based models for chaperonin containing TCP-1 mediated folding of actin.
|
| |
J R Soc Interface,
5,
1391-1408.
|
 |
|
|
|
|
 |
J.Chugh,
S.Sharma,
and
R.V.Hosur
(2008).
NMR insights into a megadalton-size protein self-assembly.
|
| |
Protein Sci,
17,
1319-1325.
|
 |
|
|
|
|
 |
J.Cuéllar,
J.Martín-Benito,
S.H.Scheres,
R.Sousa,
F.Moro,
E.López-Viñas,
P.Gómez-Puertas,
A.Muga,
J.L.Carrascosa,
and
J.M.Valpuesta
(2008).
The structure of CCT-Hsc70 NBD suggests a mechanism for Hsp70 delivery of substrates to the chaperonin.
|
| |
Nat Struct Mol Biol,
15,
858-864.
|
 |
|
|
|
|
 |
J.Jiang,
X.Zhang,
Y.Chen,
Y.Wu,
Z.H.Zhou,
Z.Chang,
and
S.F.Sui
(2008).
Activation of DegP chaperone-protease via formation of large cage-like oligomers upon binding to substrate proteins.
|
| |
Proc Natl Acad Sci U S A,
105,
11939-11944.
|
 |
|
|
|
|
 |
J.L.England,
and
V.S.Pande
(2008).
Potential for modulation of the hydrophobic effect inside chaperonins.
|
| |
Biophys J,
95,
3391-3399.
|
 |
|
|
|
|
 |
K.Hosono,
T.Ueno,
H.Taguchi,
F.Motojima,
T.Zako,
M.Yoshida,
and
T.Funatsu
(2008).
Kinetic Analysis of Conformational Changes of GroEL Based on the Fluorescence of Tyrosine 506.
|
| |
Protein J,
27,
461-468.
|
 |
|
|
|
|
 |
K.Machida,
A.Kono-Okada,
K.Hongo,
T.Mizobata,
and
Y.Kawata
(2008).
Hydrophilic residues 526 KNDAAD 531 in the flexible C-terminal region of the chaperonin GroEL are critical for substrate protein folding within the central cavity.
|
| |
J Biol Chem,
283,
6886-6896.
|
 |
|
|
|
|
 |
M.Kosmaoglou,
N.Schwarz,
J.S.Bett,
and
M.E.Cheetham
(2008).
Molecular chaperones and photoreceptor function.
|
| |
Prog Retin Eye Res,
27,
434-449.
|
 |
|
|
|
|
 |
M.Suzuki,
T.Ueno,
R.Iizuka,
T.Miura,
T.Zako,
R.Akahori,
T.Miyake,
N.Shimamoto,
M.Aoki,
T.Tanii,
I.Ohdomari,
and
T.Funatsu
(2008).
Effect of the C-terminal Truncation on the Functional Cycle of Chaperonin GroEL: IMPLICATION THAT THE C-TERMINAL REGION FACILITATES THE TRANSITION FROM THE FOLDING-ARRESTED TO THE FOLDING-COMPETENT STATE.
|
| |
J Biol Chem,
283,
23931-23939.
|
 |
|
|
|
|
 |
N.D.Thomsen,
and
J.M.Berger
(2008).
Structural frameworks for considering microbial protein- and nucleic acid-dependent motor ATPases.
|
| |
Mol Microbiol,
69,
1071-1090.
|
 |
|
|
|
|
 |
N.Papo,
Y.Kipnis,
G.Haran,
and
A.Horovitz
(2008).
Concerted release of substrate domains from GroEL by ATP is demonstrated with FRET.
|
| |
J Mol Biol,
380,
717-725.
|
 |
|
|
|
|
 |
O.Paliy,
S.M.Gargac,
Y.Cheng,
V.N.Uversky,
and
A.K.Dunker
(2008).
Protein disorder is positively correlated with gene expression in Escherichia coli.
|
| |
J Proteome Res,
7,
2234-2245.
|
 |
|
|
|
|
 |
T.Ando,
T.Uchihashi,
N.Kodera,
D.Yamamoto,
A.Miyagi,
M.Taniguchi,
and
H.Yamashita
(2008).
High-speed AFM and nano-visualization of biomolecular processes.
|
| |
Pflugers Arch,
456,
211-225.
|
 |
|
|
|
|
 |
T.Furuta,
Y.Fujitsuka,
G.Chikenji,
and
S.Takada
(2008).
In silico chaperonin-like cycle helps folding of proteins for structure prediction.
|
| |
Biophys J,
94,
2558-2565.
|
 |
|
|
|
|
 |
T.Inobe,
K.Takahashi,
K.Maki,
S.Enoki,
K.Kamagata,
A.Kadooka,
M.Arai,
and
K.Kuwajima
(2008).
Asymmetry of the GroEL-GroES complex under physiological conditions as revealed by small-angle x-ray scattering.
|
| |
Biophys J,
94,
1392-1402.
|
 |
|
|
|
|
 |
T.Nojima,
S.Murayama,
M.Yoshida,
and
F.Motojima
(2008).
Determination of the number of active GroES subunits in the fused heptamer GroES required for interactions with GroEL.
|
| |
J Biol Chem,
283,
18385-18392.
|
 |
|
|
|
|
 |
Y.Yoshiike,
R.Minai,
Y.Matsuo,
Y.R.Chen,
T.Kimura,
and
A.Takashima
(2008).
Amyloid oligomer conformation in a group of natively folded proteins.
|
| |
PLoS ONE,
3,
e3235.
|
 |
|
|
|
|
 |
Z.Lin,
D.Madan,
and
H.S.Rye
(2008).
GroEL stimulates protein folding through forced unfolding.
|
| |
Nat Struct Mol Biol,
15,
303-311.
|
 |
|
|
|
|
 |
A.Endo,
and
Y.Kurusu
(2007).
Identification of in vivo substrates of the chaperonin GroEL from Bacillus subtilis.
|
| |
Biosci Biotechnol Biochem,
71,
1073-1077.
|
 |
|
|
|
|
 |
A.L.Horwich,
W.A.Fenton,
E.Chapman,
and
G.W.Farr
(2007).
Two families of chaperonin: physiology and mechanism.
|
| |
Annu Rev Cell Dev Biol,
23,
115-145.
|
 |
|
|
|
|
 |
C.Chennubhotla,
and
I.Bahar
(2007).
Markov methods for hierarchical coarse-graining of large protein dynamics.
|
| |
J Comput Biol,
14,
765-776.
|
 |
|
|
|
|
 |
E.Jacob,
A.Horovitz,
and
R.Unger
(2007).
Different mechanistic requirements for prokaryotic and eukaryotic chaperonins: a lattice study.
|
| |
Bioinformatics,
23,
i240-i248.
|
 |
|
|
|
|
 |
G.Stan,
G.H.Lorimer,
D.Thirumalai,
and
B.R.Brooks
(2007).
Coupling between allosteric transitions in GroEL and assisted folding of a substrate protein.
|
| |
Proc Natl Acad Sci U S A,
104,
8803-8808.
|
 |
|
|
|
|
 |
H.Y.Chen,
Z.M.Chu,
Y.H.Ma,
Y.Zhang,
and
S.L.Yang
(2007).
Expression and characterization of the chaperonin molecular machine from the hyperthermophilic archaeon Pyrococcus furiosus.
|
| |
J Basic Microbiol,
47,
132-137.
|
 |
|
|
|
|
 |
M.L.Baker,
T.Ju,
and
W.Chiu
(2007).
Identification of secondary structure elements in intermediate-resolution density maps.
|
| |
Structure,
15,
7.
|
 |
|
|
|
|
 |
N.Elad,
G.W.Farr,
D.K.Clare,
E.V.Orlova,
A.L.Horwich,
and
H.R.Saibil
(2007).
Topologies of a substrate protein bound to the chaperonin GroEL.
|
| |
Mol Cell,
26,
415-426.
|
 |
|
|
|
|
 |
P.D.Kiser,
D.T.Lodowski,
and
K.Palczewski
(2007).
Purification, crystallization and structure determination of native GroEL from Escherichia coli lacking bound potassium ions.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
63,
457-461.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.Horst,
W.A.Fenton,
S.W.Englander,
K.Wüthrich,
and
A.L.Horwich
(2007).
Folding trajectories of human dihydrofolate reductase inside the GroEL GroES chaperonin cavity and free in solution.
|
| |
Proc Natl Acad Sci U S A,
104,
20788-20792.
|
 |
|
|
|
|
 |
T.Okada,
K.Ayada,
S.Usui,
K.Yokota,
J.Cui,
Y.Kawahara,
T.Inaba,
S.Hirohata,
M.Mizuno,
D.Yamamoto,
S.Kusachi,
E.Matsuura,
and
K.Oguma
(2007).
Antibodies against heat shock protein 60 derived from Helicobacter pylori: diagnostic implications in cardiovascular disease.
|
| |
J Autoimmun,
29,
106-115.
|
 |
|
|
|
|
 |
Y.Kipnis,
N.Papo,
G.Haran,
and
A.Horovitz
(2007).
Concerted ATP-induced allosteric transitions in GroEL facilitate release of protein substrate domains in an all-or-none manner.
|
| |
Proc Natl Acad Sci U S A,
104,
3119-3124.
|
 |
|
|
|
|
 |
Y.Nishino,
T.Yasunaga,
and
A.Miyazawa
(2007).
A genetically encoded metallothionein tag enabling efficient protein detection by electron microscopy.
|
| |
J Electron Microsc (Tokyo),
56,
93.
|
 |
|
|
|
|
 |
Y.Sliozberg,
and
C.F.Abrams
(2007).
Spontaneous conformational changes in the E. coli GroEL subunit from all-atom molecular dynamics simulations.
|
| |
Biophys J,
93,
1906-1916.
|
 |
|
|
|
|
 |
A.Endo,
M.Sasaki,
A.Maruyama,
and
Y.Kurusu
(2006).
Temperature adaptation of Bacillus subtilis by chromosomal groEL replacement.
|
| |
Biosci Biotechnol Biochem,
70,
2357-2362.
|
 |
|
|
|
|
 |
A.Koike-Takeshita,
T.Shimamura,
K.Yokoyama,
M.Yoshida,
and
H.Taguchi
(2006).
Leu309 plays a critical role in the encapsulation of substrate protein into the internal cavity of GroEL.
|
| |
J Biol Chem,
281,
962-967.
|
 |
|
|
|
|
 |
C.Chennubhotla,
and
I.Bahar
(2006).
Markov propagation of allosteric effects in biomolecular systems: application to GroEL-GroES.
|
| |
Mol Syst Biol,
2,
36.
|
 |
|
|
|
|
 |
D.H.Chen,
J.L.Song,
D.T.Chuang,
W.Chiu,
and
S.J.Ludtke
(2006).
An expanded conformation of single-ring GroEL-GroES complex encapsulates an 86 kDa substrate.
|
| |
Structure,
14,
1711-1722.
|
 |
|
|
|
|
 |
D.Lu,
Z.Liu,
and
J.Wu
(2006).
Structural transitions of confined model proteins: molecular dynamics simulation and experimental validation.
|
| |
Biophys J,
90,
3224-3238.
|
 |
|
|
|
|
 |
E.J.Miller,
A.S.Meyer,
and
J.Frydman
(2006).
Modeling of possible subunit arrangements in the eukaryotic chaperonin TRiC.
|
| |
Protein Sci,
15,
1522-1526.
|
 |
|
|
|
|
 |
E.Lorentzen,
and
E.Conti
(2006).
The exosome and the proteasome: nano-compartments for degradation.
|
| |
Cell,
125,
651-654.
|
 |
|
|
|
|
 |
H.Fan,
and
A.E.Mark
(2006).
Mimicking the action of GroEL in molecular dynamics simulations: application to the refinement of protein structures.
|
| |
Protein Sci,
15,
441-448.
|
 |
|
|
|
|
 |
J.P.Lasserre,
E.Beyne,
S.Pyndiah,
D.Lapaillerie,
S.Claverol,
and
M.Bonneu
(2006).
A complexomic study of Escherichia coli using two-dimensional blue native/SDS polyacrylamide gel electrophoresis.
|
| |
Electrophoresis,
27,
3306-3321.
|
 |
|
|
|
|
 |
K.Goyal,
R.Qamra,
and
S.C.Mande
(2006).
Multiple gene duplication and rapid evolution in the groEL gene: functional implications.
|
| |
J Mol Evol,
63,
781-787.
|
 |
|
|
|
|
 |
M.A.Fares,
and
S.A.Travers
(2006).
A novel method for detecting intramolecular coevolution: adding a further dimension to selective constraints analyses.
|
| |
Genetics,
173,
9.
|
 |
|
|
|
|
 |
M.J.Cliff,
C.Limpkin,
A.Cameron,
S.G.Burston,
and
A.R.Clarke
(2006).
Elucidation of steps in the capture of a protein substrate for efficient encapsulation by GroE.
|
| |
J Biol Chem,
281,
21266-21275.
|
 |
|
|
|
|
 |
M.Ventura,
C.Canchaya,
Z.Zhang,
V.Bernini,
G.F.Fitzgerald,
and
D.van Sinderen
(2006).
How high G+C Gram-positive bacteria and in particular bifidobacteria cope with heat stress: protein players and regulators.
|
| |
FEMS Microbiol Rev,
30,
734-759.
|
 |
|
|
|
|
 |
M.Yokokawa,
C.Wada,
T.Ando,
N.Sakai,
A.Yagi,
S.H.Yoshimura,
and
K.Takeyasu
(2006).
Fast-scanning atomic force microscopy reveals the ATP/ADP-dependent conformational changes of GroEL.
|
| |
EMBO J,
25,
4567-4576.
|
 |
|
|
|
|
 |
N.A.Ranson,
D.K.Clare,
G.W.Farr,
D.Houldershaw,
A.L.Horwich,
and
H.R.Saibil
(2006).
Allosteric signaling of ATP hydrolysis in GroEL-GroES complexes.
|
| |
Nat Struct Mol Biol,
13,
147-152.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
N.I.u.Marchenko,
V.V.Marchenkov,
A.L.Kaĭsheva,
I.A.Kashparov,
N.V.Kotova,
P.A.Kaliman,
and
G.V.Semisotnov
(2006).
Affinity chromatography of GroEL chaperonin based on denatured proteins: role of electrostatic interactions in regulation of GroEL affinity for protein substrates.
|
| |
Biochemistry (Mosc),
71,
1357-1364.
|
 |
|
|
|
|
 |
O.Danziger,
L.Shimon,
and
A.Horovitz
(2006).
Glu257 in GroEL is a sensor involved in coupling polypeptide substrate binding to stimulation of ATP hydrolysis.
|
| |
Protein Sci,
15,
1270-1276.
|
 |
|
|
|
|
 |
P.Gupta,
N.Aggarwal,
P.Batra,
S.Mishra,
and
T.K.Chaudhuri
(2006).
Co-expression of chaperonin GroEL/GroES enhances in vivo folding of yeast mitochondrial aconitase and alters the growth characteristics of Escherichia coli.
|
| |
Int J Biochem Cell Biol,
38,
1975-1985.
|
 |
|
|
|
|
 |
R.Horst,
G.Wider,
J.Fiaux,
E.B.Bertelsen,
A.L.Horwich,
and
K.Wüthrich
(2006).
Proton-proton Overhauser NMR spectroscopy with polypeptide chains in large structures.
|
| |
Proc Natl Acad Sci U S A,
103,
15445-15450.
|
 |
|
|
|
|
 |
S.Keller,
F.Pojer,
L.Heide,
and
D.M.Lawson
(2006).
Molecular replacement in the 'twilight zone': structure determination of the non-haem iron oxygenase NovR from Streptomyces spheroides through repeated density modification of a poor molecular-replacement solution.
|
| |
Acta Crystallogr D Biol Crystallogr,
62,
1564-1570.
|
 |
|
|
|
|
 |
T.Yoshida,
T.Kanzaki,
R.Iizuka,
T.Komada,
T.Zako,
R.Suzuki,
T.Maruyama,
and
M.Yohda
(2006).
Contribution of the C-terminal region to the thermostability of the archaeal group II chaperonin from Thermococcus sp. strain KS-1.
|
| |
Extremophiles,
10,
451-459.
|
 |
|
|
|
|
 |
W.Chiu,
M.L.Baker,
and
S.C.Almo
(2006).
Structural biology of cellular machines.
|
| |
Trends Cell Biol,
16,
144-150.
|
 |
|
|
|
|
 |
Y.C.Tang,
H.C.Chang,
A.Roeben,
D.Wischnewski,
N.Wischnewski,
M.J.Kerner,
F.U.Hartl,
and
M.Hayer-Hartl
(2006).
Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein.
|
| |
Cell,
125,
903-914.
|
 |
|
|
|
|
 |
Z.S.Derewenda,
and
P.G.Vekilov
(2006).
Entropy and surface engineering in protein crystallization.
|
| |
Acta Crystallogr D Biol Crystallogr,
62,
116-124.
|
 |
|
|
|
|
 |
A.Berezov,
M.J.McNeill,
A.Iriarte,
and
M.Martinez-Carrion
(2005).
Electron paramagnetic resonance and fluorescence studies of the conformation of aspartate aminotransferase bound to GroEL.
|
| |
Protein J,
24,
465-478.
|
 |
|
|
|
|
 |
A.Ojha,
M.Anand,
A.Bhatt,
L.Kremer,
W.R.Jacobs,
and
G.F.Hatfull
(2005).
GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria.
|
| |
Cell,
123,
861-873.
|
 |
|
|
|
|
 |
A.Tosukhowong,
J.Nakayama,
Y.Mizunoe,
S.Sugimoto,
D.Fukuda,
and
K.Sonomoto
(2005).
Reconstitution and function of Tetragenococcus halophila chaperonin 60 tetradecamer.
|
| |
J Biosci Bioeng,
99,
30-37.
|
 |
|
|
|
|
 |
B.Sot,
F.von Germar,
W.Mäntele,
J.M.Valpuesta,
S.G.Taneva,
and
A.Muga
(2005).
Ionic interactions at both inter-ring contact sites of GroEL are involved in transmission of the allosteric signal: a time-resolved infrared difference study.
|
| |
Protein Sci,
14,
2267-2274.
|
 |
|
|
|
|
 |
D.Rivenzon-Segal,
S.G.Wolf,
L.Shimon,
K.R.Willison,
and
A.Horovitz
(2005).
Sequential ATP-induced allosteric transitions of the cytoplasmic chaperonin containing TCP-1 revealed by EM analysis.
|
| |
Nat Struct Mol Biol,
12,
233-237.
|
 |
|
|
|
|
 |
E.van Duijn,
P.J.Bakkes,
R.M.Heeren,
R.H.van den Heuvel,
H.van Heerikhuizen,
S.M.van der Vies,
and
A.J.Heck
(2005).
Monitoring macromolecular complexes involved in the chaperonin-assisted protein folding cycle by mass spectrometry.
|
| |
Nat Methods,
2,
371-376.
|
 |
|
|
|
|
 |
I.Res,
and
O.Lichtarge
(2005).
Character and evolution of protein-protein interfaces.
|
| |
Phys Biol,
2,
S36-S43.
|
 |
|
|
|
|
 |
J.Ma
(2005).
Usefulness and limitations of normal mode analysis in modeling dynamics of biomolecular complexes.
|
| |
Structure,
13,
373-380.
|
 |
|
|
|
|
 |
M.A.Fares,
A.Moya,
and
E.Barrio
(2005).
Adaptive evolution in GroEL from distantly related endosymbiotic bacteria of insects.
|
| |
J Evol Biol,
18,
651-660.
|
 |
|
|
|
|
 |
M.Furutani,
J.Hata,
Y.Shomura,
K.Itami,
T.Yoshida,
Y.Izumoto,
A.Togi,
A.Ideno,
T.Yasunaga,
K.Miki,
and
T.Maruyama
(2005).
An engineered chaperonin caging a guest protein: Structural insights and potential as a protein expression tool.
|
| |
Protein Sci,
14,
341-350.
|
 |
|
|
|
|
 |
M.J.Kerner,
D.J.Naylor,
Y.Ishihama,
T.Maier,
H.C.Chang,
A.P.Stines,
C.Georgopoulos,
D.Frishman,
M.Hayer-Hartl,
M.Mann,
and
F.U.Hartl
(2005).
Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli.
|
| |
Cell,
122,
209-220.
|
 |
|
|
|
|
 |
M.Unser,
C.O.Sorzano,
P.Thévenaz,
S.Jonić,
C.El-Bez,
S.De Carlo,
J.F.Conway,
and
B.L.Trus
(2005).
Spectral signal-to-noise ratio and resolution assessment of 3D reconstructions.
|
| |
J Struct Biol,
149,
243-255.
|
 |
|
|
|
|
 |
O.V.Polyakova,
O.Roitel,
R.A.Asryants,
A.A.Poliakov,
G.Branlant,
and
V.I.Muronetz
(2005).
Misfolded forms of glyceraldehyde-3-phosphate dehydrogenase interact with GroEL and inhibit chaperonin-assisted folding of the wild-type enzyme.
|
| |
Protein Sci,
14,
921-928.
|
 |
|
|
|
|
 |
R.Horst,
E.B.Bertelsen,
J.Fiaux,
G.Wider,
A.L.Horwich,
and
K.Wüthrich
(2005).
Direct NMR observation of a substrate protein bound to the chaperonin GroEL.
|
| |
Proc Natl Acad Sci U S A,
102,
12748-12753.
|
 |
|
|
|
|
 |
S.Y.Kim,
A.N.Semyonov,
R.J.Twieg,
A.L.Horwich,
J.Frydman,
and
W.E.Moerner
(2005).
Probing the sequence of conformationally induced polarity changes in the molecular chaperonin GroEL with fluorescence spectroscopy.
|
| |
J Phys Chem B,
109,
24517-24525.
|
 |
|
|
|
|
 |
V.Percec,
A.E.Dulcey,
M.Peterca,
M.Ilies,
J.Ladislaw,
B.M.Rosen,
U.Edlund,
and
P.A.Heiney
(2005).
The internal structure of helical pores self-assembled from dendritic dipeptides is stereochemically programmed and allosterically regulated.
|
| |
Angew Chem Int Ed Engl,
44,
6516-6521.
|
 |
|
|
|
|
 |
W.X.Xu,
J.Wang,
and
W.Wang
(2005).
Folding behavior of chaperonin-mediated substrate protein.
|
| |
Proteins,
61,
777-794.
|
 |
|
|
|
|
 |
B.T.Sewell,
R.B.Best,
S.Chen,
A.M.Roseman,
G.W.Farr,
A.L.Horwich,
and
H.R.Saibil
(2004).
A mutant chaperonin with rearranged inter-ring electrostatic contacts and temperature-sensitive dissociation.
|
| |
Nat Struct Mol Biol,
11,
1128-1133.
|
 |
|
|
|
|
 |
D.Bumann,
H.Habibi,
B.Kan,
M.Schmid,
C.Goosmann,
V.Brinkmann,
T.F.Meyer,
and
P.R.Jungblut
(2004).
Lack of stage-specific proteins in coccoid Helicobacter pylori cells.
|
| |
Infect Immun,
72,
6738-6742.
|
 |
|
|
|
|
 |
F.Motojima,
C.Chaudhry,
W.A.Fenton,
G.W.Farr,
and
A.L.Horwich
(2004).
Substrate polypeptide presents a load on the apical domains of the chaperonin GroEL.
|
| |
Proc Natl Acad Sci U S A,
101,
15005-15012.
|
 |
|
|
|
|
 |
F.Shewmaker,
M.J.Kerner,
M.Hayer-Hartl,
G.Klein,
C.Georgopoulos,
and
S.J.Landry
(2004).
A mobile loop order-disorder transition modulates the speed of chaperonin cycling.
|
| |
Protein Sci,
13,
2139-2148.
|
 |
|
|
|
|
 |
G.Fossati,
P.Cremonesi,
G.Izzo,
E.Rizzi,
G.Sandrone,
S.Harding,
N.Errington,
C.Walters,
B.Henderson,
M.M.Roberts,
A.R.Coates,
and
P.Mascagni
(2004).
The Mycobacterium tuberculosis chaperonin 10 monomer exhibits structural plasticity.
|
| |
Biopolymers,
75,
148-162.
|
 |
|
|
|
|
 |
H.Taguchi,
K.Tsukuda,
F.Motojima,
A.Koike-Takeshita,
and
M.Yoshida
(2004).
BeF(x) stops the chaperonin cycle of GroEL-GroES and generates a complex with double folding chambers.
|
| |
J Biol Chem,
279,
45737-45743.
|
 |
|
|
|
|
 |
J.Martín-Benito,
S.Bertrand,
T.Hu,
P.J.Ludtke,
J.N.McLaughlin,
B.M.Willardson,
J.L.Carrascosa,
and
J.M.Valpuesta
(2004).
Structure of the complex between the cytosolic chaperonin CCT and phosducin-like protein.
|
| |
Proc Natl Acad Sci U S A,
101,
17410-17415.
|
 |
|
|
|
|
 |
K.Gunasekaran,
B.Ma,
and
R.Nussinov
(2004).
Is allostery an intrinsic property of all dynamic proteins?
|
| |
Proteins,
57,
433-443.
|
 |
|
|
|
|
 |
L.Figueiredo,
D.Klunker,
D.Ang,
D.J.Naylor,
M.J.Kerner,
C.Georgopoulos,
F.U.Hartl,
and
M.Hayer-Hartl
(2004).
Functional characterization of an archaeal GroEL/GroES chaperonin system: significance of substrate encapsulation.
|
| |
J Biol Chem,
279,
1090-1099.
|
 |
|
|
|
|
 |
M.A.Tangrea,
B.S.Wallis,
J.W.Gillespie,
G.Gannot,
M.R.Emmert-Buck,
and
R.F.Chuaqui
(2004).
Novel proteomic approaches for tissue analysis.
|
| |
Expert Rev Proteomics,
1,
185-192.
|
 |
|
|
|
|
 |
M.Bhattacharyya,
S.Ray,
S.Bhattacharya,
and
A.Chakrabarti
(2004).
Chaperone activity and prodan binding at the self-associating domain of erythroid spectrin.
|
| |
J Biol Chem,
279,
55080-55088.
|
 |
|
|
|
|
 |
M.Ferrer,
H.Lünsdorf,
T.N.Chernikova,
M.Yakimov,
K.N.Timmis,
and
P.N.Golyshin
(2004).
Functional consequences of single:double ring transitions in chaperonins: life in the cold.
|
| |
Mol Microbiol,
53,
167-182.
|
 |
|
|
|
|
 |
M.Taniguchi,
T.Yoshimi,
K.Hongo,
T.Mizobata,
and
Y.Kawata
(2004).
Stopped-flow fluorescence analysis of the conformational changes in the GroEL apical domain: relationships between movements in the apical domain and the quaternary structure of GroEL.
|
| |
J Biol Chem,
279,
16368-16376.
|
 |
|
|
|
|
 |
R.B.Russell,
F.Alber,
P.Aloy,
F.P.Davis,
D.Korkin,
M.Pichaud,
M.Topf,
and
A.Sali
(2004).
A structural perspective on protein-protein interactions.
|
| |
Curr Opin Struct Biol,
14,
313-324.
|
 |
|
|
|
|
 |
R.Iizuka,
S.So,
T.Inobe,
T.Yoshida,
T.Zako,
K.Kuwajima,
and
M.Yohda
(2004).
Role of the helical protrusion in the conformational change and molecular chaperone activity of the archaeal group II chaperonin.
|
| |
J Biol Chem,
279,
18834-18839.
|
 |
|
|
|
|
 |
R.Qamra,
and
S.C.Mande
(2004).
Crystal structure of the 65-kilodalton heat shock protein, chaperonin 60.2, of Mycobacterium tuberculosis.
|
| |
J Bacteriol,
186,
8105-8113.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Banerjee,
D.Hess,
P.Majumder,
D.Roy,
and
S.Das
(2004).
The Interactions of Allium sativum leaf agglutinin with a chaperonin group of unique receptor protein isolated from a bacterial endosymbiont of the mustard aphid.
|
| |
J Biol Chem,
279,
23782-23789.
|
 |
|
|
|
|
 |
T.H.Davis,
and
A.L.Horwich
(2004).
Biography of Arthur L. Horwich.
|
| |
Proc Natl Acad Sci U S A,
101,
15002-15004.
|
 |
|
|
|
|
 |
T.Nakamura,
M.Tanaka,
A.Maruyama,
Y.Higashi,
and
Y.Kurusu
(2004).
A nonconserved carboxy-terminal segment of GroEL contributes to reaction temperature.
|
| |
Biosci Biotechnol Biochem,
68,
2498-2504.
|
 |
|
|
|
|
 |
T.Sarkar,
G.Mitra,
S.Gupta,
T.Manna,
A.Poddar,
D.Panda,
K.P.Das,
and
B.Bhattacharyya
(2004).
MAP2 prevents protein aggregation and facilitates reactivation of unfolded enzymes.
|
| |
Eur J Biochem,
271,
1488-1496.
|
 |
|
|
|
|
 |
T.Shimamura,
A.Koike-Takeshita,
K.Yokoyama,
R.Masui,
N.Murai,
M.Yoshida,
H.Taguchi,
and
S.Iwata
(2004).
Crystal structure of the native chaperonin complex from Thermus thermophilus revealed unexpected asymmetry at the cis-cavity.
|
| |
Structure,
12,
1471-1480.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.Ueno,
H.Taguchi,
H.Tadakuma,
M.Yoshida,
and
T.Funatsu
(2004).
GroEL mediates protein folding with a two successive timer mechanism.
|
| |
Mol Cell,
14,
423-434.
|
 |
|
|
|
|
 |
Z.Lin,
and
H.S.Rye
(2004).
Expansion and compression of a protein folding intermediate by GroEL.
|
| |
Mol Cell,
16,
23-34.
|
 |
|
|
|
|
 |
Z.S.Derewenda
(2004).
Rational protein crystallization by mutational surface engineering.
|
| |
Structure,
12,
529-535.
|
 |
|
|
|
|
 |
A.Erbse,
D.A.Dougan,
and
B.Bukau
(2003).
A folding machine for many but a master of none.
|
| |
Nat Struct Biol,
10,
84-86.
|
 |
|
|
|
|
 |
A.Janner
(2003).
The architecture of the GroEL-GroES-(ADP)(7) chaperonin complex. I. Heptagrammal molecular forms.
|
| |
Acta Crystallogr D Biol Crystallogr,
59,
783-794.
|
 |
|
|
|
|
 |
A.Janner
(2003).
The architecture of the GroEL-GroES-(ADP)(7) chaperonin complex. II. Heptagrammal characterization of the folding.
|
| |
Acta Crystallogr D Biol Crystallogr,
59,
795-808.
|
 |
|
|
|
|
 |
B.Sot,
S.Bañuelos,
J.M.Valpuesta,
and
A.Muga
(2003).
GroEL stability and function. Contribution of the ionic interactions at the inter-ring contact sites.
|
| |
J Biol Chem,
278,
32083-32090.
|
 |
|
|
|
|
 |
D.I.Liao,
L.Reiss,
I.Turner,
and
G.Dotson
(2003).
Structure of glycerol dehydratase reactivase: a new type of molecular chaperone.
|
| |
Structure,
11,
109-119.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.Ishii,
K.Kinbara,
Y.Ishida,
N.Ishii,
M.Okochi,
M.Yohda,
and
T.Aida
(2003).
Chaperonin-mediated stabilization and ATP-triggered release of semiconductor nanoparticles.
|
| |
Nature,
423,
628-632.
|
 |
|
|
|
|
 |
D.Klunker,
B.Haas,
A.Hirtreiter,
L.Figueiredo,
D.J.Naylor,
G.Pfeifer,
V.Müller,
U.Deppenmeier,
G.Gottschalk,
F.U.Hartl,
and
M.Hayer-Hartl
(2003).
Coexistence of group I and group II chaperonins in the archaeon Methanosarcina mazei.
|
| |
J Biol Chem,
278,
33256-33267.
|
 |
|
|
|
|
 |
F.Takagi,
N.Koga,
and
S.Takada
(2003).
How protein thermodynamics and folding mechanisms are altered by the chaperonin cage: molecular simulations.
|
| |
Proc Natl Acad Sci U S A,
100,
11367-11372.
|
 |
|
|
|
|
 |
H.Sekiguchi,
H.Arakawa,
H.Taguchi,
T.Ito,
R.Kokawa,
and
A.Ikai
(2003).
Specific interaction between GroEL and denatured protein measured by compression-free force spectroscopy.
|
| |
Biophys J,
85,
484-490.
|
 |
|
|
|
|
 |
M.Arai,
T.Inobe,
K.Maki,
T.Ikura,
H.Kihara,
Y.Amemiya,
and
K.Kuwajima
(2003).
Denaturation and reassembly of chaperonin GroEL studied by solution X-ray scattering.
|
| |
Protein Sci,
12,
672-680.
|
 |
|
|
|
|
 |
O.Danziger,
D.Rivenzon-Segal,
S.G.Wolf,
and
A.Horovitz
(2003).
Conversion of the allosteric transition of GroEL from concerted to sequential by the single mutation Asp-155 -> Ala.
|
| |
Proc Natl Acad Sci U S A,
100,
13797-13802.
|
 |
|
|
|
|
 |
X.E.Zhou,
Y.Wang,
M.Reuter,
P.Mackeldanz,
D.H.Krüger,
E.J.Meehan,
and
L.Chen
(2003).
A single mutation of restriction endonuclease EcoRII led to a new crystal form that diffracts to 2.1 A resolution.
|
| |
Acta Crystallogr D Biol Crystallogr,
59,
910-912.
|
 |
|
|
|
|
 |
Z.Bu,
L.Wang,
and
D.A.Kendall
(2003).
Nucleotide binding induces changes in the oligomeric state and conformation of Sec A in a lipid environment: a small-angle neutron-scattering study.
|
| |
J Mol Biol,
332,
23-30.
|
 |
|
|
|
|
 |
Z.Zhao,
Y.Peng,
S.F.Hao,
Z.H.Zeng,
and
C.C.Wang
(2003).
Dimerization by domain hybridization bestows chaperone and isomerase activities.
|
| |
J Biol Chem,
278,
43292-43298.
|
 |
|
|
|
|
 |
A.E.Ashcroft,
A.Brinker,
J.E.Coyle,
F.Weber,
M.Kaiser,
L.Moroder,
M.R.Parsons,
J.Jager,
U.F.Hartl,
M.Hayer-Hartl,
and
S.E.Radford
(2002).
Structural plasticity and noncovalent substrate binding in the GroEL apical domain. A study using electrospay ionization mass spectrometry and fluorescence binding studies.
|
| |
J Biol Chem,
277,
33115-33126.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Horovitz,
A.Amir,
O.Danziger,
and
G.Kafri
(2002).
Phi value analysis of heterogeneity in pathways of allosteric transitions: Evidence for parallel pathways of ATP-induced conformational changes in a GroEL ring.
|
| |
Proc Natl Acad Sci U S A,
99,
14095-14097.
|
 |
|
|
|
|
 |
A.Horwich
(2002).
Protein aggregation in disease: a role for folding intermediates forming specific multimeric interactions.
|
| |
J Clin Invest,
110,
1221-1232.
|
 |
|
|
|
|
 |
B.Sot,
A.Galán,
J.M.Valpuesta,
S.Bertrand,
and
A.Muga
(2002).
Salt bridges at the inter-ring interface regulate the thermostat of GroEL.
|
| |
J Biol Chem,
277,
34024-34029.
|
 |
|
|
|
|
 |
H.R.Saibil,
and
N.A.Ranson
(2002).
The chaperonin folding machine.
|
| |
Trends Biochem Sci,
27,
627-632.
|
 |
|
|
|
|
 |
I.Kass,
and
A.Horovitz
(2002).
Mapping pathways of allosteric communication in GroEL by analysis of correlated mutations.
|
| |
Proteins,
48,
611-617.
|
 |
|
|
|
|
 |
J.D.Wang,
C.Herman,
K.A.Tipton,
C.A.Gross,
and
J.S.Weissman
(2002).
Directed evolution of substrate-optimized GroEL/S chaperonins.
|
| |
Cell,
111,
1027-1039.
|
 |
|
|
|
|
 |
J.Fiaux,
E.B.Bertelsen,
A.L.Horwich,
and
K.Wüthrich
(2002).
NMR analysis of a 900K GroEL GroES complex.
|
| |
Nature,
418,
207-211.
|
 |
|
|
|
|
 |
J.M.Yon
(2002).
Protein folding in the post-genomic era.
|
| |
J Cell Mol Med,
6,
307-327.
|
 |
|
|
|
|
 |
M.Gozu,
M.Hoshino,
T.Higurashi,
H.Kato,
and
Y.Goto
(2002).
The interaction of beta(2)-glycoprotein I domain V with chaperonin GroEL: the similarity with the domain V and membrane interaction.
|
| |
Protein Sci,
11,
2792-2803.
|
 |
|
|
|
|
 |
M.Maguire,
A.R.Coates,
and
B.Henderson
(2002).
Chaperonin 60 unfolds its secrets of cellular communication.
|
| |
Cell Stress Chaperones,
7,
317-329.
|
 |
|
|
|
|
 |
S.Korolev,
O.Koroleva,
K.Petterson,
M.Gu,
F.Collart,
I.Dementieva,
and
A.Joachimiak
(2002).
Autotracing of Escherichia coli acetate CoA-transferase alpha-subunit structure using 3.4 A MAD and 1.9 A native data.
|
| |
Acta Crystallogr D Biol Crystallogr,
58,
2116-2121.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Lee,
C.Y.Fan,
J.M.Younger,
H.Ren,
and
D.M.Cyr
(2002).
Identification of essential residues in the type II Hsp40 Sis1 that function in polypeptide binding.
|
| |
J Biol Chem,
277,
21675-21682.
|
 |
|
|
|
|
 |
S.M.Park,
H.Y.Jung,
T.D.Kim,
J.H.Park,
C.H.Yang,
and
J.Kim
(2002).
Distinct roles of the N-terminal-binding domain and the C-terminal-solubilizing domain of alpha-synuclein, a molecular chaperone.
|
| |
J Biol Chem,
277,
28512-28520.
|
 |
|
|
|
|
 |
S.Reischl,
T.Wiegert,
and
W.Schumann
(2002).
Isolation and analysis of mutant alleles of the Bacillus subtilis HrcA repressor with reduced dependency on GroE function.
|
| |
J Biol Chem,
277,
32659-32667.
|
 |
|
|
|
|
 |
S.Walter,
and
J.Buchner
(2002).
Molecular chaperones--cellular machines for protein folding.
|
| |
Angew Chem Int Ed Engl,
41,
1098-1113.
|
 |
|
|
|
|
 |
T.Miyazaki,
T.Yoshimi,
Y.Furutsu,
K.Hongo,
T.Mizobata,
M.Kanemori,
and
Y.Kawata
(2002).
GroEL-substrate-GroES ternary complexes are an important transient intermediate of the chaperonin cycle.
|
| |
J Biol Chem,
277,
50621-50628.
|
 |
|
|
|
|
 |
Y.C.Fang,
and
M.Cheng
(2002).
The effect of C-terminal mutations of HSP60 on protein folding.
|
| |
J Biomed Sci,
9,
223-233.
|
 |
|
|
|
|
 |
Y.Fridmann,
G.Kafri,
O.Danziger,
and
A.Horovitz
(2002).
Dissociation of the GroEL-GroES asymmetric complex is accelerated by increased cooperativity in ATP binding to the GroEL ring distal to GroES.
|
| |
Biochemistry,
41,
5938-5944.
|
 |
|
|
|
|
 |
Y.Shomura,
T.Yoshida,
T.Maruyama,
M.Yohda,
and
K.Miki
(2002).
Crystallization and preliminary X-ray characterization of archaeal group II chaperonin alpha-subunit from Thermococcus strain KS-1.
|
| |
Acta Crystallogr D Biol Crystallogr,
58,
1830-1832.
|
 |
|
|
|
|
 |
A.Brinker,
G.Pfeifer,
M.J.Kerner,
D.J.Naylor,
F.U.Hartl,
and
M.Hayer-Hartl
(2001).
Dual function of protein confinement in chaperonin-assisted protein folding.
|
| |
Cell,
107,
223-233.
|
 |
|
|
|
|
 |
A.L.Smoot,
M.Panda,
B.T.Brazil,
A.M.Buckle,
A.R.Fersht,
and
P.M.Horowitz
(2001).
The binding of bis-ANS to the isolated GroEL apical domain fragment induces the formation of a folding intermediate with increased hydrophobic surface not observed in tetradecameric GroEL.
|
| |
Biochemistry,
40,
4484-4492.
|
 |
|
|
|
|
 |
D.Gorse
(2001).
Global minimization of an off-lattice potential energy function using a chaperone-based refolding method.
|
| |
Biopolymers,
59,
411-426.
|
 |
|
|
|
|
 |
D.Thirumalai,
and
G.H.Lorimer
(2001).
Chaperonin-mediated protein folding.
|
| |
Annu Rev Biophys Biomol Struct,
30,
245-269.
|
 |
|
|
|
|
 |
G.Kafri,
K.R.Willison,
and
A.Horovitz
(2001).
Nested allosteric interactions in the cytoplasmic chaperonin containing TCP-1.
|
| |
Protein Sci,
10,
445-449.
|
 |
|
|
|
|
 |
G.Klein,
and
C.Georgopoulos
(2001).
Identification of important amino acid residues that modulate binding of Escherichia coli GroEL to its various cochaperones.
|
| |
Genetics,
158,
507-517.
|
 |
|
|
|
|
 |
J.Frydman
(2001).
Folding of newly translated proteins in vivo: the role of molecular chaperones.
|
| |
Annu Rev Biochem,
70,
603-647.
|
 |
|
|
|
|
 |
N.A.Ranson,
G.W.Farr,
A.M.Roseman,
B.Gowen,
W.A.Fenton,
A.L.Horwich,
and
H.R.Saibil
(2001).
ATP-bound states of GroEL captured by cryo-electron microscopy.
|
| |
Cell,
107,
869-879.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
O.Llorca,
J.Martín-Benito,
J.Grantham,
M.Ritco-Vonsovici,
K.R.Willison,
J.L.Carrascosa,
and
J.M.Valpuesta
(2001).
The 'sequential allosteric ring' mechanism in the eukaryotic chaperonin-assisted folding of actin and tubulin.
|
| |
EMBO J,
20,
4065-4075.
|
 |
|
|
|
|
 |
T.C.Terwilliger
(2001).
Map-likelihood phasing.
|
| |
Acta Crystallogr D Biol Crystallogr,
57,
1763-1775.
|
 |
|
|
|
|
 |
T.Inobe,
T.Makio,
E.Takasu-Ishikawa,
T.P.Terada,
and
K.Kuwajima
(2001).
Nucleotide binding to the chaperonin GroEL: non-cooperative binding of ATP analogs and ADP, and cooperative effect of ATP.
|
| |
Biochim Biophys Acta,
1545,
160-173.
|
 |
|
|
|
|
 |
V.Grantcharova,
E.J.Alm,
D.Baker,
and
A.L.Horwich
(2001).
Mechanisms of protein folding.
|
| |
Curr Opin Struct Biol,
11,
70-82.
|
 |
|
|
|
|
 |
W.A.Houry
(2001).
Mechanism of substrate recognition by the chaperonin GroEL.
|
| |
Biochem Cell Biol,
79,
569-577.
|
 |
|
|
|
|
 |
Y.D.Park,
W.B.Ou,
T.W.Yu,
and
H.M.Zhou
(2001).
Folding pathway for partially folded rabbit muscle creatine kinase.
|
| |
Biochem Cell Biol,
79,
479-487.
|
 |
|
|
|
|
 |
Y.Luo,
M.G.Bertero,
E.A.Frey,
R.A.Pfuetzner,
M.R.Wenk,
L.Creagh,
S.L.Marcus,
D.Lim,
F.Sicheri,
C.Kay,
C.Haynes,
B.B.Finlay,
and
N.C.Strynadka
(2001).
Structural and biochemical characterization of the type III secretion chaperones CesT and SigE.
|
| |
Nat Struct Biol,
8,
1031-1036.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.M.Roseman
(2000).
Docking structures of domains into maps from cryo-electron microscopy using local correlation.
|
| |
Acta Crystallogr D Biol Crystallogr,
56,
1332-1340.
|
 |
|
|
|
|
 |
C.Klanner,
W.Neupert,
and
T.Langer
(2000).
The chaperonin-related protein Tcm62p ensures mitochondrial gene expression under heat stress.
|
| |
FEBS Lett,
470,
365-369.
|
 |
|
|
|
|
 |
D.Ang,
F.Keppel,
G.Klein,
A.Richardson,
and
C.Georgopoulos
(2000).
Genetic analysis of bacteriophage-encoded cochaperonins.
|
| |
Annu Rev Genet,
34,
439-456.
|
 |
|
|
|
|
 |
G.W.Farr,
K.Furtak,
M.B.Rowland,
N.A.Ranson,
H.R.Saibil,
T.Kirchhausen,
and
A.L.Horwich
(2000).
Multivalent binding of nonnative substrate proteins by the chaperonin GroEL.
|
| |
Cell,
100,
561-573.
|
 |
|
|
|
|
 |
J.Chen,
and
D.L.Smith
(2000).
Unfolding and disassembly of the chaperonin GroEL occurs via a tetradecameric intermediate with a folded equatorial domain.
|
| |
Biochemistry,
39,
4250-4258.
|
 |
|
|
|
|
 |
J.Grantham,
O.Llorca,
J.M.Valpuesta,
and
K.R.Willison
(2000).
Partial occlusion of both cavities of the eukaryotic chaperonin with antibody has no effect upon the rates of beta-actin or alpha-tubulin folding.
|
| |
J Biol Chem,
275,
4587-4591.
|
 |
|
|
|
|
 |
J.J.Guidry,
C.K.Moczygemba,
N.K.Steede,
S.J.Landry,
and
P.Wittung-Stafshede
(2000).
Reversible denaturation of oligomeric human chaperonin 10: denatured state depends on chemical denaturant.
|
| |
Protein Sci,
9,
2109-2117.
|
 |
|
|
|
|
 |
J.K.Dobrzynski,
M.L.Sternlicht,
I.Peng,
G.W.Farr,
and
H.Sternlicht
(2000).
Evidence that beta-tubulin induces a conformation change in the cytosolic chaperonin which stabilizes binding: implications for the mechanism of action.
|
| |
Biochemistry,
39,
3988-4003.
|
 |
|
|
|
|
 |
K.Aoki,
F.Motojima,
H.Taguchi,
T.Yomo,
and
M.Yoshida
(2000).
GroEL binds artificial proteins with random sequences.
|
| |
J Biol Chem,
275,
13755-13758.
|
 |
|
|
|
|
 |
L.Otvos,
I.O,
M.E.Rogers,
P.J.Consolvo,
B.A.Condie,
S.Lovas,
P.Bulet,
and
M.Blaszczyk-Thurin
(2000).
Interaction between heat shock proteins and antimicrobial peptides.
|
| |
Biochemistry,
39,
14150-14159.
|
 |
|
|
|
|
 |
L.Shapiro,
and
T.Harris
(2000).
Finding function through structural genomics.
|
| |
Curr Opin Biotechnol,
11,
31-35.
|
 |
|
|
|
|
 |
M.D.de Beus,
S.M.Doyle,
and
C.M.Teschke
(2000).
GroEL binds a late folding intermediate of phage P22 coat protein.
|
| |
Cell Stress Chaperones,
5,
163-172.
|
 |
|
|
|
|
 |
M.E.Gottesman,
and
W.A.Hendrickson
(2000).
Protein folding and unfolding by Escherichia coli chaperones and chaperonins.
|
| |
Curr Opin Microbiol,
3,
197-202.
|
 |
|
|
|
|
 |
M.M.Barnhart,
J.S.Pinkner,
G.E.Soto,
F.G.Sauer,
S.Langermann,
G.Waksman,
C.Frieden,
and
S.J.Hultgren
(2000).
PapD-like chaperones provide the missing information for folding of pilin proteins.
|
| |
Proc Natl Acad Sci U S A,
97,
7709-7714.
|
 |
|
|
|
|
 |
O.Llorca,
J.Martín-Benito,
M.Ritco-Vonsovici,
J.Grantham,
G.M.Hynes,
K.R.Willison,
J.L.Carrascosa,
and
J.M.Valpuesta
(2000).
Eukaryotic chaperonin CCT stabilizes actin and tubulin folding intermediates in open quasi-native conformations.
|
| |
EMBO J,
19,
5971-5979.
|
 |
|
|
|
|
 |
O.Yifrach,
and
A.Horovitz
(2000).
Coupling between protein folding and allostery in the GroE chaperonin system.
|
| |
Proc Natl Acad Sci U S A,
97,
1521-1524.
|
 |
|
|
|
|
 |
R.M.Wynn,
J.L.Song,
and
D.T.Chuang
(2000).
GroEL/GroES promote dissociation/reassociation cycles of a heterodimeric intermediate during alpha(2)beta(2) protein assembly. Iterative annealing at the quaternary structure level.
|
| |
J Biol Chem,
275,
2786-2794.
|
 |
|
|
|
|
 |
R.Siegert,
M.R.Leroux,
C.Scheufler,
F.U.Hartl,
and
I.Moarefi
(2000).
Structure of the molecular chaperone prefoldin: unique interaction of multiple coiled coil tentacles with unfolded proteins.
|
| |
Cell,
103,
621-632.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.A.Hogenhout,
F.van der Wilk,
M.Verbeek,
R.W.Goldbach,
and
J.F.van den Heuvel
(2000).
Identifying the determinants in the equatorial domain of Buchnera GroEL implicated in binding Potato leafroll virus.
|
| |
J Virol,
74,
4541-4548.
|
 |
|
|
|
|
 |
S.I.Yokota,
D.Hirata,
S.Minota,
T.Higashiyama,
M.Kurimoto,
H.Yanagi,
T.Yura,
and
H.Kubota
(2000).
Autoantibodies against chaperonin CCT in human sera with rheumatic autoimmune diseases: comparison with antibodies against other Hsp60 family proteins.
|
| |
Cell Stress Chaperones,
5,
337-346.
|
 |
|
|
|
|
 |
T.S.Kumarevel,
M.M.Gromiha,
and
M.N.Ponnuswamy
(2000).
Structural class prediction: an application of residue distribution along the sequence.
|
| |
Biophys Chem,
88,
81.
|
 |
|
|
|
|
 |
T.Teshima,
J.Kohda,
A.Kondo,
H.Taguchi,
M.Yohda,
and
H.Fukuda
(2000).
Preparation of Thermus thermophilus holo-chaperonin-immobilized microspheres with high ability to facilitate protein refolding.
|
| |
Biotechnol Bioeng,
68,
184-190.
|
 |
|
|
|
|
 |
V.R.Agashe,
and
F.U.Hartl
(2000).
Roles of molecular chaperones in cytoplasmic protein folding.
|
| |
Semin Cell Dev Biol,
11,
15-25.
|
 |
|
|
|
|
 |
Y.H.Watanabe,
K.Motohashi,
H.Taguchi,
and
M.Yoshida
(2000).
Heat-inactivated proteins managed by DnaKJ-GrpE-ClpB chaperones are released as a chaperonin-recognizable non-native form.
|
| |
J Biol Chem,
275,
12388-12392.
|
 |
|
|
|
|
 |
A.C.Clark,
B.S.Karon,
and
C.Frieden
(1999).
Cooperative effects of potassium, magnesium, and magnesium-ADP on the release of Escherichia coli dihydrofolate reductase from the chaperonin GroEL.
|
| |
Protein Sci,
8,
2166-2176.
|
 |
|
|
|
|
 |
A.Erbse,
O.Yifrach,
S.Jones,
and
P.A.Lund
(1999).
Chaperone activity of a chimeric GroEL protein that can exist in a single or double ring form.
|
| |
J Biol Chem,
274,
20351-20357.
|
 |
|
|
|
|
 |
A.L.Horwich,
E.U.Weber-Ban,
and
D.Finley
(1999).
Chaperone rings in protein folding and degradation.
|
| |
Proc Natl Acad Sci U S A,
96,
11033-11040.
|
 |
|
|
|
|
 |
A.Richardson,
S.M.van der Vies,
F.Keppel,
A.Taher,
S.J.Landry,
and
C.Georgopoulos
(1999).
Compensatory changes in GroEL/Gp31 affinity as a mechanism for allele-specific genetic interaction.
|
| |
J Biol Chem,
274,
52-58.
|
 |
|
|
|
|
 |
A.Roobol,
Z.P.Sahyoun,
and
M.J.Carden
(1999).
Selected subunits of the cytosolic chaperonin associate with microtubules assembled in vitro.
|
| |
J Biol Chem,
274,
2408-2415.
|
 |
|
|
|
|
 |
B.Turk,
R.Awad,
E.V.Usova,
I.Björk,
and
S.Eriksson
(1999).
A pre-steady-state kinetic analysis of substrate binding to human recombinant deoxycytidine kinase: a model for nucleoside kinase action.
|
| |
Biochemistry,
38,
8555-8561.
|
 |
|
|
|
|
 |
C.M.Stultz,
and
M.Karplus
(1999).
MCSS functionality maps for a flexible protein.
|
| |
Proteins,
37,
512-529.
|
 |
|
|
|
|
 |
C.Sakikawa,
H.Taguchi,
Y.Makino,
and
M.Yoshida
(1999).
On the maximum size of proteins to stay and fold in the cavity of GroEL underneath GroES.
|
| |
J Biol Chem,
274,
21251-21256.
|
 |
|
|
|
|
 |
E.Bochkareva,
M.Safro,
and
A.Girshovich
(1999).
Interaction of 4,4'-dithiodipyridine with Cys(458) triggers disassembly of GroEL.
|
| |
J Biol Chem,
274,
20756-20758.
|
 |
|
|
|
|
 |
F.Gardrat,
B.Fraigneau,
V.Montel,
J.Raymond,
and
J.L.Azanza
(1999).
Effect of high hydrostatic pressures on 20S proteasome activity.
|
| |
Eur J Biochem,
262,
900-906.
|
 |
|
|
|
|
 |
F.von Germar,
A.Galán,
O.Llorca,
J.L.Carrascosa,
J.M.Valpuesta,
W.Mäntele,
and
A.Muga
(1999).
Conformational changes generated in GroEL during ATP hydrolysis as seen by time-resolved infrared spectroscopy.
|
| |
J Biol Chem,
274,
5508-5513.
|
 |
|
|
|
|
 |
G.E.Dale,
D.Kostrewa,
B.Gsell,
M.Stieger,
and
A.D'Arcy
(1999).
Crystal engineering: deletion mutagenesis of the 24 kDa fragment of the DNA gyrase B subunit from Staphylococcus aureus.
|
| |
Acta Crystallogr D Biol Crystallogr,
55,
1626-1629.
|
 |
|
|
|
|
 |
G.J.Kleywegt
(1999).
Experimental assessment of differences between related protein crystal structures.
|
| |
Acta Crystallogr D Biol Crystallogr,
55,
1878-1884.
|
 |
|
|
|
|
 |
H.Grallert,
and
J.Buchner
(1999).
Analysis of GroE-assisted folding under nonpermissive conditions.
|
| |
J Biol Chem,
274,
20171-20177.
|
 |
|
|
|
|
 |
H.Rommelaere,
M.De Neve,
R.Melki,
J.Vandekerckhove,
and
C.Ampe
(1999).
The cytosolic class II chaperonin CCT recognizes delineated hydrophobic sequences in its target proteins.
|
| |
Biochemistry,
38,
3246-3257.
|
 |
|
|
|
|
 |
J.Bhattacharyya,
and
K.P.Das
(1999).
Molecular chaperone-like properties of an unfolded protein, alpha(s)-casein.
|
| |
J Biol Chem,
274,
15505-15509.
|
 |
|
|
|
|
 |
J.F.van den Heuvel,
S.A.Hogenhout,
and
F.van der Wilk
(1999).
Recognition and receptors in virus transmission by arthropods.
|
| |
Trends Microbiol,
7,
71-76.
|
 |
|
|
|
|
 |
J.Harms,
A.Tocilj,
I.Levin,
I.Agmon,
H.Stark,
I.Kölln,
M.van Heel,
M.Cuff,
F.Schlünzen,
A.Bashan,
F.Franceschi,
and
A.Yonath
(1999).
Elucidating the medium-resolution structure of ribosomal particles: an interplay between electron cryo-microscopy and X-ray crystallograhy.
|
| |
Structure,
7,
931-941.
|
 |
|
|
|
|
 |
J.Helin,
J.Caldentey,
N.Kalkkinen,
and
D.H.Bamford
(1999).
Analysis of the multimeric state of proteins by matrix assisted laser desorption/ionization mass spectrometry after cross-linking with glutaraldehyde.
|
| |
Rapid Commun Mass Spectrom,
13,
185-190.
|
 |
|
|
|
|
 |
J.L.Chuang,
R.M.Wynn,
J.L.Song,
and
D.T.Chuang
(1999).
GroEL/GroES-dependent reconstitution of alpha2 beta2 tetramers of humanmitochondrial branched chain alpha-ketoacid decarboxylase. Obligatory interaction of chaperonins with an alpha beta dimeric intermediate.
|
| |
J Biol Chem,
274,
10395-10404.
|
 |
|
|
|
|
 |
J.Li,
and
C.C.Wang
(1999).
"Half of the sites" binding of D-glyceraldehyde-3-phosphate dehydrogenase folding intermediate with GroEL.
|
| |
J Biol Chem,
274,
10790-10794.
|
 |
|
|
|
|
 |
M.A.Walsh,
G.Evans,
R.Sanishvili,
I.Dementieva,
and
A.Joachimiak
(1999).
MAD data collection - current trends.
|
| |
Acta Crystallogr D Biol Crystallogr,
55,
1726-1732.
|
 |
|
|
|
|
 |
M.K.Hayer-Hartl,
K.L.Ewalt,
and
F.U.Hartl
(1999).
On the role of symmetrical and asymmetrical chaperonin complexes in assisted protein folding.
|
| |
Biol Chem,
380,
531-540.
|
 |
|
|
|
|
 |
M.Persson,
P.Hammarström,
M.Lindgren,
B.H.Jonsson,
M.Svensson,
and
U.Carlsson
(1999).
EPR mapping of interactions between spin-labeled variants of human carbonic anhydrase II and GroEL: evidence for increased flexibility of the hydrophobic core by the interaction.
|
| |
Biochemistry,
38,
432-441.
|
 |
|
|
|
|
 |
M.R.Leroux,
M.Fändrich,
D.Klunker,
K.Siegers,
A.N.Lupas,
J.R.Brown,
E.Schiebel,
C.M.Dobson,
and
F.U.Hartl
(1999).
MtGimC, a novel archaeal chaperone related to the eukaryotic chaperonin cofactor GimC/prefoldin.
|
| |
EMBO J,
18,
6730-6743.
|
 |
|
|
|
|
 |
P.M.Horowitz,
G.H.Lorimer,
and
J.Ybarra
(1999).
GroES in the asymmetric GroEL14-GroES7 complex exchanges via an associative mechanism.
|
| |
Proc Natl Acad Sci U S A,
96,
2682-2686.
|
 |
|
|
|
|
 |
S.Kumar,
B.Ma,
C.J.Tsai,
H.Wolfson,
and
R.Nussinov
(1999).
Folding funnels and conformational transitions via hinge-bending motions.
|
| |
Cell Biochem Biophys,
31,
141-164.
|
 |
|
|
|
|
 |
Y.K.Cheng,
W.S.Sheu,
and
P.J.Rossky
(1999).
Hydrophobic hydration of amphipathic peptides.
|
| |
Biophys J,
76,
1734-1743.
|
 |
|
|
|
|
 |
Y.Kawata,
M.Kawagoe,
K.Hongo,
T.Miyazaki,
T.Higurashi,
T.Mizobata,
and
J.Nagai
(1999).
Functional communications between the apical and equatorial domains of GroEL through the intermediate domain.
|
| |
Biochemistry,
38,
15731-15740.
|
 |
|
|
|
|
 |
Y.Koumoto,
T.Shimada,
M.Kondo,
T.Takao,
Y.Shimonishi,
I.Hara-Nishimura,
and
M.Nishimura
(1999).
Chloroplast Cpn20 forms a tetrameric structure in Arabidopsis thaliana.
|
| |
Plant J,
17,
467-477.
|
 |
|
|
|
|
 |
Y.S.Huang,
and
D.T.Chuang
(1999).
Mechanisms for GroEL/GroES-mediated folding of a large 86-kDa fusion polypeptide in vitro.
|
| |
J Biol Chem,
274,
10405-10412.
|
 |
|
|
|
|
 |
A.Geluk,
V.Taneja,
K.E.van Meijgaarden,
E.Zanelli,
C.Abou-Zeid,
J.E.Thole,
R.R.de Vries,
C.S.David,
and
T.H.Ottenhoff
(1998).
Identification of HLA class II-restricted determinants of Mycobacterium tuberculosis-derived proteins by using HLA-transgenic, class II-deficient mice.
|
| |
Proc Natl Acad Sci U S A,
95,
10797-10802.
|
 |
|
|
|
|
 |
A.Horovitz
(1998).
Structural aspects of GroEL function.
|
| |
Curr Opin Struct Biol,
8,
93.
|
 |
|
|
|
|
 |
A.L.Horwich,
and
H.R.Saibil
(1998).
The thermosome: chaperonin with a built-in lid.
|
| |
Nat Struct Biol,
5,
333-336.
|
 |
|
|
|
|
 |
A.Richardson,
S.J.Landry,
and
C.Georgopoulos
(1998).
The ins and outs of a molecular chaperone machine.
|
| |
Trends Biochem Sci,
23,
138-143.
|
 |
|
|
|
|
 |
A.Vinckier,
P.Gervasoni,
F.Zaugg,
U.Ziegler,
P.Lindner,
P.Groscurth,
A.Plückthun,
and
G.Semenza
(1998).
Atomic force microscopy detects changes in the interaction forces between GroEL and substrate proteins.
|
| |
Biophys J,
74,
3256-3263.
|
 |
|
|
|
|
 |
B.Bukau,
and
A.L.Horwich
(1998).
The Hsp70 and Hsp60 chaperone machines.
|
| |
Cell,
92,
351-366.
|
 |
|
|
|
|
 |
B.T.Brazil,
J.Ybarra,
and
P.M.Horowitz
(1998).
Divalent cations can induce the exposure of GroEL hydrophobic surfaces and strengthen GroEL hydrophobic binding interactions. Novel effects of Zn2+ GroEL interactions.
|
| |
J Biol Chem,
273,
3257-3263.
|
 |
|
|
|
|
 |
C.Torella,
J.R.Mattingly,
A.Artigues,
A.Iriarte,
and
M.Martinez-Carrion
(1998).
Insight into the conformation of protein folding intermediate(s) trapped by GroEL.
|
| |
J Biol Chem,
273,
3915-3925.
|
 |
|
|
|
|
 |
E.Dibrov,
S.Fu,
and
B.D.Lemire
(1998).
The Saccharomyces cerevisiae TCM62 gene encodes a chaperone necessary for the assembly of the mitochondrial succinate dehydrogenase (complex II).
|
| |
J Biol Chem,
273,
32042-32048.
|
 |
|
|
|
|
 |
F.Weber,
F.Keppel,
C.Georgopoulos,
M.K.Hayer-Hartl,
and
F.U.Hartl
(1998).
The oligomeric structure of GroEL/GroES is required for biologically significant chaperonin function in protein folding.
|
| |
Nat Struct Biol,
5,
977-985.
|
 |
|
|
|
|
 |
J.Chatellier,
F.Hill,
P.A.Lund,
and
A.R.Fersht
(1998).
In vivo activities of GroEL minichaperones.
|
| |
Proc Natl Acad Sci U S A,
95,
9861-9866.
|
 |
|
|
|
|
 |
J.D.Andreadis,
and
L.W.Black
(1998).
Substrate mutations that bypass a specific Cpn10 chaperonin requirement for protein folding.
|
| |
J Biol Chem,
273,
34075-34086.
|
 |
|
|
|
|
 |
J.D.Trent,
H.K.Kagawa,
and
T.Yaoi
(1998).
The role of chaperonins in vivo: the next frontier.
|
| |
Ann N Y Acad Sci,
851,
36-47.
|
 |
|
|
|
|
 |
J.D.Wang,
M.D.Michelitsch,
and
J.S.Weissman
(1998).
GroEL-GroES-mediated protein folding requires an intact central cavity.
|
| |
Proc Natl Acad Sci U S A,
95,
12163-12168.
|
 |
|
|
|
|
 |
J.E.Churchich
(1998).
Recognition of partially-folded mitochondrial malate dehydrogenase by GroEL. Steady and time-dependent emission anisotropy measurements.
|
| |
Protein Sci,
7,
2587-2594.
|
 |
|
|
|
|
 |
J.Ma,
and
M.Karplus
(1998).
The allosteric mechanism of the chaperonin GroEL: a dynamic analysis.
|
| |
Proc Natl Acad Sci U S A,
95,
8502-8507.
|
 |
|
|
|
|
 |
J.Martin
(1998).
Role of the GroEL chaperonin intermediate domain in coupling ATP hydrolysis to polypeptide release.
|
| |
J Biol Chem,
273,
7351-7357.
|
 |
|
|
|
|
 |
J.R.Mattingly,
C.Torella,
A.Iriarte,
and
M.Martinez-Carrion
(1998).
Conformation of aspartate aminotransferase isozymes folding under different conditions probed by limited proteolysis.
|
| |
J Biol Chem,
273,
23191-23202.
|
 |
|
|
|
|
 |
J.Rizo,
and
T.C.Südhof
(1998).
Mechanics of membrane fusion.
|
| |
Nat Struct Biol,
5,
839-842.
|
 |
|
|
|
|
 |
K.Braig
(1998).
Chaperonins.
|
| |
Curr Opin Struct Biol,
8,
159-165.
|
 |
|
|
|
|
 |
K.L.Nielsen,
and
N.J.Cowan
(1998).
A single ring is sufficient for productive chaperonin-mediated folding in vivo.
|
| |
Mol Cell,
2,
93-99.
|
 |
|
|
|
|
 |
K.Reddi,
S.Meghji,
S.P.Nair,
T.R.Arnett,
A.D.Miller,
M.Preuss,
M.Wilson,
B.Henderson,
and
P.Hill
(1998).
The Escherichia coli chaperonin 60 (groEL) is a potent stimulator of osteoclast formation.
|
| |
J Bone Miner Res,
13,
1260-1266.
|
 |
|
|
|
|
 |
L.Ditzel,
J.Löwe,
D.Stock,
K.O.Stetter,
H.Huber,
R.Huber,
and
S.Steinbacher
(1998).
Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT.
|
| |
Cell,
93,
125-138.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Nitsch,
J.Walz,
D.Typke,
M.Klumpp,
L.O.Essen,
and
W.Baumeister
(1998).
Group II chaperonin in an open conformation examined by electron tomography.
|
| |
Nat Struct Biol,
5,
855-857.
|
 |
|
|
|
|
 |
O.Llorca,
A.Galán,
J.L.Carrascosa,
A.Muga,
and
J.M.Valpuesta
(1998).
GroEL under heat-shock. Switching from a folding to a storing function.
|
| |
J Biol Chem,
273,
32587-32594.
|
 |
|
|
|
|
 |
O.Llorca,
M.G.Smyth,
S.Marco,
J.L.Carrascosa,
K.R.Willison,
and
J.M.Valpuesta
(1998).
ATP binding induces large conformational changes in the apical and equatorial domains of the eukaryotic chaperonin containing TCP-1 complex.
|
| |
J Biol Chem,
273,
10091-10094.
|
 |
|
|
|
|
 |
O.Yifrach,
and
A.Horovitz
(1998).
Transient kinetic analysis of adenosine 5'-triphosphate binding-induced conformational changes in the allosteric chaperonin GroEL.
|
| |
Biochemistry,
37,
7083-7088.
|
 |
|
|
|
|
 |
P.B.Sigler,
Z.Xu,
H.S.Rye,
S.G.Burston,
W.A.Fenton,
and
A.L.Horwich
(1998).
Structure and function in GroEL-mediated protein folding.
|
| |
Annu Rev Biochem,
67,
581-608.
|
 |
|
|
|
|
 |
P.Gervasoni,
W.Staudenmann,
P.James,
and
A.Plückthun
(1998).
Identification of the binding surface on beta-lactamase for GroEL by limited proteolysis and MALDI-mass spectrometry.
|
| |
Biochemistry,
37,
11660-11669.
|
 |
|
|
|
|
 |
P.J.Muchowski,
and
J.I.Clark
(1998).
ATP-enhanced molecular chaperone functions of the small heat shock protein human alphaB crystallin.
|
| |
Proc Natl Acad Sci U S A,
95,
1004-1009.
|
 |
|
|
|
|
 |
R.Jaenicke
(1998).
Protein self-organization in vitro and in vivo: partitioning between physical biochemistry and cell biology.
|
| |
Biol Chem,
379,
237-243.
|
 |
|
|
|
|
 |
S.A.Hogenhout,
F.van der Wilk,
M.Verbeek,
R.W.Goldbach,
and
J.F.van den Heuvel
(1998).
Potato leafroll virus binds to the equatorial domain of the aphid endosymbiotic GroEL homolog.
|
| |
J Virol,
72,
358-365.
|
 |
|
|
|
|
 |
S.Guha,
T.K.Manna,
K.P.Das,
and
B.Bhattacharyya
(1998).
Chaperone-like activity of tubulin.
|
| |
J Biol Chem,
273,
30077-30080.
|
 |
|
|
|
|
 |
T.S.Kumarevel,
M.M.Gromiha,
and
M.N.Ponnuswamy
(1998).
Analysis of hydrophobic and charged patches and influence of medium- and long-range interactions in molecular chaperones.
|
| |
Biophys Chem,
75,
105-113.
|
 |
|
|
|
|
 |
Y.Duan,
L.Wang,
and
P.A.Kollman
(1998).
The early stage of folding of villin headpiece subdomain observed in a 200-nanosecond fully solvated molecular dynamics simulation.
|
| |
Proc Natl Acad Sci U S A,
95,
9897-9902.
|
 |
|
|
|
|
 |
Y.Dubaquié,
R.Looser,
U.Fünfschilling,
P.Jenö,
and
S.Rospert
(1998).
Identification of in vivo substrates of the yeast mitochondrial chaperonins reveals overlapping but non-identical requirement for hsp60 and hsp10.
|
| |
EMBO J,
17,
5868-5876.
|
 |
|
|
|
|
 |
A.Aharoni,
and
A.Horovitz
(1997).
Detection of changes in pairwise interactions during allosteric transitions: coupling between local and global conformational changes in GroEL.
|
| |
Proc Natl Acad Sci U S A,
94,
1698-1702.
|
 |
|
|
|
|
 |
A.Joachimiak
(1997).
Capturing the misfolds: chaperone-peptide-binding motifs.
|
| |
Nat Struct Biol,
4,
430-434.
|
 |
|
|
|
|
 |
A.K.Liou,
and
K.R.Willison
(1997).
Elucidation of the subunit orientation in CCT (chaperonin containing TCP1) from the subunit composition of CCT micro-complexes.
|
| |
EMBO J,
16,
4311-4316.
|
 |
|
|
|
|
 |
A.Lupas,
J.M.Flanagan,
T.Tamura,
and
W.Baumeister
(1997).
Self-compartmentalizing proteases.
|
| |
Trends Biochem Sci,
22,
399-404.
|
 |
|
|
|
|
 |
A.M.Buckle,
R.Zahn,
and
A.R.Fersht
(1997).
A structural model for GroEL-polypeptide recognition.
|
| |
Proc Natl Acad Sci U S A,
94,
3571-3575.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Ahsen,
and
Pfanner
(1997).
Molecular chaperones: towards a characterization of the heat-shock protein 70 family.
|
| |
Trends Cell Biol,
7,
129-133.
|
 |
|
|
|
|
 |
B.M.Gorovits,
J.Ybarra,
J.W.Seale,
and
P.M.Horowitz
(1997).
Conditions for nucleotide-dependent GroES-GroEL interactions. GroEL14(groES7)2 is favored by an asymmetric distribution of nucleotides.
|
| |
J Biol Chem,
272,
26999-27004.
|
 |
|
|
|
|
 |
C.Frieden,
and
A.C.Clark
(1997).
Protein folding: how the mechanism of GroEL action is defined by kinetics.
|
| |
Proc Natl Acad Sci U S A,
94,
5535-5538.
|
 |
|
|
|
|
 |
C.J.Harrison
(1997).
La cage aux fold: asymmetry in the crystal structure of GroEL-GroES-(ADP)7.
|
| |
Structure,
5,
1261-1264.
|
 |
|
|
|
|
 |
C.Prodromou,
S.M.Roe,
P.W.Piper,
and
L.H.Pearl
(1997).
A molecular clamp in the crystal structure of the N-terminal domain of the yeast Hsp90 chaperone.
|
| |
Nat Struct Biol,
4,
477-482.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
E.A.Bramhall,
R.L.Cross,
S.Rospert,
N.K.Steede,
and
S.J.Landry
(1997).
Identification of amino acid residues at nucleotide-binding sites of chaperonin GroEL/GroES and cpn10 by photoaffinity labeling with 2-azido-adenosine 5'-triphosphate.
|
| |
Eur J Biochem,
244,
627-634.
|
 |
|
|
|
|
 |
E.Inbar,
and
A.Horovitz
(1997).
GroES promotes the T to R transition of the GroEL ring distal to GroES in the GroEL-GroES complex.
|
| |
Biochemistry,
36,
12276-12281.
|
 |
|
|
|
|
 |
G.J.Lee,
A.M.Roseman,
H.R.Saibil,
and
E.Vierling
(1997).
A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state.
|
| |
EMBO J,
16,
659-671.
|
 |
|
|
|
|
 |
G.M.Clore,
and
A.M.Gronenborn
(1997).
Dissecting intrinsic chaperonin activity.
|
| |
Proc Natl Acad Sci U S A,
94,
7-8.
|
 |
|
|
|
|
 |
H.E.White,
S.Chen,
A.M.Roseman,
O.Yifrach,
A.Horovitz,
and
H.R.Saibil
(1997).
Structural basis of allosteric changes in the GroEL mutant Arg197-->Ala.
|
| |
Nat Struct Biol,
4,
690-694.
|
 |
|
|
|
|
 |
H.Sparrer,
and
J.Buchner
(1997).
How GroES regulates binding of nonnative protein to GroEL.
|
| |
J Biol Chem,
272,
14080-14086.
|
 |
|
|
|
|
 |
H.Taguchi,
K.Amada,
N.Murai,
M.Yamakoshi,
and
M.Yoshida
(1997).
ATP-, K+-dependent heptamer exchange reaction produces hybrids between GroEL and chaperonin from Thermus thermophilus.
|
| |
J Biol Chem,
272,
18155-18160.
|
 |
|
|
|
|
 |
J.Behlke,
O.Ristau,
and
H.J.Schönfeld
(1997).
Nucleotide-dependent complex formation between the Escherichia coli chaperonins GroEL and GroES studied under equilibrium conditions.
|
| |
Biochemistry,
36,
5149-5156.
|
 |
|
|
|
|
 |
J.E.Churchich
(1997).
Conformational changes at the nucleotide binding of GroEL induced by binding of protein substrates. Luminescence studies.
|
| |
J Biol Chem,
272,
19645-19648.
|
 |
|
|
|
|
 |
J.F.Hunt,
S.M.van der Vies,
L.Henry,
and
J.Deisenhofer
(1997).
Structural adaptations in the specialized bacteriophage T4 co-chaperonin Gp31 expand the size of the Anfinsen cage.
|
| |
Cell,
90,
361-371.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.F.van den Heuvel,
A.Bruyère,
S.A.Hogenhout,
V.Ziegler-Graff,
V.Brault,
M.Verbeek,
F.van der Wilk,
and
K.Richards
(1997).
The N-terminal region of the luteovirus readthrough domain determines virus binding to Buchnera GroEL and is essential for virus persistence in the aphid.
|
| |
J Virol,
71,
7258-7265.
|
 |
|
|
|
|
 |
J.King
(1997).
Refolding with a piece of the ring.
|
| |
Nat Biotechnol,
15,
514-515.
|
 |
|
|
|
|
 |
J.Martin,
and
F.U.Hartl
(1997).
The effect of macromolecular crowding on chaperonin-mediated protein folding.
|
| |
Proc Natl Acad Sci U S A,
94,
1107-1112.
|
 |
|
|
|
|
 |
J.Martin,
and
F.U.Hartl
(1997).
Chaperone-assisted protein folding.
|
| |
Curr Opin Struct Biol,
7,
41-52.
|
 |
|
|
|
|
 |
J.Wang,
J.A.Hartling,
and
J.M.Flanagan
(1997).
The structure of ClpP at 2.3 A resolution suggests a model for ATP-dependent proteolysis.
|
| |
Cell,
91,
447-456.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.Aoki,
H.Taguchi,
Y.Shindo,
M.Yoshida,
K.Ogasahara,
K.Yutani,
and
N.Tanaka
(1997).
Calorimetric observation of a GroEL-protein binding reaction with little contribution of hydrophobic interaction.
|
| |
J Biol Chem,
272,
32158-32162.
|
 |
|
|
|
|
 |
M.M.Altamirano,
R.Golbik,
R.Zahn,
A.M.Buckle,
and
A.R.Fersht
(1997).
Refolding chromatography with immobilized mini-chaperones.
|
| |
Proc Natl Acad Sci U S A,
94,
3576-3578.
|
 |
|
|
|
|
 |
M.S.Goldberg,
J.Zhang,
S.Sondek,
C.R.Matthews,
R.O.Fox,
and
A.L.Horwich
(1997).
Native-like structure of a protein-folding intermediate bound to the chaperonin GroEL.
|
| |
Proc Natl Acad Sci U S A,
94,
1080-1085.
|
 |
|
|
|
|
 |
M.Sriram,
J.Osipiuk,
B.Freeman,
R.Morimoto,
and
A.Joachimiak
(1997).
Human Hsp70 molecular chaperone binds two calcium ions within the ATPase domain.
|
| |
Structure,
5,
403-414.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
O.Llorca,
J.Pérez-Pérez,
J.L.Carrascosa,
A.Galán,
A.Muga,
and
J.M.Valpuesta
(1997).
Effects of the inter-ring communication in GroEL structural and functional asymmetry.
|
| |
J Biol Chem,
272,
32925-32932.
|
 |
|
|
|
|
 |
O.von Ahsen,
M.Tropschug,
N.Pfanner,
and
J.Rassow
(1997).
The chaperonin cycle cannot substitute for prolyl isomerase activity, but GroEL alone promotes productive folding of a cyclophilin-sensitive substrate to a cyclophilin-resistant form.
|
| |
EMBO J,
16,
4568-4578.
|
 |
|
|
|
|
 |
P.Lin,
and
F.Sherman
(1997).
The unique hetero-oligomeric nature of the subunits in the catalytic cooperativity of the yeast Cct chaperonin complex.
|
| |
Proc Natl Acad Sci U S A,
94,
10780-10785.
|
 |
|
|
|
|
 |
P.Lin,
T.S.Cardillo,
L.M.Richard,
G.B.Segel,
and
F.Sherman
(1997).
Analysis of mutationally altered forms of the Cct6 subunit of the chaperonin from Saccharomyces cerevisiae.
|
| |
Genetics,
147,
1609-1633.
|
 |
|
|
|
|
 |
R.W.Ruddon,
and
E.Bedows
(1997).
Assisted protein folding.
|
| |
J Biol Chem,
272,
3125-3128.
|
 |
|
|
|
|
 |
S.A.Filichkin,
S.Brumfield,
T.P.Filichkin,
and
M.J.Young
(1997).
In vitro interactions of the aphid endosymbiotic SymL chaperonin with barley yellow dwarf virus.
|
| |
J Virol,
71,
569-577.
|
 |
|
|
|
|
 |
W.A.Fenton,
and
A.L.Horwich
(1997).
GroEL-mediated protein folding.
|
| |
Protein Sci,
6,
743-760.
|
 |
|
|
|
|
 |
W.Neupert
(1997).
Protein import into mitochondria.
|
| |
Annu Rev Biochem,
66,
863-917.
|
 |
|
|
|
|
 |
W.T.Lee,
K.C.Terlesky,
and
F.R.Tabita
(1997).
Cloning and characterization of two groESL operons of Rhodobacter sphaeroides: transcriptional regulation of the heat-induced groESL operon.
|
| |
J Bacteriol,
179,
487-495.
|
 |
|
|
|
|
 |
Y.Dubaquié,
R.Looser,
and
S.Rospert
(1997).
Significance of chaperonin 10-mediated inhibition of ATP hydrolysis by chaperonin 60.
|
| |
Proc Natl Acad Sci U S A,
94,
9011-9016.
|
 |
|
|
|
|
 |
Z.Török,
I.Horváth,
P.Goloubinoff,
E.Kovács,
A.Glatz,
G.Balogh,
and
L.Vígh
(1997).
Evidence for a lipochaperonin: association of active protein-folding GroESL oligomers with lipids can stabilize membranes under heat shock conditions.
|
| |
Proc Natl Acad Sci U S A,
94,
2192-2197.
|
 |
|
|
|
|
 |
A.A.Antson,
E.J.Dodson,
and
G.G.Dodson
(1996).
Circular assemblies.
|
| |
Curr Opin Struct Biol,
6,
142-150.
|
 |
|
|
|
|
 |
A.Ayling,
and
F.Baneyx
(1996).
Influence of the GroE molecular chaperone machine on the in vitro refolding of Escherichia coli beta-galactosidase.
|
| |
Protein Sci,
5,
478-487.
|
 |
|
|
|
|
 |
A.C.Clark,
E.Hugo,
and
C.Frieden
(1996).
Determination of regions in the dihydrofolate reductase structure that interact with the molecular chaperonin GroEL.
|
| |
Biochemistry,
35,
5893-5901.
|
 |
|
|
|
|
 |
A.G.Murzin
(1996).
Structural classification of proteins: new superfamilies.
|
| |
Curr Opin Struct Biol,
6,
386-394.
|
 |
|
|
|
|
 |
A.M.Roseman,
S.Chen,
H.White,
K.Braig,
and
H.R.Saibil
(1996).
The chaperonin ATPase cycle: mechanism of allosteric switching and movements of substrate-binding domains in GroEL.
|
| |
Cell,
87,
241-251.
|
 |
|
|
|
|
 |
A.Mattevi,
M.Rizzi,
and
M.Bolognesi
(1996).
New structures of allosteric proteins revealing remarkable conformational changes.
|
| |
Curr Opin Struct Biol,
6,
824-829.
|
 |
|
|
|
|
 |
A.R.Clarke
(1996).
Molecular chaperones in protein folding and translocation.
|
| |
Curr Opin Struct Biol,
6,
43-50.
|
 |
|
|
|
|
 |
A.Rodrigue,
N.Batia,
M.Müller,
O.Fayet,
R.Böhm,
M.A.Mandrand-Berthelot,
and
L.F.Wu
(1996).
Involvement of the GroE chaperonins in the nickel-dependent anaerobic biosynthesis of NiFe-hydrogenases of Escherichia coli.
|
| |
J Bacteriol,
178,
4453-4460.
|
 |
|
|
|
|
 |
B.G.Reid,
and
G.C.Flynn
(1996).
GroEL binds to and unfolds rhodanese posttranslationally.
|
| |
J Biol Chem,
271,
7212-7217.
|
 |
|
|
|
|
 |
D.C.Boisvert,
J.Wang,
Z.Otwinowski,
A.L.Horwich,
and
P.B.Sigler
(1996).
The 2.4 A crystal structure of the bacterial chaperonin GroEL complexed with ATP gamma S.
|
| |
Nat Struct Biol,
3,
170-177.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.L.Gibbons,
J.D.Hixson,
N.Hay,
P.Lund,
B.M.Gorovits,
J.Ybarra,
and
P.M.Horowitz
(1996).
Intrinsic fluorescence studies of the chaperonin GroEL containing single Tyr --> Trp replacements reveal ligand-induced conformational changes.
|
| |
J Biol Chem,
271,
31989-31995.
|
 |
|
|
|
|
 |
D.L.Gibbons,
and
P.M.Horowitz
(1996).
Ligand-induced conformational changes in the apical domain of the chaperonin GroEL.
|
| |
J Biol Chem,
271,
238-243.
|
 |
|
|
|
|
 |
D.M.Davis,
D.McLoskey,
D.J.Birch,
P.R.Gellert,
R.S.Kittlety,
and
R.M.Swart
(1996).
The fluorescence and circular dichroism of proteins in reverse micelles: application to the photophysics of human serum albumin and N-acetyl-L-tryptophanamide.
|
| |
Biophys Chem,
60,
63-77.
|
 |
|
|
|
|
 |
E.Bochkareva,
A.Seluanov,
E.Bibi,
and
A.Girshovich
(1996).
Chaperonin-promoted post-translational membrane insertion of a multispanning membrane protein lactose permease.
|
| |
J Biol Chem,
271,
22256-22261.
|
 |
|
|
|
|
 |
F.Edenhofer,
R.Rieger,
M.Famulok,
W.Wendler,
S.Weiss,
and
E.L.Winnacker
(1996).
Prion protein PrPc interacts with molecular chaperones of the Hsp60 family.
|
| |
J Virol,
70,
4724-4728.
|
 |
|
|
|
|
 |
F.J.Corrales,
and
A.R.Fersht
(1996).
Toward a mechanism for GroEL.GroES chaperone activity: an ATPase-gated and -pulsed folding and annealing cage.
|
| |
Proc Natl Acad Sci U S A,
93,
4509-4512.
|
 |
|
|
|
|
 |
G.H.Lorimer,
and
M.J.Todd
(1996).
GroE structures galore.
|
| |
Nat Struct Biol,
3,
116-121.
|
 |
|
|
|
|
 |
H.Saibil
(1996).
The lid that shapes the pot: structure and function of the chaperonin GroES.
|
| |
Structure,
4,
1-4.
|
 |
|
|
|
|
 |
H.W.Sun,
J.Bernhagen,
R.Bucala,
and
E.Lolis
(1996).
Crystal structure at 2.6-A resolution of human macrophage migration inhibitory factor.
|
| |
Proc Natl Acad Sci U S A,
93,
5191-5196.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.A.Mendoza,
and
G.D.Campo
(1996).
Ligand-induced conformational changes of GroEL are dependent on the bound substrate polypeptide.
|
| |
J Biol Chem,
271,
16344-16349.
|
 |
|
|
|
|
 |
J.King,
C.Haase-Pettingell,
A.S.Robinson,
M.Speed,
and
A.Mitraki
(1996).
Thermolabile folding intermediates: inclusion body precursors and chaperonin substrates.
|
| |
FASEB J,
10,
57-66.
|
 |
|
|
|
|
 |
J.Mou,
S.Sheng,
R.Ho,
and
Z.Shao
(1996).
Chaperonins GroEL and GroES: views from atomic force microscopy.
|
| |
Biophys J,
71,
2213-2221.
|
 |
|
|
|
|
 |
J.S.Weissman,
H.S.Rye,
W.A.Fenton,
J.M.Beechem,
and
A.L.Horwich
(1996).
Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction.
|
| |
Cell,
84,
481-490.
|
 |
|
|
|
|
 |
J.W.Seale,
B.M.Gorovits,
J.Ybarra,
and
P.M.Horowitz
(1996).
Reversible oligomerization and denaturation of the chaperonin GroES.
|
| |
Biochemistry,
35,
4079-4083.
|
 |
|
|
|
|
 |
J.Z.Xia,
Q.Wang,
S.Tatarkova,
T.Aerts,
and
J.Clauwaert
(1996).
Structural basis of eye lens transparency: light scattering by concentrated solutions of bovine alpha-crystallin proteins.
|
| |
Biophys J,
71,
2815-2822.
|
 |
|
|
|
|
 |
K.Ahn,
M.Erlander,
D.Leturcq,
P.A.Peterson,
K.Früh,
and
Y.Yang
(1996).
In vivo characterization of the proteasome regulator PA28.
|
| |
J Biol Chem,
271,
18237-18242.
|
 |
|
|
|
|
 |
L.Gonzalez,
R.A.Brown,
D.Richardson,
and
T.Alber
(1996).
Crystal structures of a single coiled-coil peptide in two oligomeric states reveal the basis for structural polymorphism.
|
| |
Nat Struct Biol,
3,
1002-1009.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.J.Todd,
G.H.Lorimer,
and
D.Thirumalai
(1996).
Chaperonin-facilitated protein folding: optimization of rate and yield by an iterative annealing mechanism.
|
| |
Proc Natl Acad Sci U S A,
93,
4030-4035.
|
 |
|
|
|
|
 |
M.K.Hayer-Hartl,
F.Weber,
and
F.U.Hartl
(1996).
Mechanism of chaperonin action: GroES binding and release can drive GroEL-mediated protein folding in the absence of ATP hydrolysis.
|
| |
EMBO J,
15,
6111-6121.
|
 |
|
|
|
|
 |
M.T.Norcum
(1996).
Novel isolation method and structural stability of a eukaryotic chaperonin: the TCP-1 ring complex from rabbit reticulocytes.
|
| |
Protein Sci,
5,
1366-1375.
|
 |
|
|
|
|
 |
N.Murai,
Y.Makino,
and
M.Yoshida
(1996).
GroEL locked in a closed conformation by an interdomain cross-link can bind ATP and polypeptide but cannot process further reaction steps.
|
| |
J Biol Chem,
271,
28229-28234.
|
 |
|
|
|
|
 |
O.Krauss,
and
M.G.Gore
(1996).
Refolding and reassociation of glycerol dehydrogenase from Bacillus stearothermophilus in the absence and presence of GroEL.
|
| |
Eur J Biochem,
241,
538-545.
|
 |
|
|
|
|
 |
O.Llorca,
J.L.Carrascosa,
and
J.M.Valpuesta
(1996).
Biochemical characterization of symmetric GroEL-GroES complexes. Evidence for a role in protein folding.
|
| |
J Biol Chem,
271,
68-76.
|
 |
|
|
|
|
 |
P.A.Cole
(1996).
Chaperone-assisted protein expression.
|
| |
Structure,
4,
239-242.
|
 |
|
|
|
|
 |
P.Gervasoni,
W.Staudenmann,
P.James,
P.Gehrig,
and
A.Plückthun
(1996).
beta-Lactamase binds to GroEL in a conformation highly protected against hydrogen/deuterium exchange.
|
| |
Proc Natl Acad Sci U S A,
93,
12189-12194.
|
 |
|
|
|
|
 |
P.Thiyagarajan,
S.J.Henderson,
and
A.Joachimiak
(1996).
Solution structures of GroEL and its complex with rhodanese from small-angle neutron scattering.
|
| |
Structure,
4,
79-88.
|
 |
|
|
|
|
 |
R.S.Boston,
P.V.Viitanen,
and
E.Vierling
(1996).
Molecular chaperones and protein folding in plants.
|
| |
Plant Mol Biol,
32,
191-222.
|
 |
|
|
|
|
 |
R.Zahn,
A.M.Buckle,
S.Perrett,
C.M.Johnson,
F.J.Corrales,
R.Golbik,
and
A.R.Fersht
(1996).
Chaperone activity and structure of monomeric polypeptide binding domains of GroEL.
|
| |
Proc Natl Acad Sci U S A,
93,
15024-15029.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.A.Lewis,
G.Tian,
I.E.Vainberg,
and
N.J.Cowan
(1996).
Chaperonin-mediated folding of actin and tubulin.
|
| |
J Cell Biol,
132,
1-4.
|
 |
|
|
|
|
 |
S.C.Lakhotia,
and
B.N.Singh
(1996).
Synthesis of a ubiquitously present new HSP60 family protein is enhanced by heat shock only in the Malpighian tubules of Drosophila.
|
| |
Experientia,
52,
751-756.
|
 |
|
|
|
|
 |
S.J.Landry,
A.Taher,
C.Georgopoulos,
and
S.M.van der Vies
(1996).
Interplay of structure and disorder in cochaperonin mobile loops.
|
| |
Proc Natl Acad Sci U S A,
93,
11622-11627.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Walter,
G.H.Lorimer,
and
F.X.Schmid
(1996).
A thermodynamic coupling mechanism for GroEL-mediated unfolding.
|
| |
Proc Natl Acad Sci U S A,
93,
9425-9430.
|
 |
|
|
|
|
 |
T.L.Blundell,
and
N.Srinivasan
(1996).
Symmetry, stability, and dynamics of multidomain and multicomponent protein systems.
|
| |
Proc Natl Acad Sci U S A,
93,
14243-14248.
|
 |
|
|
|
|
 |
V.F.Smith,
B.L.Schwartz,
L.L.Randall,
and
R.D.Smith
(1996).
Electrospray mass spectrometric investigation of the chaperone SecB.
|
| |
Protein Sci,
5,
488-494.
|
 |
|
|
|
|
 |
V.Stoldt,
F.Rademacher,
V.Kehren,
J.F.Ernst,
D.A.Pearce,
and
F.Sherman
(1996).
Review: the Cct eukaryotic chaperonin subunits of Saccharomyces cerevisiae and other yeasts.
|
| |
Yeast,
12,
523-529.
|
 |
|
|
|
|
 |
W.A.Fenton,
J.S.Weissman,
and
A.L.Horwich
(1996).
Putting a lid on protein folding: structure and function of the co-chaperonin, GroES.
|
| |
Chem Biol,
3,
157-161.
|
 |
|
|
|
|
 |
Y.Yang,
P.Sempé,
and
P.A.Peterson
(1996).
Molecular mechanisms of class I major histocompatibility complex antigen processing and presentation.
|
| |
Immunol Res,
15,
208-233.
|
 |
|
|
|
|
 |
Z.Lin,
and
E.Eisenstein
(1996).
Nucleotide binding-promoted conformational changes release a nonnative polypeptide from the Escherichia coli chaperonin GroEL.
|
| |
Proc Natl Acad Sci U S A,
93,
1977-1981.
|
 |
|
|
|
|
 |
A.Azem,
S.Diamant,
M.Kessel,
C.Weiss,
and
P.Goloubinoff
(1995).
The protein-folding activity of chaperonins correlates with the symmetric GroEL14(GroES7)2 heterooligomer.
|
| |
Proc Natl Acad Sci U S A,
92,
12021-12025.
|
 |
|
|
|
|
 |
A.Guagliardi,
L.Cerchia,
and
M.Rossi
(1995).
Prevention of in vitro protein thermal aggregation by the Sulfolobus solfataricus chaperonin. Evidence for nonequivalent binding surfaces on the chaperonin molecule.
|
| |
J Biol Chem,
270,
28126-28132.
|
 |
|
|
|
|
 |
A.Simpson,
D.Moss,
and
C.Slingsby
(1995).
The avian eye lens protein delta-crystallin shows a novel packing arrangement of tetramers in a supramolecular helix.
|
| |
Structure,
3,
403-412.
|
 |
|
|
|
|
 |
A.Valencia,
T.J.Hubbard,
A.Muga,
S.Bañuelos,
O.Llorca,
J.L.Carrascosa,
and
J.M.Valpuesta
(1995).
Prediction of the structure of GroES and its interaction with GroEL.
|
| |
Proteins,
22,
199-209.
|
 |
|
|
|
|
 |
A.Weichsel,
and
W.R.Montfort
(1995).
Ligand-induced distortion of an active site in thymidylate synthase upon binding anticancer drug 1843U89.
|
| |
Nat Struct Biol,
2,
1095-1101.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
B.Gorovits,
C.S.Raman,
and
P.M.Horowitz
(1995).
High hydrostatic pressure induces the dissociation of cpn60 tetradecamers and reveals a plasticity of the monomers.
|
| |
J Biol Chem,
270,
2061-2066.
|
 |
|
|
|
|
 |
B.M.Gorovits,
and
P.M.Horowitz
(1995).
The chaperonin GroEL is destabilized by binding of ADP.
|
| |
J Biol Chem,
270,
28551-28556.
|
 |
|
|
|
|
 |
B.M.Gorovits,
and
P.M.Horowitz
(1995).
The molecular chaperonin cpn60 displays local flexibility that is reduced after binding with an unfolded protein.
|
| |
J Biol Chem,
270,
13057-13062.
|
 |
|
|
|
|
 |
C.S.Martin,
A.I.Flores,
and
J.M.Cuezva
(1995).
Cpn60 is exclusively localized into mitochondria of rat liver and embryonic Drosophila cells.
|
| |
J Cell Biochem,
59,
235-245.
|
 |
|
|
|
|
 |
C.W.Carter
(1995).
Entropy, likelihood and phase determination.
|
| |
Structure,
3,
147-150.
|
 |
|
|
|
|
 |
C.Weiss,
and
P.Goloubinoff
(1995).
A mutant at position 87 of the GroEL chaperonin is affected in protein binding and ATP hydrolysis.
|
| |
J Biol Chem,
270,
13956-13960.
|
 |
|
|
|
|
 |
D.Georgellis,
B.Sohlberg,
F.U.Hartl,
and
A.von Gabain
(1995).
Identification of GroEL as a constituent of an mRNA-protection complex in Escherichia coli.
|
| |
Mol Microbiol,
16,
1259-1268.
|
 |
|
|
|
|
 |
D.L.Gibbons,
and
P.M.Horowitz
(1995).
Exposure of hydrophobic surfaces on the chaperonin GroEL oligomer by protonation or modification of His-401.
|
| |
J Biol Chem,
270,
7335-7340.
|
 |
|
|
|
|
 |
E.Quaite-Randall,
J.D.Trent,
R.Josephs,
and
A.Joachimiak
(1995).
Conformational cycle of the archaeosome, a TCP1-like chaperonin from Sulfolobus shibatae.
|
| |
J Biol Chem,
270,
28818-28823.
|
 |
|
|
|
|
 |
E.V.Maytin
(1995).
Heat shock proteins and molecular chaperones: implications for adaptive responses in the skin.
|
| |
J Invest Dermatol,
104,
448-455.
|
 |
|
|
|
|
 |
F.Baneyx,
U.Bertsch,
C.E.Kalbach,
S.M.van der Vies,
J.Soll,
and
A.A.Gatenby
(1995).
Spinach chloroplast cpn21 co-chaperonin possesses two functional domains fused together in a toroidal structure and exhibits nucleotide-dependent binding to plastid chaperonin 60.
|
| |
J Biol Chem,
270,
10695-10702.
|
 |
|
|
|
|
 |
F.U.Hartl,
and
J.Martin
(1995).
Molecular chaperones in cellular protein folding.
|
| |
Curr Opin Struct Biol,
5,
92.
|
 |
|
|
|
|
 |
G.Tian,
I.E.Vainberg,
W.D.Tap,
S.A.Lewis,
and
N.J.Cowan
(1995).
Quasi-native chaperonin-bound intermediates in facilitated protein folding.
|
| |
J Biol Chem,
270,
23910-23913.
|
 |
|
|
|
|
 |
H.Itoh,
R.Kobayashi,
H.Wakui,
A.Komatsuda,
H.Ohtani,
A.B.Miura,
M.Otaka,
O.Masamune,
H.Andoh,
and
K.Koyama
(1995).
Mammalian 60-kDa stress protein (chaperonin homolog). Identification, biochemical properties, and localization.
|
| |
J Biol Chem,
270,
13429-13435.
|
 |
|
|
|
|
 |
H.Kubota,
G.Hynes,
and
K.Willison
(1995).
The chaperonin containing t-complex polypeptide 1 (TCP-1). Multisubunit machinery assisting in protein folding and assembly in the eukaryotic cytosol.
|
| |
Eur J Biochem,
230,
3.
|
 |
|
|
|
|
 |
H.Lilie,
and
J.Buchner
(1995).
Interaction of GroEL with a highly structured folding intermediate: iterative binding cycles do not involve unfolding.
|
| |
Proc Natl Acad Sci U S A,
92,
8100-8104.
|
 |
|
|
|
|
 |
J.G.Wall,
and
A.Plückthun
(1995).
Effects of overexpressing folding modulators on the in vivo folding of heterologous proteins in Escherichia coli.
|
| |
Curr Opin Biotechnol,
6,
507-516.
|
 |
|
|
|
|
 |
J.L.Song,
and
C.C.Wang
(1995).
Chaperone-like activity of protein disulfide-isomerase in the refolding of rhodanese.
|
| |
Eur J Biochem,
231,
312-316.
|
 |
|
|
|
|
 |
J.S.Weissman,
C.M.Hohl,
O.Kovalenko,
Y.Kashi,
S.Chen,
K.Braig,
H.R.Saibil,
W.A.Fenton,
and
A.L.Horwich
(1995).
Mechanism of GroEL action: productive release of polypeptide from a sequestered position under GroES.
|
| |
Cell,
83,
577-587.
|
 |
|
|
|
|
 |
J.Ybarra,
and
P.M.Horowitz
(1995).
Inactive GroEL monomers can be isolated and reassembled to functional tetradecamers that contain few bound peptides.
|
| |
J Biol Chem,
270,
22962-22967.
|
 |
|
|
|
|
 |
J.Ybarra,
and
P.M.Horowitz
(1995).
Refolding and reassembly of active chaperonin GroEL after denaturation.
|
| |
J Biol Chem,
270,
22113-22115.
|
 |
|
|
|
|
 |
K.Braig,
P.D.Adams,
and
A.T.Brünger
(1995).
Conformational variability in the refined structure of the chaperonin GroEL at 2.8 A resolution.
|
| |
Nat Struct Biol,
2,
1083-1094.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.E.Smith,
and
M.T.Fisher
(1995).
Interactions between the GroE chaperonins and rhodanese. Multiple intermediates and release and rebinding.
|
| |
J Biol Chem,
270,
21517-21523.
|
 |
|
|
|
|
 |
L.F.Ten Eyck
(1995).
Gro-ing pains.
|
| |
Nat Struct Biol,
2,
1038-1042.
|
 |
|
|
|
|
 |
L.G.Nijtmans,
P.Klement,
J.Houstĕk,
and
C.van den Bogert
(1995).
Assembly of mitochondrial ATP synthase in cultured human cells: implications for mitochondrial diseases.
|
| |
Biochim Biophys Acta,
1272,
190-198.
|
 |
|
|
|
|
 |
M.Hochstrasser
(1995).
Ubiquitin, proteasomes, and the regulation of intracellular protein degradation.
|
| |
Curr Opin Cell Biol,
7,
215-223.
|
 |
|
|
|
|
 |
M.Karplus,
and
A.Sali
(1995).
Theoretical studies of protein folding and unfolding.
|
| |
Curr Opin Struct Biol,
5,
58-73.
|
 |
|
|
|
|
 |
M.R.Leroux,
and
E.P.Candido
(1995).
Characterization of four new tcp-1-related cct genes from the nematode Caenorhabditis elegans.
|
| |
DNA Cell Biol,
14,
951-960.
|
 |
|
|
|
|
 |
N.Murai,
H.Taguchi,
and
M.Yoshida
(1995).
Kinetic analysis of interactions between GroEL and reduced alpha-lactalbumin. Effect of GroES and nucleotides.
|
| |
J Biol Chem,
270,
19957-19963.
|
 |
|
|
|
|
 |
N.Narayana,
D.A.Matthews,
E.E.Howell,
and
X.Nguyen-huu
(1995).
A plasmid-encoded dihydrofolate reductase from trimethoprim-resistant bacteria has a novel D2-symmetric active site.
|
| |
Nat Struct Biol,
2,
1018-1025.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.M.Horowitz,
S.Hua,
and
D.L.Gibbons
(1995).
Hydrophobic surfaces that are hidden in chaperonin Cpn60 can be exposed by formation of assembly-competent monomers or by ionic perturbation of the oligomer.
|
| |
J Biol Chem,
270,
1535-1542.
|
 |
|
|
|
|
 |
P.V.Viitanen,
M.Schmidt,
J.Buchner,
T.Suzuki,
E.Vierling,
R.Dickson,
G.H.Lorimer,
A.Gatenby,
and
J.Soll
(1995).
Functional characterization of the higher plant chloroplast chaperonins.
|
| |
J Biol Chem,
270,
18158-18164.
|
 |
|
|
|
|
 |
R.Hlodan,
P.Tempst,
and
F.U.Hartl
(1995).
Binding of defined regions of a polypeptide to GroEL and its implications for chaperonin-mediated protein folding.
|
| |
Nat Struct Biol,
2,
587-595.
|
 |
|
|
|
|
 |
S.R.Price,
and
K.Nagai
(1995).
Protein engineering as a tool for crystallography.
|
| |
Curr Opin Biotechnol,
6,
425-430.
|
 |
|
|
|
|
 |
T.Gallagher,
G.Gilliland,
L.Wang,
and
P.Bryan
(1995).
The prosegment-subtilisin BPN' complex: crystal structure of a specific 'foldase'.
|
| |
Structure,
3,
907-914.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.Waldmann,
A.Lupas,
J.Kellermann,
J.Peters,
and
W.Baumeister
(1995).
Primary structure of the thermosome from Thermoplasma acidophilum.
|
| |
Biol Chem Hoppe Seyler,
376,
119-126.
|
 |
|
|
|
|
 |
U.Bertsch,
and
J.Soll
(1995).
Functional analysis of isolated cpn10 domains and conserved amino acid residues in spinach chloroplast co-chaperonin by site-directed mutagenesis.
|
| |
Plant Mol Biol,
29,
1039-1055.
|
 |
|
|
|
|
 |
Y.Shu,
and
R.L.Hallberg
(1995).
SCS1, a multicopy suppressor of hsp60-ts mutant alleles, does not encode a mitochondrially targeted protein.
|
| |
Mol Cell Biol,
15,
5618-5626.
|
 |
|
|
|
|
 |
Z.Kelman,
J.Finkelstein,
and
M.O'Donnell
(1995).
Protein structure. Why have six-fold symmetry?
|
| |
Curr Biol,
5,
1239-1242.
|
 |
|
|
|
|
 |
Z.Lin,
F.P.Schwartz,
and
E.Eisenstein
(1995).
The hydrophobic nature of GroEL-substrate binding.
|
| |
J Biol Chem,
270,
1011-1014.
|
 |
|
|
|
|
 |
Z.W.White,
K.E.Fisher,
and
E.Eisenstein
(1995).
A monomeric variant of GroEL binds nucleotides but is inactive as a molecular chaperone.
|
| |
J Biol Chem,
270,
20404-20409.
|
 |
|
|
|
|
 |
G.H.Lorimer
(1994).
GroEL structure: a new chapter on assisted folding.
|
| |
Structure,
2,
1125-1128.
|
 |
|
|
|
|
 |
H.R.Saibil
(1994).
How chaperones tell wrong from right.
|
| |
Nat Struct Biol,
1,
838-842.
|
 |
|
|
|
|
 |
S.Kim,
K.R.Willison,
and
A.L.Horwich
(1994).
Cystosolic chaperonin subunits have a conserved ATPase domain but diverged polypeptide-binding domains.
|
| |
Trends Biochem Sci,
19,
543-548.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |