 |
PDBsum entry 1gc7
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Cell adhesion
|
PDB id
|
|
|
|
1gc7
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
EMBO J
19:4449-4462
(2000)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structural basis of the membrane-targeting and unmasking mechanisms of the radixin FERM domain.
|
|
K.Hamada,
T.Shimizu,
T.Matsui,
S.Tsukita,
T.Hakoshima.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Radixin is a member of the ezrin/radixin/moesin (ERM) family of proteins, which
play a role in the formation of the membrane-associated cytoskeleton by linking
actin filaments and adhesion proteins. This cross-linking activity is regulated
by phosphoinositides such as phosphatidylinositol 4,5-bisphosphate (PIP2) in the
downstream of the small G protein Rho. The X-ray crystal structures of the
radixin FERM domain, which is responsible for membrane binding, and its complex
with inositol-(1,4, 5)-trisphosphate (IP3) have been determined. The domain
consists of three subdomains featuring a ubiquitin-like fold, a four-helix
bundle and a phosphotyrosine-binding-like domain, respectively. These subdomains
are organized by intimate interdomain interactions to form characteristic
grooves and clefts. One such groove is negatively charged and so is thought to
interact with basic juxta-membrane regions of adhesion proteins. IP3 binds a
basic cleft that is distinct from those of pleckstrin homology domains and is
located on a positively charged flat molecular surface, suggesting an
electrostatic mechanism of plasma membrane targeting. Based on the structural
changes associated with IP3 binding, a possible unmasking mechanism of ERM
proteins by PIP2 is proposed.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 4.
Figure 4 Subdomain structures of the radixin FERM domain. The
color codes used are light green for radixin subdomains, light
blue for ubiquitin, yellow for acyl-coenzyme A binding protein,
red for the PTB domain and orange for the PH domain. (A)
Superimposition of radixin subdomain A on ubiquitin (PDB code
1UBI, blue). (B) Superimposition of radixin subdomain B on
E.coli acyl-coenzyme A binding protein (yellow, 1ACA). (C)
Superimposition of radixin subdomain C on the IRS-1 PTB domain
(1QQG, red). (D) Superimposition of radixin subdomain C on the
PH domain (1PLS, orange). (E) Comparison of the IP3-binding
sites found in the radixin FERM domain (left), the phospholipase
C 1
PH domain (middle) and the -spectrin
PH domain (right). Two loops forming the binding site of each PH
domain are colored in blue. The binding site of the radixin FERM
domain is located at the basic cleft between subdomains A (a
ubiquitin-like fold in light green) and C (a PTB-like fold in
light blue) (see text). The N-terminal half of helix 1C
of subdomain C and the protruding loop between strands 3A
and 5A
of subdomain A form the IP3-binding site of the radixin FERM
domain and are colored in blue.
|
 |
Figure 5.
Figure 5 Molecular surface properties of the radixin FERM
domain. (A) Surface electrostatic potentials of the radixin FERM
domain viewed from the same direction as in Figure 2A. Positive
(blue) and negative (red) potentials are mapped on the van der
Waals surfaces. The IP3 molecule found in the complex crystal is
shown in a stick model. (B) Surface electrostatic potentials
viewed along the arrow b in (A) to show the basic cleft between
subdomains A and C. The IP3 molecule found in the complex
crystal is shown in a stick model. (C) Surface electrostatic
potentials viewed along arrow c in (A) to show the acidic groove
between subdomains B and C. (D) A backside view of surface
electrostatic potentials seen in (A). The IP3 molecule found in
the complex crystal is shown in a stick model. (E) Conserved
residues of the radixin FERM domain mapped on the molecular
surfaces. A front view of the radixin FERM domain depicted as a
colored molecular surface using a gradient; orange indicates
conserved identical residues and white non-conserved residues,
while lighter shades of orange indicate semi-invariant residues.
A view from the same direction as in (A) and Figure 2A. (F) Back
view of conserved residues of the radixin FERM domain. (G) Front
view of hydrophobic residues of the radixin FERM domain mapped
on the molecular surfaces. (H) Back view of hydrophobic residues
of the radixin FERM domain.
|
 |
|
|
|
| |
The above figures are
reprinted
from an Open Access publication published by Macmillan Publishers Ltd:
EMBO J
(2000,
19,
4449-4462)
copyright 2000.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
J.Putters,
A.C.da Silva Almeida,
P.van Kerkhof,
A.G.van Rossum,
A.Gracanin,
and
G.J.Strous
(2011).
Jak2 is a negative regulator of ubiquitin-dependent endocytosis of the growth hormone receptor.
|
| |
PLoS One,
6,
e14676.
|
 |
|
|
|
|
 |
M.Gotesman,
R.E.Hosein,
and
R.H.Gavin
(2011).
MyTH4, independent of its companion FERM domain, affects the organization of an intramacronuclear microtubule array and is involved in elongation of the macronucleus in Tetrahymena thermophila.
|
| |
Cytoskeleton (Hoboken),
68,
220-236.
|
 |
|
|
|
|
 |
P.Pinon,
and
B.Wehrle-Haller
(2011).
Integrins: versatile receptors controlling melanocyte adhesion, migration and proliferation.
|
| |
Pigment Cell Melanoma Res,
24,
282-294.
|
 |
|
|
|
|
 |
S.Marion,
E.Hoffmann,
D.Holzer,
C.Le Clainche,
M.Martin,
M.Sachse,
I.Ganeva,
P.Mangeat,
and
G.Griffiths
(2011).
Ezrin promotes actin assembly at the phagosome membrane and regulates phago-lysosomal fusion.
|
| |
Traffic,
12,
421-437.
|
 |
|
|
|
|
 |
B.T.Goult,
M.Bouaouina,
P.R.Elliott,
N.Bate,
B.Patel,
A.R.Gingras,
J.G.Grossmann,
G.C.Roberts,
D.A.Calderwood,
D.R.Critchley,
and
I.L.Barsukov
(2010).
Structure of a double ubiquitin-like domain in the talin head: a role in integrin activation.
|
| |
EMBO J,
29,
1069-1080.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.A.Lipinski,
and
J.C.Loftus
(2010).
Targeting Pyk2 for therapeutic intervention.
|
| |
Expert Opin Ther Targets,
14,
95.
|
 |
|
|
|
|
 |
F.C.Morales,
J.R.Molina,
Y.Hayashi,
and
M.M.Georgescu
(2010).
Overexpression of ezrin inactivates NF2 tumor suppressor in glioblastoma.
|
| |
Neuro Oncol,
12,
528-539.
|
 |
|
|
|
|
 |
K.Kwiatkowska
(2010).
One lipid, multiple functions: how various pools of PI(4,5)P(2) are created in the plasma membrane.
|
| |
Cell Mol Life Sci,
67,
3927-3946.
|
 |
|
|
|
|
 |
M.C.Frame,
H.Patel,
B.Serrels,
D.Lietha,
and
M.J.Eck
(2010).
The FERM domain: organizing the structure and function of FAK.
|
| |
Nat Rev Mol Cell Biol,
11,
802-814.
|
 |
|
|
|
|
 |
P.R.Elliott,
B.T.Goult,
P.M.Kopp,
N.Bate,
J.G.Grossmann,
G.C.Roberts,
D.R.Critchley,
and
I.L.Barsukov
(2010).
The Structure of the talin head reveals a novel extended conformation of the FERM domain.
|
| |
Structure,
18,
1289-1299.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.F.Hennigan,
L.A.Foster,
M.F.Chaiken,
T.Mani,
M.M.Gomes,
A.B.Herr,
and
W.Ip
(2010).
Fluorescence resonance energy transfer analysis of merlin conformational changes.
|
| |
Mol Cell Biol,
30,
54-67.
|
 |
|
|
|
|
 |
R.G.Fehon,
A.I.McClatchey,
and
A.Bretscher
(2010).
Organizing the cell cortex: the role of ERM proteins.
|
| |
Nat Rev Mol Cell Biol,
11,
276-287.
|
 |
|
|
|
|
 |
S.Terawaki,
K.Kitano,
T.Mori,
Y.Zhai,
Y.Higuchi,
N.Itoh,
T.Watanabe,
K.Kaibuchi,
and
T.Hakoshima
(2010).
The PHCCEx domain of Tiam1/2 is a novel protein- and membrane-binding module.
|
| |
EMBO J,
29,
236-250.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.G.Kutateladze
(2010).
Translation of the phosphoinositide code by PI effectors.
|
| |
Nat Chem Biol,
6,
507-513.
|
 |
|
|
|
|
 |
A.Darmellah,
C.Rücker-Martin,
and
D.Feuvray
(2009).
ERM proteins mediate the effects of Na+/H+ exchanger (NHE1) activation in cardiac myocytes.
|
| |
Cardiovasc Res,
81,
294-300.
|
 |
|
|
|
|
 |
F.Saltel,
E.Mortier,
V.P.Hytönen,
M.C.Jacquier,
P.Zimmermann,
V.Vogel,
W.Liu,
and
B.Wehrle-Haller
(2009).
New PI(4,5)P2- and membrane proximal integrin-binding motifs in the talin head control beta3-integrin clustering.
|
| |
J Cell Biol,
187,
715-731.
|
 |
|
|
|
|
 |
J.J.Hao,
Y.Liu,
M.Kruhlak,
K.E.Debell,
B.L.Rellahan,
and
S.Shaw
(2009).
Phospholipase C-mediated hydrolysis of PIP2 releases ERM proteins from lymphocyte membrane.
|
| |
J Cell Biol,
184,
451-462.
|
 |
|
|
|
|
 |
C.M.Johnson,
and
W.Rodgers
(2008).
Spatial Segregation of Phosphatidylinositol 4,5-Bisphosphate (PIP(2)) Signaling in Immune Cell Functions.
|
| |
Immunol Endocr Metab Agents Med Chem,
8,
349-357.
|
 |
|
|
|
|
 |
E.Goksoy,
Y.Q.Ma,
X.Wang,
X.Kong,
D.Perera,
E.F.Plow,
and
J.Qin
(2008).
Structural basis for the autoinhibition of talin in regulating integrin activation.
|
| |
Mol Cell,
31,
124-133.
|
 |
|
|
|
|
 |
G.Blin,
E.Margeat,
K.Carvalho,
C.A.Royer,
C.Roy,
and
C.Picart
(2008).
Quantitative analysis of the binding of ezrin to large unilamellar vesicles containing phosphatidylinositol 4,5 bisphosphate.
|
| |
Biophys J,
94,
1021-1033.
|
 |
|
|
|
|
 |
G.Khelashvili,
H.Weinstein,
and
D.Harries
(2008).
Protein diffusion on charged membranes: a dynamic mean-field model describes time evolution and lipid reorganization.
|
| |
Biophys J,
94,
2580-2597.
|
 |
|
|
|
|
 |
S.Terawaki,
K.Kitano,
M.Aoyama,
and
T.Hakoshima
(2008).
Crystallographic characterization of the radixin FERM domain bound to the cytoplasmic tail of membrane-type 1 matrix metalloproteinase (MT1-MMP).
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
64,
911-913.
|
 |
|
|
|
|
 |
T.Mori,
K.Kitano,
S.Terawaki,
R.Maesaki,
Y.Fukami,
and
T.Hakoshima
(2008).
Structural basis for CD44 recognition by ERM proteins.
|
| |
J Biol Chem,
283,
29602-29612.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
V.Niggli,
and
J.Rossy
(2008).
Ezrin/radixin/moesin: versatile controllers of signaling molecules and of the cortical cytoskeleton.
|
| |
Int J Biochem Cell Biol,
40,
344-349.
|
 |
|
|
|
|
 |
X.Cai,
D.Lietha,
D.F.Ceccarelli,
A.V.Karginov,
Z.Rajfur,
K.Jacobson,
K.M.Hahn,
M.J.Eck,
and
M.D.Schaller
(2008).
Spatial and temporal regulation of focal adhesion kinase activity in living cells.
|
| |
Mol Cell Biol,
28,
201-214.
|
 |
|
|
|
|
 |
A.Hatzoglou,
I.Ader,
A.Splingard,
J.Flanders,
E.Saade,
I.Leroy,
S.Traver,
S.Aresta,
and
J.de Gunzburg
(2007).
Gem associates with Ezrin and acts via the Rho-GAP protein Gmip to down-regulate the Rho pathway.
|
| |
Mol Biol Cell,
18,
1242-1252.
|
 |
|
|
|
|
 |
J.T.Brozinick,
B.A.Berkemeier,
and
J.S.Elmendorf
(2007).
"Actin"g on GLUT4: membrane & cytoskeletal components of insulin action.
|
| |
Curr Diabetes Rev,
3,
111-122.
|
 |
|
|
|
|
 |
K.L.Wegener,
A.W.Partridge,
J.Han,
A.R.Pickford,
R.C.Liddington,
M.H.Ginsberg,
and
I.D.Campbell
(2007).
Structural basis of integrin activation by talin.
|
| |
Cell,
128,
171-182.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Q.Li,
M.R.Nance,
R.Kulikauskas,
K.Nyberg,
R.Fehon,
P.A.Karplus,
A.Bretscher,
and
J.J.Tesmer
(2007).
Self-masking in an intact ERM-merlin protein: an active role for the central alpha-helical domain.
|
| |
J Mol Biol,
365,
1446-1459.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Béraud-Dufour,
R.Gautier,
C.Albiges-Rizo,
P.Chardin,
and
E.Faurobert
(2007).
Krit 1 interactions with microtubules and membranes are regulated by Rap1 and integrin cytoplasmic domain associated protein-1.
|
| |
FEBS J,
274,
5518-5532.
|
 |
|
|
|
|
 |
S.Prag,
M.Parsons,
M.D.Keppler,
S.M.Ameer-Beg,
P.Barber,
J.Hunt,
A.J.Beavil,
R.Calvert,
M.Arpin,
B.Vojnovic,
and
T.Ng
(2007).
Activated ezrin promotes cell migration through recruitment of the GEF Dbl to lipid rafts and preferential downstream activation of Cdc42.
|
| |
Mol Biol Cell,
18,
2935-2948.
|
 |
|
|
|
|
 |
S.Terawaki,
K.Kitano,
and
T.Hakoshima
(2007).
Structural basis for type II membrane protein binding by ERM proteins revealed by the radixin-neutral endopeptidase 24.11 (NEP) complex.
|
| |
J Biol Chem,
282,
19854-19862.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.Mori,
K.Kitano,
S.Terawaki,
R.Maesaki,
and
T.Hakoshima
(2007).
Crystallographic characterization of the radixin FERM domain bound to the cytoplasmic tail of adhesion molecule CD44.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
63,
844-847.
|
 |
|
|
|
|
 |
Y.Takai,
K.Kitano,
S.Terawaki,
R.Maesaki,
and
T.Hakoshima
(2007).
Crystallographic characterization of the radixin FERM domain bound to the cytoplasmic tails of adhesion molecules CD43 and PSGL-1.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
63,
49-51.
|
 |
|
|
|
|
 |
Y.Takai,
K.Kitano,
S.Terawaki,
R.Maesaki,
and
T.Hakoshima
(2007).
Structural basis of PSGL-1 binding to ERM proteins.
|
| |
Genes Cells,
12,
1329-1338.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.J.Baines
(2006).
A FERM-adjacent (FA) region defines a subset of the 4.1 superfamily and is a potential regulator of FERM domain function.
|
| |
BMC Genomics,
7,
85.
|
 |
|
|
|
|
 |
D.F.Ceccarelli,
H.K.Song,
F.Poy,
M.D.Schaller,
and
M.J.Eck
(2006).
Crystal structure of the FERM domain of focal adhesion kinase.
|
| |
J Biol Chem,
281,
252-259.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.Kitano,
F.Yusa,
and
T.Hakoshima
(2006).
Structure of dimerized radixin FERM domain suggests a novel masking motif in C-terminal residues 295-304.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
62,
340-345.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Y.Chen,
and
H.C.Chen
(2006).
Direct interaction of focal adhesion kinase (FAK) with Met is required for FAK to promote hepatocyte growth factor-induced cell invasion.
|
| |
Mol Cell Biol,
26,
5155-5167.
|
 |
|
|
|
|
 |
A.D.Sousa,
and
R.E.Cheney
(2005).
Myosin-X: a molecular motor at the cell's fingertips.
|
| |
Trends Cell Biol,
15,
533-539.
|
 |
|
|
|
|
 |
B.I.Ratnikov,
A.W.Partridge,
and
M.H.Ginsberg
(2005).
Integrin activation by talin.
|
| |
J Thromb Haemost,
3,
1783-1790.
|
 |
|
|
|
|
 |
K.Golovnina,
A.Blinov,
E.M.Akhmametyeva,
L.V.Omelyanchuk,
and
L.S.Chang
(2005).
Evolution and origin of merlin, the product of the Neurofibromatosis type 2 (NF2) tumor-suppressor gene.
|
| |
BMC Evol Biol,
5,
69.
|
 |
|
|
|
|
 |
K.Itoh,
M.Lisovsky,
H.Hikasa,
and
S.Y.Sokol
(2005).
Reorganization of actin cytoskeleton by FRIED, a Frizzled-8 associated protein tyrosine phosphatase.
|
| |
Dev Dyn,
234,
90.
|
 |
|
|
|
|
 |
M.Zhang,
S.S.Bohlson,
M.Dy,
and
A.J.Tenner
(2005).
Modulated interaction of the ERM protein, moesin, with CD93.
|
| |
Immunology,
115,
63-73.
|
 |
|
|
|
|
 |
S.Fais,
A.De Milito,
and
F.Lozupone
(2005).
The role of FAS to ezrin association in FAS-mediated apoptosis.
|
| |
Apoptosis,
10,
941-947.
|
 |
|
|
|
|
 |
V.Niggli
(2005).
Regulation of protein activities by phosphoinositide phosphates.
|
| |
Annu Rev Cell Dev Biol,
21,
57-79.
|
 |
|
|
|
|
 |
W.Cho,
and
R.V.Stahelin
(2005).
Membrane-protein interactions in cell signaling and membrane trafficking.
|
| |
Annu Rev Biophys Biomol Struct,
34,
119-151.
|
 |
|
|
|
|
 |
A.Ivetic,
and
A.J.Ridley
(2004).
Ezrin/radixin/moesin proteins and Rho GTPase signalling in leucocytes.
|
| |
Immunology,
112,
165-176.
|
 |
|
|
|
|
 |
B.T.Fievet,
A.Gautreau,
C.Roy,
L.Del Maestro,
P.Mangeat,
D.Louvard,
and
M.Arpin
(2004).
Phosphoinositide binding and phosphorylation act sequentially in the activation mechanism of ezrin.
|
| |
J Cell Biol,
164,
653-659.
|
 |
|
|
|
|
 |
C.Steindler,
Z.Li,
M.Algarté,
A.Alcover,
V.Libri,
J.Ragimbeau,
and
S.Pellegrini
(2004).
Jamip1 (marlin-1) defines a family of proteins interacting with janus kinases and microtubules.
|
| |
J Biol Chem,
279,
43168-43177.
|
 |
|
|
|
|
 |
F.Lozupone,
L.Lugini,
P.Matarrese,
F.Luciani,
C.Federici,
E.Iessi,
P.Margutti,
G.Stassi,
W.Malorni,
and
S.Fais
(2004).
Identification and relevance of the CD95-binding domain in the N-terminal region of ezrin.
|
| |
J Biol Chem,
279,
9199-9207.
|
 |
|
|
|
|
 |
I.Behrmann,
T.Smyczek,
P.C.Heinrich,
H.Schmitz-Van de Leur,
W.Komyod,
B.Giese,
G.Müller-Newen,
S.Haan,
and
C.Haan
(2004).
Janus kinase (Jak) subcellular localization revisited: the exclusive membrane localization of endogenous Janus kinase 1 by cytokine receptor interaction uncovers the Jak.receptor complex to be equivalent to a receptor tyrosine kinase.
|
| |
J Biol Chem,
279,
35486-35493.
|
 |
|
|
|
|
 |
I.D.Campbell,
and
M.H.Ginsberg
(2004).
The talin-tail interaction places integrin activation on FERM ground.
|
| |
Trends Biochem Sci,
29,
429-435.
|
 |
|
|
|
|
 |
J.M.Dunty,
V.Gabarra-Niecko,
M.L.King,
D.F.Ceccarelli,
M.J.Eck,
and
M.D.Schaller
(2004).
FERM domain interaction promotes FAK signaling.
|
| |
Mol Cell Biol,
24,
5353-5368.
|
 |
|
|
|
|
 |
K.J.Ralston,
S.L.Hird,
X.Zhang,
J.L.Scott,
B.Jin,
R.F.Thorne,
M.C.Berndt,
A.W.Boyd,
and
G.F.Burns
(2004).
The LFA-1-associated molecule PTA-1 (CD226) on T cells forms a dynamic molecular complex with protein 4.1G and human discs large.
|
| |
J Biol Chem,
279,
33816-33828.
|
 |
|
|
|
|
 |
K.P.Hoeflich,
and
M.Ikura
(2004).
Radixin: cytoskeletal adopter and signaling protein.
|
| |
Int J Biochem Cell Biol,
36,
2131-2136.
|
 |
|
|
|
|
 |
L.S.Argetsinger,
J.L.Kouadio,
H.Steen,
A.Stensballe,
O.N.Jensen,
and
C.Carter-Su
(2004).
Autophosphorylation of JAK2 on tyrosines 221 and 570 regulates its activity.
|
| |
Mol Cell Biol,
24,
4955-4967.
|
 |
|
|
|
|
 |
N.Kumar,
P.Zhao,
A.Tomar,
C.A.Galea,
and
S.Khurana
(2004).
Association of villin with phosphatidylinositol 4,5-bisphosphate regulates the actin cytoskeleton.
|
| |
J Biol Chem,
279,
3096-3110.
|
 |
|
|
|
|
 |
V.Ramesh
(2004).
Merlin and the ERM proteins in Schwann cells, neurons and growth cones.
|
| |
Nat Rev Neurosci,
5,
462-470.
|
 |
|
|
|
|
 |
B.Giese,
C.K.Au-Yeung,
A.Herrmann,
S.Diefenbach,
C.Haan,
A.Küster,
S.B.Wortmann,
C.Roderburg,
P.C.Heinrich,
I.Behrmann,
and
G.Müller-Newen
(2003).
Long term association of the cytokine receptor gp130 and the Janus kinase Jak1 revealed by FRAP analysis.
|
| |
J Biol Chem,
278,
39205-39213.
|
 |
|
|
|
|
 |
H.J.Meijer,
and
T.Munnik
(2003).
Phospholipid-based signaling in plants.
|
| |
Annu Rev Plant Biol,
54,
265-306.
|
 |
|
|
|
|
 |
H.L.Yin,
and
P.A.Janmey
(2003).
Phosphoinositide regulation of the actin cytoskeleton.
|
| |
Annu Rev Physiol,
65,
761-789.
|
 |
|
|
|
|
 |
I.L.Barsukov,
A.Prescot,
N.Bate,
B.Patel,
D.N.Floyd,
N.Bhanji,
C.R.Bagshaw,
K.Letinic,
G.Di Paolo,
P.De Camilli,
G.C.Roberts,
and
D.R.Critchley
(2003).
Phosphatidylinositol phosphate kinase type 1gamma and beta1-integrin cytoplasmic domain bind to the same region in the talin FERM domain.
|
| |
J Biol Chem,
278,
31202-31209.
|
 |
|
|
|
|
 |
J.W.Yu,
and
M.A.Lemmon
(2003).
Genome-wide analysis of signaling domain function.
|
| |
Curr Opin Chem Biol,
7,
103-109.
|
 |
|
|
|
|
 |
K.Hamada,
T.Shimizu,
S.Yonemura,
S.Tsukita,
S.Tsukita,
and
T.Hakoshima
(2003).
Structural basis of adhesion-molecule recognition by ERM proteins revealed by the crystal structure of the radixin-ICAM-2 complex.
|
| |
EMBO J,
22,
502-514.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.S.Erdmann
(2003).
The protein tyrosine phosphatase PTP-Basophil/Basophil-like. Interacting proteins and molecular functions.
|
| |
Eur J Biochem,
270,
4789-4798.
|
 |
|
|
|
|
 |
M.A.Lemmon
(2003).
Phosphoinositide recognition domains.
|
| |
Traffic,
4,
201-213.
|
 |
|
|
|
|
 |
M.Koltzscher,
C.Neumann,
S.König,
and
V.Gerke
(2003).
Ca2+-dependent binding and activation of dormant ezrin by dimeric S100P.
|
| |
Mol Biol Cell,
14,
2372-2384.
|
 |
|
|
|
|
 |
S.Chauhan,
R.Pandey,
J.F.Way,
T.C.Sroka,
M.C.Demetriou,
S.Kunz,
A.E.Cress,
D.W.Mount,
and
R.L.Miesfeld
(2003).
Androgen regulation of the human FERM domain encoding gene EHM2 in a cell model of steroid-induced differentiation.
|
| |
Biochem Biophys Res Commun,
310,
421-432.
|
 |
|
|
|
|
 |
W.J.Smith,
N.Nassar,
A.Bretscher,
R.A.Cerione,
and
P.A.Karplus
(2003).
Structure of the active N-terminal domain of Ezrin. Conformational and mobility changes identify keystone interactions.
|
| |
J Biol Chem,
278,
4949-4956.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Z.Mostafavi-Pour,
J.A.Askari,
S.J.Parkinson,
P.J.Parker,
T.T.Ng,
and
M.J.Humphries
(2003).
Integrin-specific signaling pathways controlling focal adhesion formation and cell migration.
|
| |
J Cell Biol,
161,
155-167.
|
 |
|
|
|
|
 |
A.Bretscher,
K.Edwards,
and
R.G.Fehon
(2002).
ERM proteins and merlin: integrators at the cell cortex.
|
| |
Nat Rev Mol Cell Biol,
3,
586-599.
|
 |
|
|
|
|
 |
A.Gautreau,
D.Louvard,
and
M.Arpin
(2002).
ERM proteins and NF2 tumor suppressor: the Yin and Yang of cortical actin organization and cell growth signaling.
|
| |
Curr Opin Cell Biol,
14,
104-109.
|
 |
|
|
|
|
 |
B.S.Kang,
D.R.Cooper,
Y.Devedjiev,
U.Derewenda,
and
Z.S.Derewenda
(2002).
The structure of the FERM domain of merlin, the neurofibromatosis type 2 gene product.
|
| |
Acta Crystallogr D Biol Crystallogr,
58,
381-391.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.Polesello,
I.Delon,
P.Valenti,
P.Ferrer,
and
F.Payre
(2002).
Dmoesin controls actin-based cell shape and polarity during Drosophila melanogaster oogenesis.
|
| |
Nat Cell Biol,
4,
782-789.
|
 |
|
|
|
|
 |
D.A.Calderwood,
B.Yan,
J.M.de Pereda,
B.G.Alvarez,
Y.Fujioka,
R.C.Liddington,
and
M.H.Ginsberg
(2002).
The phosphotyrosine binding-like domain of talin activates integrins.
|
| |
J Biol Chem,
277,
21749-21758.
|
 |
|
|
|
|
 |
G.Di Paolo,
L.Pellegrini,
K.Letinic,
G.Cestra,
R.Zoncu,
S.Voronov,
S.Chang,
J.Guo,
M.R.Wenk,
and
P.De Camilli
(2002).
Recruitment and regulation of phosphatidylinositol phosphate kinase type 1 gamma by the FERM domain of talin.
|
| |
Nature,
420,
85-89.
|
 |
|
|
|
|
 |
I.Bosanac,
J.R.Alattia,
T.K.Mal,
J.Chan,
S.Talarico,
F.K.Tong,
K.I.Tong,
F.Yoshikawa,
T.Furuichi,
M.Iwai,
T.Michikawa,
K.Mikoshiba,
and
M.Ikura
(2002).
Structure of the inositol 1,4,5-trisphosphate receptor binding core in complex with its ligand.
|
| |
Nature,
420,
696-700.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.A.Pufall,
and
B.J.Graves
(2002).
Autoinhibitory domains: modular effectors of cellular regulation.
|
| |
Annu Rev Cell Dev Biol,
18,
421-462.
|
 |
|
|
|
|
 |
M.Toutant,
A.Costa,
J.M.Studler,
G.Kadaré,
M.Carnaud,
and
J.A.Girault
(2002).
Alternative splicing controls the mechanisms of FAK autophosphorylation.
|
| |
Mol Cell Biol,
22,
7731-7743.
|
 |
|
|
|
|
 |
S.McLaughlin,
J.Wang,
A.Gambhir,
and
D.Murray
(2002).
PIP(2) and proteins: interactions, organization, and information flow.
|
| |
Annu Rev Biophys Biomol Struct,
31,
151-175.
|
 |
|
|
|
|
 |
S.P.Denker,
and
D.L.Barber
(2002).
Ion transport proteins anchor and regulate the cytoskeleton.
|
| |
Curr Opin Cell Biol,
14,
214-220.
|
 |
|
|
|
|
 |
S.Pokutta,
and
W.I.Weis
(2002).
The cytoplasmic face of cell contact sites.
|
| |
Curr Opin Struct Biol,
12,
255-262.
|
 |
|
|
|
|
 |
T.Shimizu,
A.Seto,
N.Maita,
K.Hamada,
S.Tsukita,
S.Tsukita,
and
T.Hakoshima
(2002).
Structural basis for neurofibromatosis type 2. Crystal structure of the merlin FERM domain.
|
| |
J Biol Chem,
277,
10332-10336.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
W.J.Smith,
and
R.A.Cerione
(2002).
Crystallization and preliminary crystallographic analysis of the ezrin FERM domain.
|
| |
Acta Crystallogr D Biol Crystallogr,
58,
1359-1361.
|
 |
|
|
|
|
 |
E.J.Allenspach,
P.Cullinan,
J.Tong,
Q.Tang,
A.G.Tesciuba,
J.L.Cannon,
S.M.Takahashi,
R.Morgan,
J.K.Burkhardt,
and
A.I.Sperling
(2001).
ERM-dependent movement of CD43 defines a novel protein complex distal to the immunological synapse.
|
| |
Immunity,
15,
739-750.
|
 |
|
|
|
|
 |
J.H.Hurley,
and
T.Meyer
(2001).
Subcellular targeting by membrane lipids.
|
| |
Curr Opin Cell Biol,
13,
146-152.
|
 |
|
|
|
|
 |
K.Hamada,
T.Shimizu,
T.Matsui,
S.Tsukita,
S.Tsukita,
and
T.Hakoshima
(2001).
Crystallographic characterization of the radixin FERM domain bound to the cytoplasmic tail of the adhesion protein ICAM-2.
|
| |
Acta Crystallogr D Biol Crystallogr,
57,
891-892.
|
 |
|
|
|
|
 |
L.J.Huang,
S.N.Constantinescu,
and
H.F.Lodish
(2001).
The N-terminal domain of Janus kinase 2 is required for Golgi processing and cell surface expression of erythropoietin receptor.
|
| |
Mol Cell,
8,
1327-1338.
|
 |
|
|
|
|
 |
V.Niggli
(2001).
Structural properties of lipid-binding sites in cytoskeletal proteins.
|
| |
Trends Biochem Sci,
26,
604-611.
|
 |
|
|
|
|
 |
Y.J.Zhou,
M.Chen,
N.A.Cusack,
L.H.Kimmel,
K.S.Magnuson,
J.G.Boyd,
W.Lin,
J.L.Roberts,
A.Lengi,
R.H.Buckley,
R.L.Geahlen,
F.Candotti,
M.Gadina,
P.S.Changelian,
and
J.J.O'Shea
(2001).
Unexpected effects of FERM domain mutations on catalytic activity of Jak3: structural implication for Janus kinases.
|
| |
Mol Cell,
8,
959-969.
|
 |
|
|
|
|
 |
Y.Takakuwa
(2001).
Regulation of red cell membrane protein interactions: implications for red cell function.
|
| |
Curr Opin Hematol,
8,
80-84.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |