|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Nature
410:1120-1124
(2001)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structure of the gating domain of a Ca2+-activated K+ channel complexed with Ca2+/calmodulin.
|
|
M.A.Schumacher,
A.F.Rivard,
H.P.Bächinger,
J.P.Adelman.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Small-conductance Ca2+-activated K+ channels (SK channels) are independent of
voltage and gated solely by intracellular Ca2+. These membrane channels are
heteromeric complexes that comprise pore-forming alpha-subunits and the
Ca2+-binding protein calmodulin (CaM). CaM binds to the SK channel through the
CaM-binding domain (CaMBD), which is located in an intracellular region of the
alpha-subunit immediately carboxy-terminal to the pore. Channel opening is
triggered when Ca2+ binds the EF hands in the N-lobe of CaM. Here we report the
1.60 A crystal structure of the SK channel CaMBD/Ca2+/CaM complex. The CaMBD
forms an elongated dimer with a CaM molecule bound at each end; each CaM wraps
around three alpha-helices, two from one CaMBD subunit and one from the other.
As only the CaM N-lobe has bound Ca2+, the structure provides a view of both
calcium-dependent and -independent CaM/protein interactions. Together with
biochemical data, the structure suggests a possible gating mechanism for the SK
channel.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 2.
Figure 2: Interactions between CaMBD and CaM. a,
Ca^2+-dependent interactions between the CaMBD and the CaM
N-lobe. CaMBD subunits and CaM are coloured as in Fig. 1.
Hydrogen-bond interactions are indicated as black lines. The van
der Waals surface (yellow) is shown for the single 'leucine
prong'. b, Tethering contacts between CaMBD and CaM highlight
interactions between the CaM N-lobe and the second CaMBD dimer
(blue), where the contacts to the first subunit are shown in a.
c, Ca^2+-independent interactions between the CaMBD and the CaM
C-lobe. The van der Waals surface (cyan) is shown for the three
distinct prongs that interact with this lobe, Ala 425, Leu 428
and Trp 432.
|
 |
Figure 3.
Figure 3: Structure of CaM lobes in the CaMBD/Ca^2+/CaM complex.
a, Left, C superimposition
of N-lobe residues 10 -67 of the CaMBD/Ca^2+/CaM complex (blue)
onto those of the Ca^2+/CaM complex12 (yellow). Ca^2+ ions are
shown as spheres. Right, C superimposition
of C-lobe residues 81 -146 of the CaMBD/Ca^2+/CaM complex (blue)
and the NMR apoCaM C-lobe structure^15 (magenta) onto that of
the Ca^2+/CaM complex12 (yellow). b, Comparison of the C-lobe EF
hand regions of the Ca^2+/CaM12 and the CaMBD/Ca^2+/CaM
complexes. Ca^2+-coordinating residues are shown as sticks. Note
the displacements of Ca^2+-coordinating residues Asp 95, Asp
131, Glu 104 and Glu 140 out of the expanded Ca^2+-coordination
sphere in the CaMBD complex.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Macmillan Publishers Ltd:
Nature
(2001,
410,
1120-1124)
copyright 2001.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
V.N.Bavro,
R.De Zorzi,
M.R.Schmidt,
J.R.Muniz,
L.Zubcevic,
M.S.Sansom,
C.Vénien-Bryan,
and
S.J.Tucker
(2012).
Structure of a KirBac potassium channel with an open bundle crossing indicates a mechanism of channel gating.
|
| |
Nat Struct Mol Biol,
19,
158-163.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.D.White,
Z.Li,
and
D.B.Sacks
(2011).
Calmodulin binds HER2 and modulates HER2 signaling.
|
| |
Biochim Biophys Acta,
1813,
1074-1082.
|
 |
|
|
|
|
 |
S.E.O'Donnell,
L.Yu,
C.A.Fowler,
and
M.A.Shea
(2011).
Recognition of β-calcineurin by the domains of calmodulin: Thermodynamic and structural evidence for distinct roles.
|
| |
Proteins,
79,
765-786.
|
 |
|
|
|
|
 |
F.Rodríguez-Castañeda,
M.Maestre-Martínez,
N.Coudevylle,
K.Dimova,
H.Junge,
N.Lipstein,
D.Lee,
S.Becker,
N.Brose,
O.Jahn,
T.Carlomagno,
and
C.Griesinger
(2010).
Modular architecture of Munc13/calmodulin complexes: dual regulation by Ca2+ and possible function in short-term synaptic plasticity.
|
| |
EMBO J,
29,
680-691.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Tidow,
K.L.Hein,
L.Baekgaard,
M.G.Palmgren,
and
P.Nissen
(2010).
Expression, purification, crystallization and preliminary X-ray analysis of calmodulin in complex with the regulatory domain of the plasma-membrane Ca2+-ATPase ACA8.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
66,
361-363.
|
 |
|
|
|
|
 |
H.Yu,
T.W.Whitfield,
E.Harder,
G.Lamoureux,
I.Vorobyov,
V.M.Anisimov,
A.D.Mackerell,
and
B.Roux
(2010).
Simulating Monovalent and Divalent Ions in Aqueous Solution Using a Drude Polarizable Force Field.
|
| |
J Chem Theory Comput,
6,
774-786.
|
 |
|
|
|
|
 |
J.Cui
(2010).
Reduction of CaV channel activities by Ca2+-CaM: inactivation or deactivation?
|
| |
J Gen Physiol,
135,
297-301.
|
 |
|
|
|
|
 |
M.A.Bailey,
M.Grabe,
and
D.C.Devor
(2010).
Characterization of the PCMBS-dependent modification of KCa3.1 channel gating.
|
| |
J Gen Physiol,
136,
367-387.
|
 |
|
|
|
|
 |
M.Maestre-Martínez,
K.Haupt,
F.Edlich,
G.Jahreis,
F.Jarczowski,
F.Erdmann,
G.Fischer,
and
C.Lücke
(2010).
New structural aspects of FKBP38 activation.
|
| |
Biol Chem,
391,
1157-1167.
|
 |
|
|
|
|
 |
R.Strotmann,
M.Semtner,
F.Kepura,
T.D.Plant,
and
T.Schöneberg
(2010).
Interdomain interactions control Ca2+-dependent potentiation in the cation channel TRPV4.
|
| |
PLoS One,
5,
e10580.
|
 |
|
|
|
|
 |
A.Ravindran,
E.Kobrinsky,
Q.Z.Lao,
and
N.M.Soldatov
(2009).
Functional properties of the CaV1.2 calcium channel activated by calmodulin in the absence of alpha2delta subunits.
|
| |
Channels (Austin),
3,
25-31.
|
 |
|
|
|
|
 |
D.A.Macdougall,
S.Wachten,
A.Ciruela,
A.Sinz,
and
D.M.Cooper
(2009).
Separate elements within a single IQ-like motif in adenylyl cyclase type 8 impart ca2+/calmodulin binding and autoinhibition.
|
| |
J Biol Chem,
284,
15573-15588.
|
 |
|
|
|
|
 |
D.B.Halling,
D.K.Georgiou,
D.J.Black,
G.Yang,
J.L.Fallon,
F.A.Quiocho,
S.E.Pedersen,
and
S.L.Hamilton
(2009).
Determinants in CaV1 channels that regulate the Ca2+ sensitivity of bound calmodulin.
|
| |
J Biol Chem,
284,
20041-20051.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
I.Grgic,
B.P.Kaistha,
J.Hoyer,
and
R.Köhler
(2009).
Endothelial Ca+-activated K+ channels in normal and impaired EDHF-dilator responses--relevance to cardiovascular pathologies and drug discovery.
|
| |
Br J Pharmacol,
157,
509-526.
|
 |
|
|
|
|
 |
J.L.Fallon,
M.R.Baker,
L.Xiong,
R.E.Loy,
G.Yang,
R.T.Dirksen,
S.L.Hamilton,
and
F.A.Quiocho
(2009).
Crystal structure of dimeric cardiac L-type calcium channel regulatory domains bridged by Ca2+* calmodulins.
|
| |
Proc Natl Acad Sci U S A,
106,
5135-5140.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Fromer,
and
J.M.Shifman
(2009).
Tradeoff between stability and multispecificity in the design of promiscuous proteins.
|
| |
PLoS Comput Biol,
5,
e1000627.
|
 |
|
|
|
|
 |
M.Kleiman-Weiner,
M.P.Beenhakker,
W.A.Segal,
and
J.R.Huguenard
(2009).
Synergistic roles of GABAA receptors and SK channels in regulating thalamocortical oscillations.
|
| |
J Neurophysiol,
102,
203-213.
|
 |
|
|
|
|
 |
S.Dai,
D.D.Hall,
and
J.W.Hell
(2009).
Supramolecular assemblies and localized regulation of voltage-gated ion channels.
|
| |
Physiol Rev,
89,
411-452.
|
 |
|
|
|
|
 |
T.I.Evans,
and
M.A.Shea
(2009).
Energetics of calmodulin domain interactions with the calmodulin binding domain of CaMKII.
|
| |
Proteins,
76,
47-61.
|
 |
|
|
|
|
 |
V.Borsi,
C.Luchinat,
and
G.Parigi
(2009).
Global and local mobility of apocalmodulin monitored through fast-field cycling relaxometry.
|
| |
Biophys J,
97,
1765-1771.
|
 |
|
|
|
|
 |
W.J.Tang,
and
Q.Guo
(2009).
The adenylyl cyclase activity of anthrax edema factor.
|
| |
Mol Aspects Med,
30,
423-430.
|
 |
|
|
|
|
 |
W.Li,
D.B.Halling,
A.W.Hall,
and
R.W.Aldrich
(2009).
EF hands at the N-lobe of calmodulin are required for both SK channel gating and stable SK-calmodulin interaction.
|
| |
J Gen Physiol,
134,
281-293.
|
 |
|
|
|
|
 |
W.Li,
and
R.W.Aldrich
(2009).
Activation of the SK potassium channel-calmodulin complex by nanomolar concentrations of terbium.
|
| |
Proc Natl Acad Sci U S A,
106,
1075-1080.
|
 |
|
|
|
|
 |
Y.Zhou,
W.Yang,
M.M.Lurtz,
Y.Chen,
J.Jiang,
Y.Huang,
C.F.Louis,
and
J.J.Yang
(2009).
Calmodulin mediates the Ca2+-dependent regulation of Cx44 gap junctions.
|
| |
Biophys J,
96,
2832-2848.
|
 |
|
|
|
|
 |
Z.Zhang,
X.H.Zeng,
X.M.Xia,
and
C.J.Lingle
(2009).
N-terminal inactivation domains of beta subunits are protected from trypsin digestion by binding within the antechamber of BK channels.
|
| |
J Gen Physiol,
133,
263-282.
|
 |
|
|
|
|
 |
A.Scheschonka,
S.Findlow,
R.Schemm,
O.El Far,
J.H.Caldwell,
M.P.Crump,
K.Holden-Dye,
V.O'Connor,
H.Betz,
and
J.M.Werner
(2008).
Structural determinants of calmodulin binding to the intracellular C-terminal domain of the metabotropic glutamate receptor 7A.
|
| |
J Biol Chem,
283,
5577-5588.
|
 |
|
|
|
|
 |
E.Laine,
J.D.Yoneda,
A.Blondel,
and
T.E.Malliavin
(2008).
The conformational plasticity of calmodulin upon calcium complexation gives a model of its interaction with the oedema factor of Bacillus anthracis.
|
| |
Proteins,
71,
1813-1829.
|
 |
|
|
|
|
 |
E.Y.Kim,
C.H.Rumpf,
Y.Fujiwara,
E.S.Cooley,
F.Van Petegem,
and
D.L.Minor
(2008).
Structures of CaV2 Ca2+/CaM-IQ domain complexes reveal binding modes that underlie calcium-dependent inactivation and facilitation.
|
| |
Structure,
16,
1455-1467.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.Y.Yoo,
H.Zheng,
J.H.Nam,
Y.H.Nguyen,
T.M.Kang,
Y.E.Earm,
and
S.J.Kim
(2008).
Facilitation of Ca2+-activated K+ channels (IKCa1) by mibefradil in B lymphocytes.
|
| |
Pflugers Arch,
456,
549-560.
|
 |
|
|
|
|
 |
I.Paarmann,
M.F.Lye,
A.Lavie,
and
M.Konrad
(2008).
Structural requirements for calmodulin binding to membrane-associated guanylate kinase homologs.
|
| |
Protein Sci,
17,
1946-1954.
|
 |
|
|
|
|
 |
J.Gsponer,
J.Christodoulou,
A.Cavalli,
J.M.Bui,
B.Richter,
C.M.Dobson,
and
M.Vendruscolo
(2008).
A coupled equilibrium shift mechanism in calmodulin-mediated signal transduction.
|
| |
Structure,
16,
736-746.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Kim,
and
D.A.Hoffman
(2008).
Potassium channels: newly found players in synaptic plasticity.
|
| |
Neuroscientist,
14,
276-286.
|
 |
|
|
|
|
 |
J.W.Torrance,
M.W.Macarthur,
and
J.M.Thornton
(2008).
Evolution of binding sites for zinc and calcium ions playing structural roles.
|
| |
Proteins,
71,
813-830.
|
 |
|
|
|
|
 |
L.D.Ellis,
L.Maler,
and
R.J.Dunn
(2008).
Differential distribution of SK channel subtypes in the brain of the weakly electric fish Apteronotus leptorhynchus.
|
| |
J Comp Neurol,
507,
1964-1978.
|
 |
|
|
|
|
 |
M.I.Stefan,
S.J.Edelstein,
and
N.Le Novère
(2008).
An allosteric model of calmodulin explains differential activation of PP2B and CaMKII.
|
| |
Proc Natl Acad Sci U S A,
105,
10768-10773.
|
 |
|
|
|
|
 |
N.V.Valeyev,
D.G.Bates,
P.Heslop-Harrison,
I.Postlethwaite,
and
N.V.Kotov
(2008).
Elucidating the mechanisms of cooperative calcium-calmodulin interactions: a structural systems biology approach.
|
| |
BMC Syst Biol,
2,
48.
|
 |
|
|
|
|
 |
P.Pedarzani,
and
M.Stocker
(2008).
Molecular and cellular basis of small--and intermediate-conductance, calcium-activated potassium channel function in the brain.
|
| |
Cell Mol Life Sci,
65,
3196-3217.
|
 |
|
|
|
|
 |
Q.Guo,
J.E.Jureller,
J.T.Warren,
E.Solomaha,
J.Florián,
and
W.J.Tang
(2008).
Protein-protein docking and analysis reveal that two homologous bacterial adenylyl cyclase toxins interact with calmodulin differently.
|
| |
J Biol Chem,
283,
23836-23845.
|
 |
|
|
|
|
 |
R.A.Newman,
W.S.Van Scyoc,
B.R.Sorensen,
O.R.Jaren,
and
M.A.Shea
(2008).
Interdomain cooperativity of calmodulin bound to melittin preferentially increases calcium affinity of sites I and II.
|
| |
Proteins,
71,
1792-1812.
|
 |
|
|
|
|
 |
R.Dodd,
C.Peracchia,
D.Stolady,
and
K.Török
(2008).
Calmodulin Association with Connexin32-derived Peptides Suggests trans-Domain Interaction in Chemical Gating of Gap Junction Channels.
|
| |
J Biol Chem,
283,
26911-26920.
|
 |
|
|
|
|
 |
R.Wiener,
Y.Haitin,
L.Shamgar,
M.C.Fernández-Alonso,
A.Martos,
O.Chomsky-Hecht,
G.Rivas,
B.Attali,
and
J.A.Hirsch
(2008).
The KCNQ1 (Kv7.1) COOH terminus, a multitiered scaffold for subunit assembly and protein interaction.
|
| |
J Biol Chem,
283,
5815-5830.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Hou,
R.Xu,
S.H.Heinemann,
and
T.Hoshi
(2008).
The RCK1 high-affinity Ca2+ sensor confers carbon monoxide sensitivity to Slo1 BK channels.
|
| |
Proc Natl Acad Sci U S A,
105,
4039-4043.
|
 |
|
|
|
|
 |
Y.Gao,
C.K.Chotoo,
C.M.Balut,
F.Sun,
M.A.Bailey,
and
D.C.Devor
(2008).
Role of S3 and S4 transmembrane domain charged amino acids in channel biogenesis and gating of KCa2.3 and KCa3.1.
|
| |
J Biol Chem,
283,
9049-9059.
|
 |
|
|
|
|
 |
Y.Zhang,
H.Tan,
Z.Jia,
and
G.Chen
(2008).
Ligand-induced dimer formation of calmodulin.
|
| |
J Mol Recognit,
21,
267-274.
|
 |
|
|
|
|
 |
A.Bruening-Wright,
W.S.Lee,
J.P.Adelman,
and
J.Maylie
(2007).
Evidence for a deep pore activation gate in small conductance Ca2+-activated K+ channels.
|
| |
J Gen Physiol,
130,
601-610.
|
 |
|
|
|
|
 |
A.Nolting,
T.Ferraro,
D.D'hoedt,
and
M.Stocker
(2007).
An amino acid outside the pore region influences apamin sensitivity in small conductance Ca2+-activated K+ channels.
|
| |
J Biol Chem,
282,
3478-3486.
|
 |
|
|
|
|
 |
A.P.Yamniuk,
M.Rainaldi,
and
H.J.Vogel
(2007).
Calmodulin has the Potential to Function as a Ca-Dependent Adaptor Protein.
|
| |
Plant Signal Behav,
2,
354-357.
|
 |
|
|
|
|
 |
C.Hougaard,
B.L.Eriksen,
S.Jørgensen,
T.H.Johansen,
T.Dyhring,
L.S.Madsen,
D.Strøbaek,
and
P.Christophersen
(2007).
Selective positive modulation of the SK3 and SK2 subtypes of small conductance Ca2+-activated K+ channels.
|
| |
Br J Pharmacol,
151,
655-665.
|
 |
|
|
|
|
 |
D.L.Minor
(2007).
The neurobiologist's guide to structural biology: a primer on why macromolecular structure matters and how to evaluate structural data.
|
| |
Neuron,
54,
511-533.
|
 |
|
|
|
|
 |
E.S.Faber,
and
P.Sah
(2007).
Functions of SK channels in central neurons.
|
| |
Clin Exp Pharmacol Physiol,
34,
1077-1083.
|
 |
|
|
|
|
 |
K.Chen,
L.A.Kurgan,
and
J.Ruan
(2007).
Prediction of flexible/rigid regions from protein sequences using k-spaced amino acid pairs.
|
| |
BMC Struct Biol,
7,
25.
|
 |
|
|
|
|
 |
M.Sakato,
H.Sakakibara,
and
S.M.King
(2007).
Chlamydomonas outer arm dynein alters conformation in response to Ca2+.
|
| |
Mol Biol Cell,
18,
3620-3634.
|
 |
|
|
|
|
 |
S.Liebau,
B.Vaida,
C.Proepper,
S.Grissmer,
A.Storch,
T.M.Boeckers,
P.Dietl,
and
O.H.Wittekindt
(2007).
Formation of cellular projections in neural progenitor cells depends on SK3 channel activity.
|
| |
J Neurochem,
101,
1338-1350.
|
 |
|
|
|
|
 |
V.Seutin,
and
J.F.Liégeois
(2007).
SK channels are on the move.
|
| |
Br J Pharmacol,
151,
568-570.
|
 |
|
|
|
|
 |
X.Liang,
D.J.Campopiano,
and
P.J.Sadler
(2007).
Metals in membranes.
|
| |
Chem Soc Rev,
36,
968-992.
|
 |
|
|
|
|
 |
A.Houdusse,
J.F.Gaucher,
E.Krementsova,
S.Mui,
K.M.Trybus,
and
C.Cohen
(2006).
Crystal structure of apo-calmodulin bound to the first two IQ motifs of myosin V reveals essential recognition features.
|
| |
Proc Natl Acad Sci U S A,
103,
19326-19331.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.B.Neylon,
C.J.Fowler,
and
J.B.Furness
(2006).
Regulation of the slow afterhyperpolarization in enteric neurons by protein kinase A.
|
| |
Auton Neurosci,
126,
258-263.
|
 |
|
|
|
|
 |
D.E.Spratt,
E.Newman,
J.Mosher,
D.K.Ghosh,
J.C.Salerno,
and
J.G.Guillemette
(2006).
Binding and activation of nitric oxide synthase isozymes by calmodulin EF hand pairs.
|
| |
FEBS J,
273,
1759-1771.
|
 |
|
|
|
|
 |
F.Capozzi,
F.Casadei,
and
C.Luchinat
(2006).
EF-hand protein dynamics and evolution of calcium signal transduction: an NMR view.
|
| |
J Biol Inorg Chem,
11,
949-962.
|
 |
|
|
|
|
 |
G.D.Housley,
W.Marcotti,
D.Navaratnam,
and
E.N.Yamoah
(2006).
Hair cells--beyond the transducer.
|
| |
J Membr Biol,
209,
89.
|
 |
|
|
|
|
 |
I.W.Glaaser,
J.R.Bankston,
H.Liu,
M.Tateyama,
and
R.S.Kass
(2006).
A carboxyl-terminal hydrophobic interface is critical to sodium channel function. Relevance to inherited disorders.
|
| |
J Biol Chem,
281,
24015-24023.
|
 |
|
|
|
|
 |
J.L.Lucas,
D.Wang,
and
W.Sadée
(2006).
Calmodulin binding to peptides derived from the i3 loop of muscarinic receptors.
|
| |
Pharm Res,
23,
647-653.
|
 |
|
|
|
|
 |
J.T.Sack,
and
R.W.Aldrich
(2006).
Binding of a gating modifier toxin induces intersubunit cooperativity early in the Shaker K channel's activation pathway.
|
| |
J Gen Physiol,
128,
119-132.
|
 |
|
|
|
|
 |
K.Chen,
J.Ruan,
and
L.A.Kurgan
(2006).
Prediction of three dimensional structure of calmodulin.
|
| |
Protein J,
25,
57-70.
|
 |
|
|
|
|
 |
M.Ikura,
and
J.B.Ames
(2006).
Genetic polymorphism and protein conformational plasticity in the calmodulin superfamily: two ways to promote multifunctionality.
|
| |
Proc Natl Acad Sci U S A,
103,
1159-1164.
|
 |
|
|
|
|
 |
M.Stapleton,
J.W.Carlson,
and
S.E.Celniker
(2006).
RNA editing in Drosophila melanogaster: New targets and functional consequences.
|
| |
RNA,
12,
1922-1932.
|
 |
|
|
|
|
 |
R.E.Simpson,
A.Ciruela,
and
D.M.Cooper
(2006).
The role of calmodulin recruitment in Ca2+ stimulation of adenylyl cyclase type 8.
|
| |
J Biol Chem,
281,
17379-17389.
|
 |
|
|
|
|
 |
S.Srivastava,
P.Choudhury,
Z.Li,
G.Liu,
V.Nadkarni,
K.Ko,
W.A.Coetzee,
and
E.Y.Skolnik
(2006).
Phosphatidylinositol 3-phosphate indirectly activates KCa3.1 via 14 amino acids in the carboxy terminus of KCa3.1.
|
| |
Mol Biol Cell,
17,
146-154.
|
 |
|
|
|
|
 |
U.Ziechner,
R.Schönherr,
A.K.Born,
O.Gavrilova-Ruch,
R.W.Glaser,
M.Malesevic,
G.Küllertz,
and
S.H.Heinemann
(2006).
Inhibition of human ether à go-go potassium channels by Ca2+/calmodulin binding to the cytosolic N- and C-termini.
|
| |
FEBS J,
273,
1074-1086.
|
 |
|
|
|
|
 |
Y.Chen,
F.H.Yu,
D.J.Surmeier,
T.Scheuer,
and
W.A.Catterall
(2006).
Neuromodulation of Na+ channel slow inactivation via cAMP-dependent protein kinase and protein kinase C.
|
| |
Neuron,
49,
409-420.
|
 |
|
|
|
|
 |
B.Callsen,
D.Isbrandt,
K.Sauter,
L.S.Hartmann,
O.Pongs,
and
R.Bähring
(2005).
Contribution of N- and C-terminal Kv4.2 channel domains to KChIP interaction [corrected]
|
| |
J Physiol,
568,
397-412.
|
 |
|
|
|
|
 |
B.Nilius,
J.Prenen,
J.Tang,
C.Wang,
G.Owsianik,
A.Janssens,
T.Voets,
and
M.X.Zhu
(2005).
Regulation of the Ca2+ sensitivity of the nonselective cation channel TRPM4.
|
| |
J Biol Chem,
280,
6423-6433.
|
 |
|
|
|
|
 |
C.L.Chyan,
P.C.Huang,
T.H.Lin,
J.W.Huang,
S.S.Lin,
H.B.Huang,
and
Y.C.Chen
(2005).
Purification, crystallization and preliminary crystallographic studies of a calmodulin-OLFp hybrid molecule.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
61,
785-787.
|
 |
|
|
|
|
 |
H.M.Jones,
K.L.Hamilton,
and
D.C.Devor
(2005).
Role of an S4-S5 linker lysine in the trafficking of the Ca(2+)-activated K(+) channels IK1 and SK3.
|
| |
J Biol Chem,
280,
37257-37265.
|
 |
|
|
|
|
 |
I.Horváth,
V.Harmat,
A.Perczel,
V.Pálfi,
L.Nyitray,
A.Nagy,
E.Hlavanda,
G.Náray-Szabó,
and
J.Ovádi
(2005).
The structure of the complex of calmodulin with KAR-2: a novel mode of binding explains the unique pharmacology of the drug.
|
| |
J Biol Chem,
280,
8266-8274.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.L.Fallon,
D.B.Halling,
S.L.Hamilton,
and
F.A.Quiocho
(2005).
Structure of calmodulin bound to the hydrophobic IQ domain of the cardiac Ca(v)1.2 calcium channel.
|
| |
Structure,
13,
1881-1886.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.A.Young,
and
J.H.Caldwell
(2005).
Modulation of skeletal and cardiac voltage-gated sodium channels by calmodulin.
|
| |
J Physiol,
565,
349-370.
|
 |
|
|
|
|
 |
M.Shahidullah,
L.C.Santarelli,
H.Wen,
and
I.B.Levitan
(2005).
Expression of a calmodulin-binding KCNQ2 potassium channel fragment modulates neuronal M-current and membrane excitability.
|
| |
Proc Natl Acad Sci U S A,
102,
16454-16459.
|
 |
|
|
|
|
 |
M.X.Zhu
(2005).
Multiple roles of calmodulin and other Ca(2+)-binding proteins in the functional regulation of TRP channels.
|
| |
Pflugers Arch,
451,
105-115.
|
 |
|
|
|
|
 |
N.Shin,
H.Soh,
S.Chang,
D.H.Kim,
and
C.S.Park
(2005).
Sodium permeability of a cloned small-conductance calcium-activated potassium channel.
|
| |
Biophys J,
89,
3111-3119.
|
 |
|
|
|
|
 |
Q.Guo,
Y.Shen,
Y.S.Lee,
C.S.Gibbs,
M.Mrksich,
and
W.J.Tang
(2005).
Structural basis for the interaction of Bordetella pertussis adenylyl cyclase toxin with calmodulin.
|
| |
EMBO J,
24,
3190-3201.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.Nishi,
Y.Okuda,
E.Watanabe,
T.Mori,
S.Iwai,
C.Masutani,
K.Sugasawa,
and
F.Hanaoka
(2005).
Centrin 2 stimulates nucleotide excision repair by interacting with xeroderma pigmentosum group C protein.
|
| |
Mol Cell Biol,
25,
5664-5674.
|
 |
|
|
|
|
 |
S.C.Hebert,
G.Desir,
G.Giebisch,
and
W.Wang
(2005).
Molecular diversity and regulation of renal potassium channels.
|
| |
Physiol Rev,
85,
319-371.
|
 |
|
|
|
|
 |
S.Dilly,
A.Graulich,
A.Farce,
V.Seutin,
J.F.Liegeois,
and
P.Chavatte
(2005).
Identification of a pharmacophore of SKCa channel blockers.
|
| |
J Enzyme Inhib Med Chem,
20,
517-523.
|
 |
|
|
|
|
 |
S.Srivastava,
Z.Li,
L.Lin,
G.Liu,
K.Ko,
W.A.Coetzee,
and
E.Y.Skolnik
(2005).
The phosphatidylinositol 3-phosphate phosphatase myotubularin- related protein 6 (MTMR6) is a negative regulator of the Ca2+-activated K+ channel KCa3.1.
|
| |
Mol Cell Biol,
25,
3630-3638.
|
 |
|
|
|
|
 |
Y.Shen,
N.L.Zhukovskaya,
Q.Guo,
J.Florián,
and
W.J.Tang
(2005).
Calcium-independent calmodulin binding and two-metal-ion catalytic mechanism of anthrax edema factor.
|
| |
EMBO J,
24,
929-941.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Y.Zhang,
and
J.Skolnick
(2005).
TM-align: a protein structure alignment algorithm based on the TM-score.
|
| |
Nucleic Acids Res,
33,
2302-2309.
|
 |
|
|
|
|
 |
A.Kolski-Andreaco,
H.Tomita,
V.G.Shakkottai,
G.A.Gutman,
M.D.Cahalan,
J.J.Gargus,
and
K.G.Chandy
(2004).
SK3-1C, a dominant-negative suppressor of SKCa and IKCa channels.
|
| |
J Biol Chem,
279,
6893-6904.
|
 |
|
|
|
|
 |
C.H.Yun,
J.Bai,
D.Y.Sun,
D.F.Cui,
W.R.Chang,
and
D.C.Liang
(2004).
Structure of potato calmodulin PCM6: the first report of the three-dimensional structure of a plant calmodulin.
|
| |
Acta Crystallogr D Biol Crystallogr,
60,
1214-1219.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.D'hoedt,
K.Hirzel,
P.Pedarzani,
and
M.Stocker
(2004).
Domain analysis of the calcium-activated potassium channel SK1 from rat brain. Functional expression and toxin sensitivity.
|
| |
J Biol Chem,
279,
12088-12092.
|
 |
|
|
|
|
 |
D.M.Papazian
(2004).
BK channels: the spring between sensor and gate.
|
| |
Neuron,
42,
699-701.
|
 |
|
|
|
|
 |
D.Pinto,
G.J.de Haan,
G.A.Janssen,
E.H.Boezeman,
M.G.van Erp,
B.Westland,
J.Witte,
A.Bader,
D.J.Halley,
D.G.Kasteleijn-Nolst Trenité,
D.Lindhout,
and
B.P.Koeleman
(2004).
Evidence for linkage between juvenile myoclonic epilepsy-related idiopathic generalized epilepsy and 6p11-12 in Dutch families.
|
| |
Epilepsia,
45,
211-217.
|
 |
|
|
|
|
 |
E.Newman,
D.E.Spratt,
J.Mosher,
B.Cheyne,
H.J.Montgomery,
D.L.Wilson,
J.B.Weinberg,
S.M.Smith,
J.C.Salerno,
D.K.Ghosh,
and
J.G.Guillemette
(2004).
Differential activation of nitric-oxide synthase isozymes by calmodulin-troponin C chimeras.
|
| |
J Biol Chem,
279,
33547-33557.
|
 |
|
|
|
|
 |
E.Y.Ahn,
S.T.Lim,
W.J.Cook,
and
J.M.McDonald
(2004).
Calmodulin binding to the Fas death domain. Regulation by Fas activation.
|
| |
J Biol Chem,
279,
5661-5666.
|
 |
|
|
|
|
 |
H.Hu,
J.H.Sheehan,
and
W.J.Chazin
(2004).
The mode of action of centrin. Binding of Ca2+ and a peptide fragment of Kar1p to the C-terminal domain.
|
| |
J Biol Chem,
279,
50895-50903.
|
 |
|
|
|
|
 |
I.Bertini,
C.Del Bianco,
I.Gelis,
N.Katsaros,
C.Luchinat,
G.Parigi,
M.Peana,
A.Provenzani,
and
M.A.Zoroddu
(2004).
Experimentally exploring the conformational space sampled by domain reorientation in calmodulin.
|
| |
Proc Natl Acad Sci U S A,
101,
6841-6846.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Kim,
S.Ghosh,
D.A.Nunziato,
and
G.S.Pitt
(2004).
Identification of the components controlling inactivation of voltage-gated Ca2+ channels.
|
| |
Neuron,
41,
745-754.
|
 |
|
|
|
|
 |
J.Kim,
S.Ghosh,
H.Liu,
M.Tateyama,
R.S.Kass,
and
G.S.Pitt
(2004).
Calmodulin mediates Ca2+ sensitivity of sodium channels.
|
| |
J Biol Chem,
279,
45004-45012.
|
 |
|
|
|
|
 |
L.A.Kim,
J.Furst,
D.Gutierrez,
M.H.Butler,
S.Xu,
S.A.Goldstein,
and
N.Grigorieff
(2004).
Three-dimensional structure of I(to); Kv4.2-KChIP2 ion channels by electron microscopy at 21 Angstrom resolution.
|
| |
Neuron,
41,
513-519.
|
 |
|
|
|
|
 |
L.Zhou,
N.B.Olivier,
H.Yao,
E.C.Young,
and
S.A.Siegelbaum
(2004).
A conserved tripeptide in CNG and HCN channels regulates ligand gating by controlling C-terminal oligomerization.
|
| |
Neuron,
44,
823-834.
|
 |
|
|
|
|
 |
M.A.Schumacher,
M.Crum,
and
M.C.Miller
(2004).
Crystal structures of apocalmodulin and an apocalmodulin/SK potassium channel gating domain complex.
|
| |
Structure,
12,
849-860.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Matsubara,
T.Nakatsu,
H.Kato,
and
H.Taniguchi
(2004).
Crystal structure of a myristoylated CAP-23/NAP-22 N-terminal domain complexed with Ca2+/calmodulin.
|
| |
EMBO J,
23,
712-718.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Stocker
(2004).
Ca(2+)-activated K+ channels: molecular determinants and function of the SK family.
|
| |
Nat Rev Neurosci,
5,
758-770.
|
 |
|
|
|
|
 |
M.X.Mori,
M.G.Erickson,
and
D.T.Yue
(2004).
Functional stoichiometry and local enrichment of calmodulin interacting with Ca2+ channels.
|
| |
Science,
304,
432-435.
|
 |
|
|
|
|
 |
T.T.Lambers,
A.F.Weidema,
B.Nilius,
J.G.Hoenderop,
and
R.J.Bindels
(2004).
Regulation of the mouse epithelial Ca2(+) channel TRPV6 by the Ca(2+)-sensor calmodulin.
|
| |
J Biol Chem,
279,
28855-28861.
|
 |
|
|
|
|
 |
T.Yang,
S.Chaudhuri,
L.Yang,
Y.Chen,
B.W.Poovaiah,
and
B.W.Poovaiah
(2004).
Calcium/calmodulin up-regulates a cytoplasmic receptor-like kinase in plants.
|
| |
J Biol Chem,
279,
42552-42559.
|
 |
|
|
|
|
 |
U.Banderali,
H.Klein,
L.Garneau,
M.Simoes,
L.Parent,
and
R.Sauvé
(2004).
New insights on the voltage dependence of the KCa3.1 channel block by internal TBA.
|
| |
J Gen Physiol,
124,
333-348.
|
 |
|
|
|
|
 |
W.Bildl,
T.Strassmaier,
H.Thurm,
J.Andersen,
S.Eble,
D.Oliver,
M.Knipper,
M.Mann,
U.Schulte,
J.P.Adelman,
and
B.Fakler
(2004).
Protein kinase CK2 is coassembled with small conductance Ca(2+)-activated K+ channels and regulates channel gating.
|
| |
Neuron,
43,
847-858.
|
 |
|
|
|
|
 |
W.Zhou,
Y.Qian,
K.Kunjilwar,
P.J.Pfaffinger,
and
S.Choe
(2004).
Structural insights into the functional interaction of KChIP1 with Shal-type K(+) channels.
|
| |
Neuron,
41,
573-586.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
X.Niu,
X.Qian,
and
K.L.Magleby
(2004).
Linker-gating ring complex as passive spring and Ca(2+)-dependent machine for a voltage- and Ca(2+)-activated potassium channel.
|
| |
Neuron,
42,
745-756.
|
 |
|
|
|
|
 |
Z.Akyol,
J.A.Bartos,
M.A.Merrill,
L.A.Faga,
O.R.Jaren,
M.A.Shea,
and
J.W.Hell
(2004).
Apo-calmodulin binds with its C-terminal domain to the N-methyl-D-aspartate receptor NR1 C0 region.
|
| |
J Biol Chem,
279,
2166-2175.
|
 |
|
|
|
|
 |
A.D.Maher,
and
P.W.Kuchel
(2003).
The Gárdos channel: a review of the Ca2+-activated K+ channel in human erythrocytes.
|
| |
Int J Biochem Cell Biol,
35,
1182-1197.
|
 |
|
|
|
|
 |
A.M.Weljie,
A.P.Yamniuk,
H.Yoshino,
Y.Izumi,
and
H.J.Vogel
(2003).
Protein conformational changes studied by diffusion NMR spectroscopy: application to helix-loop-helix calcium binding proteins.
|
| |
Protein Sci,
12,
228-236.
|
 |
|
|
|
|
 |
A.Popescu,
S.Miron,
Y.Blouquit,
P.Duchambon,
P.Christova,
and
C.T.Craescu
(2003).
Xeroderma pigmentosum group C protein possesses a high affinity binding site to human centrin 2 and calmodulin.
|
| |
J Biol Chem,
278,
40252-40261.
|
 |
|
|
|
|
 |
C.A.Syme,
K.L.Hamilton,
H.M.Jones,
A.C.Gerlach,
L.Giltinan,
G.D.Papworth,
S.C.Watkins,
N.A.Bradbury,
and
D.C.Devor
(2003).
Trafficking of the Ca2+-activated K+ channel, hIK1, is dependent upon a C-terminal leucine zipper.
|
| |
J Biol Chem,
278,
8476-8486.
|
 |
|
|
|
|
 |
C.Ulens,
and
S.A.Siegelbaum
(2003).
Regulation of hyperpolarization-activated HCN channels by cAMP through a gating switch in binding domain symmetry.
|
| |
Neuron,
40,
959-970.
|
 |
|
|
|
|
 |
D.C.Lawe,
N.Sitouah,
S.Hayes,
A.Chawla,
J.V.Virbasius,
R.Tuft,
K.Fogarty,
L.Lifshitz,
D.Lambright,
and
S.Corvera
(2003).
Essential role of Ca2+/calmodulin in Early Endosome Antigen-1 localization.
|
| |
Mol Biol Cell,
14,
2935-2945.
|
 |
|
|
|
|
 |
D.S.Libich,
C.M.Hill,
I.R.Bates,
F.R.Hallett,
S.Armstrong,
A.Siemiarczuk,
and
G.Harauz
(2003).
Interaction of the 18.5-kD isoform of myelin basic protein with Ca2+ -calmodulin: effects of deimination assessed by intrinsic Trp fluorescence spectroscopy, dynamic light scattering, and circular dichroism.
|
| |
Protein Sci,
12,
1507-1521.
|
 |
|
|
|
|
 |
E.Yamauchi,
T.Nakatsu,
M.Matsubara,
H.Kato,
and
H.Taniguchi
(2003).
Crystal structure of a MARCKS peptide containing the calmodulin-binding domain in complex with Ca2+-calmodulin.
|
| |
Nat Struct Biol,
10,
226-231.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
I.Berger,
C.Bieniossek,
C.Schaffitzel,
M.Hassler,
E.Santelli,
and
T.J.Richmond
(2003).
Direct interaction of Ca2+/calmodulin inhibits histone deacetylase 5 repressor core binding to myocyte enhancer factor 2.
|
| |
J Biol Chem,
278,
17625-17635.
|
 |
|
|
|
|
 |
I.G.Huttner,
T.Strahl,
M.Osawa,
D.S.King,
J.B.Ames,
and
J.Thorner
(2003).
Molecular interactions of yeast frequenin (Frq1) with the phosphatidylinositol 4-kinase isoform, Pik1.
|
| |
J Biol Chem,
278,
4862-4874.
|
 |
|
|
|
|
 |
J.M.Shifman,
and
S.L.Mayo
(2003).
Exploring the origins of binding specificity through the computational redesign of calmodulin.
|
| |
Proc Natl Acad Sci U S A,
100,
13274-13279.
|
 |
|
|
|
|
 |
J.Martinez,
I.Moeller,
H.Erdjument-Bromage,
P.Tempst,
and
B.Lauring
(2003).
Parkinson's disease-associated alpha-synuclein is a calmodulin substrate.
|
| |
J Biol Chem,
278,
17379-17387.
|
 |
|
|
|
|
 |
J.V.Kilmartin
(2003).
Sfi1p has conserved centrin-binding sites and an essential function in budding yeast spindle pole body duplication.
|
| |
J Cell Biol,
162,
1211-1221.
|
 |
|
|
|
|
 |
L.A.Faga,
B.R.Sorensen,
W.S.VanScyoc,
and
M.A.Shea
(2003).
Basic interdomain boundary residues in calmodulin decrease calcium affinity of sites I and II by stabilizing helix-helix interactions.
|
| |
Proteins,
50,
381-391.
|
 |
|
|
|
|
 |
M.Aoyagi,
A.S.Arvai,
J.A.Tainer,
and
E.D.Getzoff
(2003).
Structural basis for endothelial nitric oxide synthase binding to calmodulin.
|
| |
EMBO J,
22,
766-775.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.C.Trudeau,
and
W.N.Zagotta
(2003).
Calcium/calmodulin modulation of olfactory and rod cyclic nucleotide-gated ion channels.
|
| |
J Biol Chem,
278,
18705-18708.
|
 |
|
|
|
|
 |
M.Numazaki,
T.Tominaga,
K.Takeuchi,
N.Murayama,
H.Toyooka,
and
M.Tominaga
(2003).
Structural determinant of TRPV1 desensitization interacts with calmodulin.
|
| |
Proc Natl Acad Sci U S A,
100,
8002-8006.
|
 |
|
|
|
|
 |
M.Terrak,
G.Wu,
W.F.Stafford,
R.C.Lu,
and
R.Dominguez
(2003).
Two distinct myosin light chain structures are induced by specific variations within the bound IQ motifs-functional implications.
|
| |
EMBO J,
22,
362-371.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.Prijatelj,
J.Sribar,
G.Ivanovski,
I.Krizaj,
F.Gubensek,
and
J.Pungercar
(2003).
Identification of a novel binding site for calmodulin in ammodytoxin A, a neurotoxic group IIA phospholipase A2.
|
| |
Eur J Biochem,
270,
3018-3025.
|
 |
|
|
|
|
 |
S.W.Vetter,
and
E.Leclerc
(2003).
Novel aspects of calmodulin target recognition and activation.
|
| |
Eur J Biochem,
270,
404-414.
|
 |
|
|
|
|
 |
T.I.Rokitskaya,
E.A.Kotova,
and
Y.N.Antonenko
(2003).
Tandem gramicidin channels cross-linked by streptavidin.
|
| |
J Gen Physiol,
121,
463-476.
|
 |
|
|
|
|
 |
T.Yang,
B.W.Poovaiah,
and
B.W.Poovaiah
(2003).
Calcium/calmodulin-mediated signal network in plants.
|
| |
Trends Plant Sci,
8,
505-512.
|
 |
|
|
|
|
 |
W.S.Lee,
T.J.Ngo-Anh,
A.Bruening-Wright,
J.Maylie,
and
J.P.Adelman
(2003).
Small conductance Ca2+-activated K+ channels and calmodulin: cell surface expression and gating.
|
| |
J Biol Chem,
278,
25940-25946.
|
 |
|
|
|
|
 |
Z.Li,
and
D.B.Sacks
(2003).
Elucidation of the interaction of calmodulin with the IQ motifs of IQGAP1.
|
| |
J Biol Chem,
278,
4347-4352.
|
 |
|
|
|
|
 |
A.L.Papish,
L.W.Tari,
and
H.J.Vogel
(2002).
Dynamic light scattering study of calmodulin-target peptide complexes.
|
| |
Biophys J,
83,
1455-1464.
|
 |
|
|
|
|
 |
A.Wickenden
(2002).
K(+) channels as therapeutic drug targets.
|
| |
Pharmacol Ther,
94,
157-182.
|
 |
|
|
|
|
 |
C.B.Klee,
and
A.R.Means
(2002).
Keeping up with calcium: conference on calcium-binding proteins and calcium function in health and disease.
|
| |
EMBO Rep,
3,
823-827.
|
 |
|
|
|
|
 |
D.S.Libich,
and
G.Harauz
(2002).
Interactions of the 18.5-kDa isoform of myelin basic protein with Ca(2+)-calmodulin: in vitro studies using fluorescence microscopy and spectroscopy.
|
| |
Biochem Cell Biol,
80,
395-406.
|
 |
|
|
|
|
 |
E.Yus-Najera,
I.Santana-Castro,
and
A.Villarroel
(2002).
The identification and characterization of a noncontinuous calmodulin-binding site in noninactivating voltage-dependent KCNQ potassium channels.
|
| |
J Biol Chem,
277,
28545-28553.
|
 |
|
|
|
|
 |
G.Yellen
(2002).
The voltage-gated potassium channels and their relatives.
|
| |
Nature,
419,
35-42.
|
 |
|
|
|
|
 |
J.K.Kranz,
E.K.Lee,
A.C.Nairn,
and
A.J.Wand
(2002).
A direct test of the reductionist approach to structural studies of calmodulin activity: relevance of peptide models of target proteins.
|
| |
J Biol Chem,
277,
16351-16354.
|
 |
|
|
|
|
 |
K.P.Hoeflich,
and
M.Ikura
(2002).
Calmodulin in action: diversity in target recognition and activation mechanisms.
|
| |
Cell,
108,
739-742.
|
 |
|
|
|
|
 |
L.Bao,
A.M.Rapin,
E.C.Holmstrand,
and
D.H.Cox
(2002).
Elimination of the BK(Ca) channel's high-affinity Ca(2+) sensitivity.
|
| |
J Gen Physiol,
120,
173-189.
|
 |
|
|
|
|
 |
M.K.Higgins,
D.Weitz,
T.Warne,
G.F.Schertler,
and
U.B.Kaupp
(2002).
Molecular architecture of a retinal cGMP-gated channel: the arrangement of the cytoplasmic domains.
|
| |
EMBO J,
21,
2087-2094.
|
 |
|
|
|
|
 |
M.Schumacher,
and
J.P.Adelman
(2002).
Ion channels: an open and shut case.
|
| |
Nature,
417,
501-502.
|
 |
|
|
|
|
 |
M.Simoes,
L.Garneau,
H.Klein,
U.Banderali,
F.Hobeila,
B.Roux,
L.Parent,
and
R.Sauvé
(2002).
Cysteine mutagenesis and computer modeling of the S6 region of an intermediate conductance IKCa channel.
|
| |
J Gen Physiol,
120,
99.
|
 |
|
|
|
|
 |
P.C.Biggin
(2002).
Glutamate receptors: desensitizing dimers.
|
| |
Curr Biol,
12,
R631-R632.
|
 |
|
|
|
|
 |
P.Sah,
and
E.S.Faber
(2002).
Channels underlying neuronal calcium-activated potassium currents.
|
| |
Prog Neurobiol,
66,
345-353.
|
 |
|
|
|
|
 |
Q.H.Aziz,
C.J.Partridge,
T.S.Munsey,
and
A.Sivaprasadarao
(2002).
Depolarization induces intersubunit cross-linking in a S4 cysteine mutant of the Shaker potassium channel.
|
| |
J Biol Chem,
277,
42719-42725.
|
 |
|
|
|
|
 |
R.Wissmann,
W.Bildl,
H.Neumann,
A.F.Rivard,
N.Klöcker,
D.Weitz,
U.Schulte,
J.P.Adelman,
D.Bentrop,
and
B.Fakler
(2002).
A helical region in the C terminus of small-conductance Ca2+-activated K+ channels controls assembly with apo-calmodulin.
|
| |
J Biol Chem,
277,
4558-4564.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.R.Martin,
and
P.M.Bayley
(2002).
Regulatory implications of a novel mode of interaction of calmodulin with a double IQ-motif target sequence from murine dilute myosin V.
|
| |
Protein Sci,
11,
2909-2923.
|
 |
|
|
|
|
 |
T.P.Roosild,
S.Miller,
I.R.Booth,
and
S.Choe
(2002).
A mechanism of regulating transmembrane potassium flux through a ligand-mediated conformational switch.
|
| |
Cell,
109,
781-791.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
W.E.Meador,
and
F.A.Quiocho
(2002).
Man bites dog.
|
| |
Nat Struct Biol,
9,
156-158.
|
 |
|
|
|
|
 |
W.S.VanScyoc,
B.R.Sorensen,
E.Rusinova,
W.R.Laws,
J.B.Ross,
and
M.A.Shea
(2002).
Calcium binding to calmodulin mutants monitored by domain-specific intrinsic phenylalanine and tyrosine fluorescence.
|
| |
Biophys J,
83,
2767-2780.
|
 |
|
|
|
|
 |
Y.Saimi,
and
C.Kung
(2002).
Calmodulin as an ion channel subunit.
|
| |
Annu Rev Physiol,
64,
289-311.
|
 |
|
|
|
|
 |
Y.Shen,
Y.S.Lee,
S.Soelaiman,
P.Bergson,
D.Lu,
A.Chen,
K.Beckingham,
Z.Grabarek,
M.Mrksich,
and
W.J.Tang
(2002).
Physiological calcium concentrations regulate calmodulin binding and catalysis of adenylyl cyclase exotoxins.
|
| |
EMBO J,
21,
6721-6732.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
G.Yellen
(2001).
Keeping K+ completely comfortable.
|
| |
Nat Struct Biol,
8,
1011-1013.
|
 |
|
|
|
|
 |
G.Yellen
(2001).
Dimers among friends: ion channel regulation by dimerization of tail domains.
|
| |
Trends Pharmacol Sci,
22,
439-441.
|
 |
|
|
|
|
 |
R.A.Atkinson,
C.Joseph,
G.Kelly,
F.W.Muskett,
T.A.Frenkiel,
D.Nietlispach,
and
A.Pastore
(2001).
Ca2+-independent binding of an EF-hand domain to a novel motif in the alpha-actinin-titin complex.
|
| |
Nat Struct Biol,
8,
853-857.
|
 |
|
PDB code:
|
 |
|
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |