|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
180 a.a.
|
 |
|
|
|
|
|
|
|
179 a.a.
|
 |
|
|
|
|
|
|
|
13 a.a.
|
 |
|
|
|
|
|
|
|
198 a.a.
|
 |
|
|
|
|
|
|
|
240 a.a.
|
 |
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Immune system
|
 |
|
Title:
|
 |
Crystal structure of a complex of a human alpha/beta-t cell receptor, influenza ha antigen peptide, and mhc class ii molecule, hla-dr1
|
|
Structure:
|
 |
Hla class ii histocompatibility antigen, dr alpha chain. Chain: a. Fragment: extracellular domain. Synonym: hla-dr1, dra. Engineered: yes. Hla class ii histocompatibility antigen, dr-1 beta chain. Chain: b. Fragment: extracellular domain. Synonym: hla-dr1, drb1 0101.
|
|
Source:
|
 |
Homo sapiens. Human. Organism_taxid: 9606. Expressed in: drosophila melanogaster. Expression_system_taxid: 7227. H3n2 subtype. Organism_taxid: 119210. Expressed in: escherichia coli. Expression_system_taxid: 562.
|
|
Biol. unit:
|
 |
Pentamer (from
)
|
|
Resolution:
|
 |
|
2.60Å
|
R-factor:
|
0.221
|
R-free:
|
0.255
|
|
|
Authors:
|
 |
J.Hennecke,A.Carfi,D.C.Wiley
|
Key ref:
|
 |
J.Hennecke
et al.
(2000).
Structure of a covalently stabilized complex of a human alphabeta T-cell receptor, influenza HA peptide and MHC class II molecule, HLA-DR1.
Embo J,
19,
5611-5624.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
03-Oct-00
|
Release date:
|
08-Nov-00
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
P01903
(DRA_HUMAN) -
HLA class II histocompatibility antigen, DR alpha chain from Homo sapiens
|
|
|
|
Seq: Struc:
|
 |
 |
 |
254 a.a.
180 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P01911
(2B1F_HUMAN) -
HLA class II histocompatibility antigen, DRB1 beta chain from Homo sapiens
|
|
|
|
Seq: Struc:
|
 |
 |
 |
266 a.a.
179 a.a.*
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P03437
(HEMA_I68A0) -
Hemagglutinin from Influenza A virus (strain A/Aichi/2/1968 H3N2)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
566 a.a.
13 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Embo J
19:5611-5624
(2000)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structure of a covalently stabilized complex of a human alphabeta T-cell receptor, influenza HA peptide and MHC class II molecule, HLA-DR1.
|
|
J.Hennecke,
A.Carfi,
D.C.Wiley.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
An alphabeta T-cell receptor (alphabetaTCR)/hemagglutinin (HA) peptide/human
leukocyte antigen (HLA)-DR1 complex was stabilized by flexibly linking the HA
peptide with the human HA1.7 alphabetaTCR, to increase the local concentration
of the interacting proteins once the peptide has been loaded onto the major
histocompatibility complex (MHC) molecule. The structure of the complex,
determined by X-ray crystallography, has a binding mode similar to that of the
human B7 alphabetaTCR on a pMHCI molecule. Twelve of the 15 MHC residues
contacted are at the same positions observed earlier in class I MHC/peptide/TCR
complexes. One contact, to an MHC loop outside the peptide-binding site, is
conserved and specific to pMHCII complexes. TCR gene usage in the response to
HA/HLA-DR appears to conserve charged interactions between three lysines of the
peptide and acidic residues on the TCR.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 3.
Figure 3 Interaction of TCR HA1.7 with HLA-DR1 and HA peptide.
(A) TCR contacts. Contacts of CDR residues (solid red lines)
with HLA-DR1 (solid blue lines) and the HA peptide (solid black
line) are indicated by dashed green and dashed red lines,
respectively. Human MHC class II conserved (filled circles) and
polymorphic residues (open circles) are shown. (B) Contacts
between CDR2 and
the conserved Lys39 of DR1 outside
of the peptide-binding site (van der Waals contacts, dashed
black lines; potential hydrogen bonds, dashed red lines). (C)
MHC–peptide solvent-accessible surface buried by the TCR,
colored by CDR type (see key). The total accessible surfaces
buried on pMHC by the TCR are 1111 Å^2 for HA1.7/DR1/HA,
1041 Å^2 for D10/I-Ak/CA, 1031 Å^2 for A6/A2/TAX,
918 Å^2 for B7/A2/TAX and 1111 Å^2 for
2C/H-2Kb/DEV8. The antigenic peptide is shown by a white line.
Figures were prepared with MOLSCRIPT (Kraulis, 1991), Raster3D
(Merritt and Murphy, 1994) and GRASP (Nicholls et al., 1991).
|
 |
Figure 4.
Figure 4 Recognition of the HA peptide by TCR HA1.7. (A) Binding
of the HA peptide (yellow) to the surface of the TCR HA1.7 (top)
and in the groove of DR1 (bottom). HA1.7 and DR1 were moved
apart and rotated around the long axis of the peptide by
-20° and +20°, respectively, in order to allow a better
view into the peptide-binding sites. Positive and negative
electrostatic surface potentials of HA1.7 and DR1 are indicated
in blue and red, respectively. (B) van der Waals contacts and
potential hydrogen bonds between TCR HA1.7 and HA peptide are
shown by black and red dashed lines, respectively. (C)
Electrostatic interactions between the three lysines (P–1, P3
and P8) of HA with acidic residues of HA1.7 TCR. (D) HA and CA
peptide residues that are contacted by TCR HA1.7 and D10,
respectively, are shown in red. The number of peptide residues
that are contacted by the different TCRs and the range over
which they are distributed are indicated. (A–C) were prepared
with MOLSCRIPT (Kraulis, 1991), Raster3D (Merritt and Murphy,
1994) and GRASP (Nicholls et al., 1991).
|
 |
|
|
|
| |
The above figures are
reprinted
from an Open Access publication published by Macmillan Publishers Ltd:
Embo J
(2000,
19,
5611-5624)
copyright 2000.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
D.K.Sethi,
D.A.Schubert,
A.K.Anders,
A.Heroux,
D.A.Bonsor,
C.P.Thomas,
E.J.Sundberg,
J.Pyrdol,
and
K.W.Wucherpfennig
(2011).
A highly tilted binding mode by a self-reactive T cell receptor results in altered engagement of peptide and MHC.
|
| |
J Exp Med,
208,
91.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.M.Khan,
and
S.Ranganathan
(2011).
Understanding TR Binding to pMHC Complexes: How Does a TR Scan Many pMHC Complexes yet Preferentially Bind to One.
|
| |
PLoS One,
6,
e17194.
|
 |
|
|
|
|
 |
D.R.Karp,
N.Marthandan,
S.G.Marsh,
C.Ahn,
F.C.Arnett,
D.S.Deluca,
A.D.Diehl,
R.Dunivin,
K.Eilbeck,
M.Feolo,
P.A.Guidry,
W.Helmberg,
S.Lewis,
M.D.Mayes,
C.Mungall,
D.A.Natale,
B.Peters,
E.Petersdorf,
J.D.Reveille,
B.Smith,
G.Thomson,
M.J.Waller,
and
R.H.Scheuermann
(2010).
Novel sequence feature variant type analysis of the HLA genetic association in systemic sclerosis.
|
| |
Hum Mol Genet,
19,
707-719.
|
 |
|
|
|
|
 |
K.Yoshida,
A.L.Corper,
R.Herro,
B.Jabri,
I.A.Wilson,
and
L.Teyton
(2010).
The diabetogenic mouse MHC class II molecule I-Ag7 is endowed with a switch that modulates TCR affinity.
|
| |
J Clin Invest,
120,
1578-1590.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.A.Patarroyo,
A.Bermúdez,
C.López,
G.Yepes,
and
M.E.Patarroyo
(2010).
3D analysis of the TCR/pMHCII complex formation in monkeys vaccinated with the first peptide inducing sterilizing immunity against human malaria.
|
| |
PLoS One,
5,
e9771.
|
 |
|
|
|
|
 |
S.A.Leddon,
and
A.J.Sant
(2010).
Generation of MHC class II-peptide ligands for CD4 T-cell allorecognition of MHC class II molecules.
|
| |
Curr Opin Organ Transplant,
15,
505-511.
|
 |
|
|
|
|
 |
Y.Fujii,
T.Matsutani,
K.Kitaura,
S.Suzuki,
T.Itoh,
T.Takasaki,
R.Suzuki,
and
I.Kurane
(2010).
Comprehensive analysis and characterization of the TCR alpha chain sequences in the common marmoset.
|
| |
Immunogenetics,
62,
383-395.
|
 |
|
|
|
|
 |
J.B.Imboden
(2009).
The immunopathogenesis of rheumatoid arthritis.
|
| |
Annu Rev Pathol,
4,
417-434.
|
 |
|
|
|
|
 |
K.D.Jensen,
E.E.Sercarz,
and
C.R.Gabaglia
(2009).
Altered peptide ligands can modify the Th2 T cell response to the immunodominant 161-175 peptide of LACK (Leishmania homolog for the receptor of activated C kinase).
|
| |
Mol Immunol,
46,
366-374.
|
 |
|
|
|
|
 |
K.W.Wucherpfennig,
M.J.Call,
L.Deng,
and
R.Mariuzza
(2009).
Structural alterations in peptide-MHC recognition by self-reactive T cell receptors.
|
| |
Curr Opin Immunol,
21,
590-595.
|
 |
|
|
|
|
 |
T.Sone,
K.Dairiki,
K.Morikubo,
K.Shimizu,
H.Tsunoo,
T.Mori,
and
K.Kino
(2009).
Recognition of T Cell Epitopes Unique to Cha o 2, the Major Allergen in Japanese Cypress Pollen, in Allergic Patients Cross-Reactive to Japanese Cedar and Japanese Cypress Pollen.
|
| |
Allergol Int,
58,
237-245.
|
 |
|
|
|
|
 |
C.McBeth,
A.Seamons,
J.C.Pizarro,
S.J.Fleishman,
D.Baker,
T.Kortemme,
J.M.Goverman,
and
R.K.Strong
(2008).
A new twist in TCR diversity revealed by a forbidden alphabeta TCR.
|
| |
J Mol Biol,
375,
1306-1319.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.O'Brien,
D.R.Flower,
and
C.Feighery
(2008).
Peptide length significantly influences in vitro affinity for MHC class II molecules.
|
| |
Immunome Res,
4,
6.
|
 |
|
|
|
|
 |
D.I.Godfrey,
J.Rossjohn,
and
J.McCluskey
(2008).
The fidelity, occasional promiscuity, and versatility of T cell receptor recognition.
|
| |
Immunity,
28,
304-314.
|
 |
|
|
|
|
 |
E.D.Mantzourani,
K.Blokar,
T.V.Tselios,
J.M.Matsoukas,
J.A.Platts,
T.M.Mavromoustakos,
and
S.G.Grdadolnik
(2008).
A combined NMR and molecular dynamics simulation study to determine the conformational properties of agonists and antagonists against experimental autoimmune encephalomyelitis.
|
| |
Bioorg Med Chem,
16,
2171-2182.
|
 |
|
|
|
|
 |
E.J.Collins,
and
D.S.Riddle
(2008).
TCR-MHC docking orientation: natural selection, or thymic selection?
|
| |
Immunol Res,
41,
267-294.
|
 |
|
|
|
|
 |
J.K.Archbold,
W.A.Macdonald,
S.R.Burrows,
J.Rossjohn,
and
J.McCluskey
(2008).
T-cell allorecognition: a case of mistaken identity or déjà vu?
|
| |
Trends Immunol,
29,
220-226.
|
 |
|
|
|
|
 |
M.Cadogan,
B.Austen,
J.L.Heeney,
and
A.G.Dalgleish
(2008).
HLA homology within the C5 domain promotes peptide binding by HIV type 1 gp120.
|
| |
AIDS Res Hum Retroviruses,
24,
845-855.
|
 |
|
|
|
|
 |
P.Marrack,
J.P.Scott-Browne,
S.Dai,
L.Gapin,
and
J.W.Kappler
(2008).
Evolutionarily conserved amino acids that control TCR-MHC interaction.
|
| |
Annu Rev Immunol,
26,
171-203.
|
 |
|
|
|
|
 |
P.Marrack,
K.Rubtsova,
J.Scott-Browne,
and
J.W.Kappler
(2008).
T cell receptor specificity for major histocompatibility complex proteins.
|
| |
Curr Opin Immunol,
20,
203-207.
|
 |
|
|
|
|
 |
R.Etzensperger,
R.M.McMahon,
E.Y.Jones,
and
L.Fugger
(2008).
Dissection of the multiple sclerosis associated DR2 haplotype.
|
| |
J Autoimmun,
31,
201-207.
|
 |
|
|
|
|
 |
S.Dai,
E.S.Huseby,
K.Rubtsova,
J.Scott-Browne,
F.Crawford,
W.A.Macdonald,
P.Marrack,
and
J.W.Kappler
(2008).
Crossreactive T Cells spotlight the germline rules for alphabeta T cell-receptor interactions with MHC molecules.
|
| |
Immunity,
28,
324-334.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Z.Kato,
J.N.Stern,
H.K.Nakamura,
K.Kuwata,
N.Kondo,
and
J.L.Strominger
(2008).
Positioning of autoimmune TCR-Ob.2F3 and TCR-Ob.3D1 on the MBP85-99/HLA-DR2 complex.
|
| |
Proc Natl Acad Sci U S A,
105,
15523-15528.
|
 |
|
|
|
|
 |
Z.Ma,
K.A.Sharp,
P.A.Janmey,
and
T.H.Finkel
(2008).
Surface-anchored monomeric agonist pMHCs alone trigger TCR with high sensitivity.
|
| |
PLoS Biol,
6,
e43.
|
 |
|
|
|
|
 |
A.M.Boots,
H.Hubers,
M.Kouwijzer,
L.den Hoed-van Zandbrink,
B.M.Westrek-Esselink,
C.van Doorn,
R.Stenger,
E.S.Bos,
M.J.van Lierop,
G.F.Verheijden,
C.M.Timmers,
and
C.J.van Staveren
(2007).
Identification of an altered peptide ligand based on the endogenously presented, rheumatoid arthritis-associated, human cartilage glycoprotein-39(263-275) epitope: an MHC anchor variant peptide for immune modulation.
|
| |
Arthritis Res Ther,
9,
R71.
|
 |
|
|
|
|
 |
D.Feng,
C.J.Bond,
L.K.Ely,
J.Maynard,
and
K.C.Garcia
(2007).
Structural evidence for a germline-encoded T cell receptor-major histocompatibility complex interaction 'codon'.
|
| |
Nat Immunol,
8,
975-983.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
E.J.Sundberg,
L.Deng,
and
R.A.Mariuzza
(2007).
TCR recognition of peptide/MHC class II complexes and superantigens.
|
| |
Semin Immunol,
19,
262-271.
|
 |
|
|
|
|
 |
G.P.Bondinas,
A.K.Moustakas,
and
G.K.Papadopoulos
(2007).
The spectrum of HLA-DQ and HLA-DR alleles, 2006: a listing correlating sequence and structure with function.
|
| |
Immunogenetics,
59,
539-553.
|
 |
|
|
|
|
 |
H.Tsurui,
and
T.Takahashi
(2007).
Prediction of T-cell epitope.
|
| |
J Pharmacol Sci,
105,
299-316.
|
 |
|
|
|
|
 |
L.Deng,
and
R.A.Mariuzza
(2007).
Recognition of self-peptide-MHC complexes by autoimmune T-cell receptors.
|
| |
Trends Biochem Sci,
32,
500-508.
|
 |
|
|
|
|
 |
L.Deng,
R.J.Langley,
P.H.Brown,
G.Xu,
L.Teng,
Q.Wang,
M.I.Gonzales,
G.G.Callender,
M.I.Nishimura,
S.L.Topalian,
and
R.A.Mariuzza
(2007).
Structural basis for the recognition of mutant self by a tumor-specific, MHC class II-restricted T cell receptor.
|
| |
Nat Immunol,
8,
398-408.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.Saitoh,
M.Igura,
T.Obita,
T.Ose,
R.Kojima,
K.Maenaka,
T.Endo,
and
D.Kohda
(2007).
Tom20 recognizes mitochondrial presequences through dynamic equilibrium among multiple bound states.
|
| |
EMBO J,
26,
4777-4787.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.E.Patarroyo,
G.Cifuentes,
and
J.Baquero
(2006).
Comparative molecular and three-dimensional analysis of the peptide-MHC II binding region in both human and Aotus MHC-DRB molecules confirms their usefulness in antimalarial vaccine development.
|
| |
Immunogenetics,
58,
598-606.
|
 |
|
|
|
|
 |
M.G.Rudolph,
R.L.Stanfield,
and
I.A.Wilson
(2006).
How TCRs bind MHCs, peptides, and coreceptors.
|
| |
Annu Rev Immunol,
24,
419-466.
|
 |
|
|
|
|
 |
B.Peters,
J.Sidney,
P.Bourne,
H.H.Bui,
S.Buus,
G.Doh,
W.Fleri,
M.Kronenberg,
R.Kubo,
O.Lund,
D.Nemazee,
J.V.Ponomarenko,
M.Sathiamurthy,
S.P.Schoenberger,
S.Stewart,
P.Surko,
S.Way,
S.Wilson,
and
A.Sette
(2005).
The design and implementation of the immune epitope database and analysis resource.
|
| |
Immunogenetics,
57,
326-336.
|
 |
|
|
|
|
 |
D.Stepniak,
L.W.Vader,
Y.Kooy,
P.A.van Veelen,
A.Moustakas,
N.A.Papandreou,
E.Eliopoulos,
J.W.Drijfhout,
G.K.Papadopoulos,
and
F.Koning
(2005).
T-cell recognition of HLA-DQ2-bound gluten peptides can be influenced by an N-terminal proline at p-1.
|
| |
Immunogenetics,
57,
8.
|
 |
|
|
|
|
 |
H.Li,
S.Van Vranken,
Y.Zhao,
Z.Li,
Y.Guo,
L.Eisele,
and
Y.Li
(2005).
Crystal structures of T cell receptor (beta) chains related to rheumatoid arthritis.
|
| |
Protein Sci,
14,
3025-3038.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
I.A.Wilson,
and
R.L.Stanfield
(2005).
MHC restriction: slip-sliding away.
|
| |
Nat Immunol,
6,
434-435.
|
 |
|
|
|
|
 |
J.Maynard,
K.Petersson,
D.H.Wilson,
E.J.Adams,
S.E.Blondelle,
M.J.Boulanger,
D.B.Wilson,
and
K.C.Garcia
(2005).
Structure of an autoimmune T cell receptor complexed with class II peptide-MHC: insights into MHC bias and antigen specificity.
|
| |
Immunity,
22,
81-92.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Hahn,
M.J.Nicholson,
J.Pyrdol,
and
K.W.Wucherpfennig
(2005).
Unconventional topology of self peptide-major histocompatibility complex binding by a human autoimmune T cell receptor.
|
| |
Nat Immunol,
6,
490-496.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Möllhoff,
H.B.Zanden,
P.R.Shiflett,
and
G.Gupta
(2005).
Modeling of receptor mimics that inhibit superantigen pathogenesis.
|
| |
J Mol Recognit,
18,
73-83.
|
 |
|
|
|
|
 |
N.A.Borg,
L.K.Ely,
T.Beddoe,
W.A.Macdonald,
H.H.Reid,
C.S.Clements,
A.W.Purcell,
L.Kjer-Nielsen,
J.J.Miles,
S.R.Burrows,
J.McCluskey,
and
J.Rossjohn
(2005).
The CDR3 regions of an immunodominant T cell receptor dictate the 'energetic landscape' of peptide-MHC recognition.
|
| |
Nat Immunol,
6,
171-180.
|
 |
|
|
|
|
 |
T.Sandalova,
J.Michaëlsson,
R.A.Harris,
J.Odeberg,
G.Schneider,
K.Kärre,
and
A.Achour
(2005).
A structural basis for CD8+ T cell-dependent recognition of non-homologous peptide ligands: implications for molecular mimicry in autoreactivity.
|
| |
J Biol Chem,
280,
27069-27075.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.Sone,
K.Dairiki,
K.Morikubo,
K.Shimizu,
H.Tsunoo,
T.Mori,
and
K.Kino
(2005).
Identification of human T cell epitopes in Japanese cypress pollen allergen, Cha o 1, elucidates the intrinsic mechanism of cross-allergenicity between Cha o 1 and Cry j 1, the major allergen of Japanese cedar pollen, at the T cell level.
|
| |
Clin Exp Allergy,
35,
664-671.
|
 |
|
|
|
|
 |
Y.Li,
Y.Huang,
J.Lue,
J.A.Quandt,
R.Martin,
and
R.A.Mariuzza
(2005).
Structure of a human autoimmune TCR bound to a myelin basic protein self-peptide and a multiple sclerosis-associated MHC class II molecule.
|
| |
EMBO J,
24,
2968-2979.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.G.Tzakos,
P.Fuchs,
N.A.van Nuland,
A.Troganis,
T.Tselios,
S.Deraos,
J.Matsoukas,
I.P.Gerothanassis,
and
A.M.Bonvin
(2004).
NMR and molecular dynamics studies of an autoimmune myelin basic protein peptide and its antagonist: structural implications for the MHC II (I-Au)-peptide complex from docking calculations.
|
| |
Eur J Biochem,
271,
3399-3413.
|
 |
|
|
|
|
 |
K.Petersson,
G.Forsberg,
and
B.Walse
(2004).
Interplay between superantigens and immunoreceptors.
|
| |
Scand J Immunol,
59,
345-355.
|
 |
|
|
|
|
 |
M.E.Call,
J.Pyrdol,
and
K.W.Wucherpfennig
(2004).
Stoichiometry of the T-cell receptor-CD3 complex and key intermediates assembled in the endoplasmic reticulum.
|
| |
EMBO J,
23,
2348-2357.
|
 |
|
|
|
|
 |
R.C.Hillig,
M.Hülsmeyer,
W.Saenger,
K.Welfle,
R.Misselwitz,
H.Welfle,
C.Kozerski,
A.Volz,
B.Uchanska-Ziegler,
and
A.Ziegler
(2004).
Thermodynamic and structural analysis of peptide- and allele-dependent properties of two HLA-B27 subtypes exhibiting differential disease association.
|
| |
J Biol Chem,
279,
652-663.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Y.Zhao,
Z.Li,
S.J.Drozd,
Y.Guo,
W.Mourad,
and
H.Li
(2004).
Crystal structure of Mycoplasma arthritidis mitogen complexed with HLA-DR1 reveals a novel superantigen fold and a dimerized superantigen-MHC complex.
|
| |
Structure,
12,
277-288.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Z.Pu,
S.B.Lovitch,
E.K.Bikoff,
and
E.R.Unanue
(2004).
T cells distinguish MHC-peptide complexes formed in separate vesicles and edited by H2-DM.
|
| |
Immunity,
20,
467-476.
|
 |
|
|
|
|
 |
Z.Zavala-Ruiz,
I.Strug,
B.D.Walker,
P.J.Norris,
and
L.J.Stern
(2004).
A hairpin turn in a class II MHC-bound peptide orients residues outside the binding groove for T cell recognition.
|
| |
Proc Natl Acad Sci U S A,
101,
13279-13284.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.Housset,
and
B.Malissen
(2003).
What do TCR-pMHC crystal structures teach us about MHC restriction and alloreactivity?
|
| |
Trends Immunol,
24,
429-437.
|
 |
|
|
|
|
 |
E.Ben-Zeev,
A.Berchanski,
A.Heifetz,
B.Shapira,
and
M.Eisenstein
(2003).
Prediction of the unknown: inspiring experience with the CAPRI experiment.
|
| |
Proteins,
52,
41-46.
|
 |
|
|
|
|
 |
J.Buslepp,
H.Wang,
W.E.Biddison,
E.Appella,
and
E.J.Collins
(2003).
A correlation between TCR Valpha docking on MHC and CD8 dependence: implications for T cell selection.
|
| |
Immunity,
19,
595-606.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.H.Wang,
and
M.J.Eck
(2003).
Assembling atomic resolution views of the immunological synapse.
|
| |
Curr Opin Immunol,
15,
286-293.
|
 |
|
|
|
|
 |
K.Gamerdinger,
C.Moulon,
D.R.Karp,
J.Van Bergen,
F.Koning,
D.Wild,
U.Pflugfelder,
and
H.U.Weltzien
(2003).
A new type of metal recognition by human T cells: contact residues for peptide-independent bridging of T cell receptor and major histocompatibility complex by nickel.
|
| |
J Exp Med,
197,
1345-1353.
|
 |
|
|
|
|
 |
L.Lu,
J.Vollmer,
C.Moulon,
H.U.Weltzien,
P.Marrack,
and
J.Kappler
(2003).
Components of the ligand for a Ni++ reactive human T cell clone.
|
| |
J Exp Med,
197,
567-574.
|
 |
|
|
|
|
 |
M.A.Kelly,
M.L.Rayner,
C.H.Mijovic,
and
A.H.Barnett
(2003).
Molecular aspects of type 1 diabetes.
|
| |
Mol Pathol,
56,
1.
|
 |
|
|
|
|
 |
M.E.Ressing,
D.van Leeuwen,
F.A.Verreck,
R.Gomez,
B.Heemskerk,
M.Toebes,
M.M.Mullen,
T.S.Jardetzky,
R.Longnecker,
M.W.Schilham,
T.H.Ottenhoff,
J.Neefjes,
T.N.Schumacher,
L.M.Hutt-Fletcher,
and
E.J.Wiertz
(2003).
Interference with T cell receptor-HLA-DR interactions by Epstein-Barr virus gp42 results in reduced T helper cell recognition.
|
| |
Proc Natl Acad Sci U S A,
100,
11583-11588.
|
 |
|
|
|
|
 |
P.A.van der Merwe,
and
S.J.Davis
(2003).
Molecular interactions mediating T cell antigen recognition.
|
| |
Annu Rev Immunol,
21,
659-684.
|
 |
|
|
|
|
 |
B.Holm,
J.Bäcklund,
M.A.Recio,
R.Holmdahl,
and
J.Kihlberg
(2002).
Glycopeptide specificity of helper T cells obtained in mouse models for rheumatoid arthritis.
|
| |
Chembiochem,
3,
1209-1222.
|
 |
|
|
|
|
 |
C.S.Clements,
L.Kjer-Nielsen,
W.A.MacDonald,
A.G.Brooks,
A.W.Purcell,
J.McCluskey,
and
J.Rossjohn
(2002).
The production, purification and crystallization of a soluble heterodimeric form of a highly selected T-cell receptor in its unliganded and liganded state.
|
| |
Acta Crystallogr D Biol Crystallogr,
58,
2131-2134.
|
 |
|
|
|
|
 |
D.H.Fremont,
S.Dai,
H.Chiang,
F.Crawford,
P.Marrack,
and
J.Kappler
(2002).
Structural basis of cytochrome c presentation by IE(k).
|
| |
J Exp Med,
195,
1043-1052.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
E.J.Sundberg,
Y.Li,
and
R.A.Mariuzza
(2002).
So many ways of getting in the way: diversity in the molecular architecture of superantigen-dependent T-cell signaling complexes.
|
| |
Curr Opin Immunol,
14,
36-44.
|
 |
|
|
|
|
 |
G.T.Nepom,
J.H.Buckner,
E.J.Novak,
S.Reichstetter,
H.Reijonen,
J.Gebe,
R.Wang,
E.Swanson,
and
W.W.Kwok
(2002).
HLA class II tetramers: tools for direct analysis of antigen-specific CD4+ T cells.
|
| |
Arthritis Rheum,
46,
5.
|
 |
|
|
|
|
 |
J.G.Luz,
M.Huang,
K.C.Garcia,
M.G.Rudolph,
V.Apostolopoulos,
L.Teyton,
and
I.A.Wilson
(2002).
Structural comparison of allogeneic and syngeneic T cell receptor-peptide-major histocompatibility complex complexes: a buried alloreactive mutation subtly alters peptide presentation substantially increasing V(beta) Interactions.
|
| |
J Exp Med,
195,
1175-1186.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Hennecke,
and
D.C.Wiley
(2002).
Structure of a complex of the human alpha/beta T cell receptor (TCR) HA1.7, influenza hemagglutinin peptide, and major histocompatibility complex class II molecule, HLA-DR4 (DRA*0101 and DRB1*0401): insight into TCR cross-restriction and alloreactivity.
|
| |
J Exp Med,
195,
571-581.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.Natarajan,
N.Dimasi,
J.Wang,
R.A.Mariuzza,
and
D.H.Margulies
(2002).
Structure and function of natural killer cell receptors: multiple molecular solutions to self, nonself discrimination.
|
| |
Annu Rev Immunol,
20,
853-885.
|
 |
|
|
|
|
 |
L.Kjer-Nielsen,
C.S.Clements,
A.G.Brooks,
A.W.Purcell,
J.McCluskey,
and
J.Rossjohn
(2002).
The 1.5 A crystal structure of a highly selected antiviral T cell receptor provides evidence for a structural basis of immunodominance.
|
| |
Structure,
10,
1521-1532.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.G.Rudolph,
and
I.A.Wilson
(2002).
The specificity of TCR/pMHC interaction.
|
| |
Curr Opin Immunol,
14,
52-65.
|
 |
|
|
|
|
 |
M.G.Rudolph,
J.G.Luz,
and
I.A.Wilson
(2002).
Structural and thermodynamic correlates of T cell signaling.
|
| |
Annu Rev Biophys Biomol Struct,
31,
121-149.
|
 |
|
|
|
|
 |
M.M.Mullen,
K.M.Haan,
R.Longnecker,
and
T.S.Jardetzky
(2002).
Structure of the Epstein-Barr virus gp42 protein bound to the MHC class II receptor HLA-DR1.
|
| |
Mol Cell,
9,
375-385.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
P.E.Adrian,
G.Rajaseger,
V.S.Mathura,
M.K.Sakharkar,
and
P.Kangueane
(2002).
Types of inter-atomic interactions at the MHC-peptide interface: identifying commonality from accumulated data.
|
| |
BMC Struct Biol,
2,
2.
|
 |
|
|
|
|
 |
P.Etongué-Mayer,
M.A.Langlois,
M.Ouellette,
H.Li,
S.Younes,
R.Al-Daccak,
and
W.Mourad
(2002).
Involvement of zinc in the binding of Mycoplasma arthritidis-derived mitogen to the proximity of the HLA-DR binding groove regardless of histidine 81 of the beta chain.
|
| |
Eur J Immunol,
32,
50-58.
|
 |
|
|
|
|
 |
T.Sasada,
M.Touma,
H.C.Chang,
L.K.Clayton,
J.H.Wang,
and
E.L.Reinherz
(2002).
Involvement of the TCR Cbeta FG loop in thymic selection and T cell function.
|
| |
J Exp Med,
195,
1419-1431.
|
 |
|
|
|
|
 |
T.Yokosuka,
K.Takase,
M.Suzuki,
Y.Nakagawa,
S.Taki,
H.Takahashi,
T.Fujisawa,
H.Arase,
and
T.Saito
(2002).
Predominant role of T cell receptor (TCR)-alpha chain in forming preimmune TCR repertoire revealed by clonal TCR reconstitution system.
|
| |
J Exp Med,
195,
991.
|
 |
|
|
|
|
 |
X.Liu,
S.Dai,
F.Crawford,
R.Fruge,
P.Marrack,
and
J.Kappler
(2002).
Alternate interactions define the binding of peptides to the MHC molecule IA(b).
|
| |
Proc Natl Acad Sci U S A,
99,
8820-8825.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Z.Pu,
J.A.Carrero,
and
E.R.Unanue
(2002).
Distinct recognition by two subsets of T cells of an MHC class II-peptide complex.
|
| |
Proc Natl Acad Sci U S A,
99,
8844-8849.
|
 |
|
|
|
|
 |
A.Qadri,
and
E.S.Ward
(2001).
Activation of a T cell hybridoma by an alloligand results in differential effects on IL-2 secretion and activation-induced cell death.
|
| |
Eur J Immunol,
31,
3825-3832.
|
 |
|
|
|
|
 |
J.Buslepp,
R.Zhao,
D.Donnini,
D.Loftus,
M.Saad,
E.Appella,
and
E.J.Collins
(2001).
T cell activity correlates with oligomeric peptide-major histocompatibility complex binding on T cell surface.
|
| |
J Biol Chem,
276,
47320-47328.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.H.Wang,
R.Meijers,
Y.Xiong,
J.H.Liu,
T.Sakihama,
R.Zhang,
A.Joachimiak,
and
E.L.Reinherz
(2001).
Crystal structure of the human CD4 N-terminal two-domain fragment complexed to a class II MHC molecule.
|
| |
Proc Natl Acad Sci U S A,
98,
10799-10804.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Hennecke,
and
D.C.Wiley
(2001).
T cell receptor-MHC interactions up close.
|
| |
Cell,
104,
1-4.
|
 |
|
|
|
|
 |
K.Petersson,
M.Håkansson,
H.Nilsson,
G.Forsberg,
L.A.Svensson,
A.Liljas,
and
B.Walse
(2001).
Crystal structure of a superantigen bound to MHC class II displays zinc and peptide dependence.
|
| |
EMBO J,
20,
3306-3312.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.W.Wucherpfennig
(2001).
Structural basis of molecular mimicry.
|
| |
J Autoimmun,
16,
293-302.
|
 |
|
|
|
|
 |
Z.J.Sun,
K.S.Kim,
G.Wagner,
and
E.L.Reinherz
(2001).
Mechanisms contributing to T cell receptor signaling and assembly revealed by the solution structure of an ectodomain fragment of the CD3 epsilon gamma heterodimer.
|
| |
Cell,
105,
913-923.
|
 |
|
PDB code:
|
 |
|
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
| |