 |
PDBsum entry 1fto
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Membrane protein
|
PDB id
|
|
|
|
1fto
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Neuron
28:165-181
(2000)
|
|
PubMed id:
|
|
|
|
|
| |
|
Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: crystal structures of the GluR2 ligand binding core.
|
|
N.Armstrong,
E.Gouaux.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Crystal structures of the GluR2 ligand binding core (S1S2) have been determined
in the apo state and in the presence of the antagonist DNQX, the partial agonist
kainate, and the full agonists AMPA and glutamate. The domains of the S1S2
ligand binding core are expanded in the apo state and contract upon ligand
binding with the extent of domain separation decreasing in the order of apo >
DNQX > kainate > glutamate approximately equal to AMPA. These results suggest
that agonist-induced domain closure gates the transmembrane channel and the
extent of receptor activation depends upon the degree of domain closure. AMPA
and glutamate also promote a 180 degrees flip of a trans peptide bond in the
ligand binding site. The crystal packing of the ligand binding cores suggests
modes for subunit-subunit contact in the intact receptor and mechanisms by which
allosteric effectors modulate receptor activity.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 1.
Figure 1. Ligand Binding Constants for S1S2J(A) Domain
structure of iGluRs showing the S1 and S2 segments in turquoise
and pink, respectively. “Cut” and “link” denote the
edges of the S1S2 construct.(B) K[D] for ^3H-AMPA binding was
24.8 ± 1.8 nM.(C) IC[50] for displacement of ^3H-AMPA by
glutamate, kainate, and DNQX were 821 nM, 14.5 μM, and 998 nM,
respectively.
|
 |
Figure 2.
Figure 2. Superposition of the Expanded Cleft Structures and
Stereo View of the DNQX Binding Site(A) The two apo molecules
(ApoA and ApoB) and two DNQX molecules (DNQXA and DNQXB) in each
asymmetric unit were superimposed using only Cα atoms from
domain 1. Apo protomers are shaded red and pink while DNQX
protomers are colored light green and dark green. DNQX is
depicted in black, and selected side chains from DNQXB are shown
in dark green. The conformational change undergone by Glu-705 is
illustrated by comparing its orientation in ApoB and DNQXB. In
the apo state, Glu-705 accepts hydrogen bonds from the side
chains of Lys-730 and Thr-655.(B) The chemical structure of DNQX
and F[o]-F[c] omit electron density for DNQX and sulfate
contoured at 2.5 σ.(C) Stereo image of the interactions between
DNQX, sulfate, and S1S2J. DNQXB side chains are colored gray.
Water molecules are shown as green balls. DNQX is colored black.
Hydrogen bonds between DNQX, sulfate, and S1S2J are indicated by
black dashed lines.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Cell Press:
Neuron
(2000,
28,
165-181)
copyright 2000.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
A.Y.Lau,
and
B.Roux
(2011).
The hidden energetics of ligand binding and activation in a glutamate receptor.
|
| |
Nat Struct Mol Biol,
18,
283-287.
|
 |
|
|
|
|
 |
C.F.Landes,
A.Rambhadran,
J.N.Taylor,
F.Salatan,
and
V.Jayaraman
(2011).
Structural landscape of isolated agonist-binding domains from single AMPA receptors.
|
| |
Nat Chem Biol,
7,
168-173.
|
 |
|
|
|
|
 |
D.Stroebel,
S.Carvalho,
and
P.Paoletti
(2011).
Functional evidence for a twisted conformation of the NMDA receptor GluN2A subunit N-terminal domain.
|
| |
Neuropharmacology,
60,
151-158.
|
 |
|
|
|
|
 |
G.M.Alushin,
D.Jane,
and
M.L.Mayer
(2011).
Binding site and ligand flexibility revealed by high resolution crystal structures of GluK1 competitive antagonists.
|
| |
Neuropharmacology,
60,
126-134.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.L.Rasmussen,
M.Storgaard,
D.S.Pickering,
and
L.Bunch
(2011).
Rational Design, Synthesis and Pharmacological Evaluation of the (2R)- and (2S)-Stereoisomers of 3-(2-Carboxypyrrolidinyl)-2-methyl Acetic Acid as Ligands for the Ionotropic Glutamate Receptors.
|
| |
ChemMedChem,
6,
498-504.
|
 |
|
|
|
|
 |
J.Pøhlsgaard,
K.Frydenvang,
U.Madsen,
and
J.S.Kastrup
(2011).
Lessons from more than 80 structures of the GluA2 ligand-binding domain in complex with agonists, antagonists and allosteric modulators.
|
| |
Neuropharmacology,
60,
135-150.
|
 |
|
|
|
|
 |
K.M.Vance,
N.Simorowski,
S.F.Traynelis,
and
H.Furukawa
(2011).
Ligand-specific deactivation time course of GluN1/GluN2D NMDA receptors.
|
| |
Nat Commun,
2,
294.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
L.Abuin,
B.Bargeton,
M.H.Ulbrich,
E.Y.Isacoff,
S.Kellenberger,
and
R.Benton
(2011).
Functional architecture of olfactory ionotropic glutamate receptors.
|
| |
Neuron,
69,
44-60.
|
 |
|
|
|
|
 |
M.Koller,
K.Lingenhoehl,
M.Schmutz,
I.T.Vranesic,
J.Kallen,
Y.P.Auberson,
D.A.Carcache,
H.Mattes,
S.Ofner,
D.Orain,
and
S.Urwyler
(2011).
Quinazolinedione sulfonamides: A novel class of competitive AMPA receptor antagonists with oral activity.
|
| |
Bioorg Med Chem Lett,
21,
3358-3361.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.L.Mayer
(2011).
Glutamate receptor ion channels: where do all the calories go?
|
| |
Nat Struct Mol Biol,
18,
253-254.
|
 |
|
|
|
|
 |
M.L.Mayer
(2011).
Structure and mechanism of glutamate receptor ion channel assembly, activation and modulation.
|
| |
Curr Opin Neurobiol,
21,
283-290.
|
 |
|
|
|
|
 |
M.Sukumaran,
M.Rossmann,
I.Shrivastava,
A.Dutta,
I.Bahar,
and
I.H.Greger
(2011).
Dynamics and allosteric potential of the AMPA receptor N-terminal domain.
|
| |
EMBO J,
30,
972-982.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.Paoletti
(2011).
Molecular basis of NMDA receptor functional diversity.
|
| |
Eur J Neurosci,
33,
1351-1365.
|
 |
|
|
|
|
 |
A.Birdsey-Benson,
A.Gill,
L.P.Henderson,
and
D.R.Madden
(2010).
Enhanced efficacy without further cleft closure: reevaluating twist as a source of agonist efficacy in AMPA receptors.
|
| |
J Neurosci,
30,
1463-1470.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.F.Petrik,
M.P.Strub,
and
J.C.Lee
(2010).
Energy transfer ligands of the GluR2 ligand binding core.
|
| |
Biochemistry,
49,
2051-2057.
|
 |
|
|
|
|
 |
A.H.Ahmed,
C.P.Ptak,
and
R.E.Oswald
(2010).
Molecular mechanism of flop selectivity and subsite recognition for an AMPA receptor allosteric modulator: structures of GluA2 and GluA3 in complexes with PEPA.
|
| |
Biochemistry,
49,
2843-2850.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.H.Ahmed,
and
R.E.Oswald
(2010).
Piracetam defines a new binding site for allosteric modulators of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors.
|
| |
J Med Chem,
53,
2197-2203.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.Madry,
H.Betz,
J.R.Geiger,
and
B.Laube
(2010).
Potentiation of Glycine-Gated NR1/NR3A NMDA Receptors Relieves Ca-Dependent Outward Rectification.
|
| |
Front Mol Neurosci,
3,
6.
|
 |
|
|
|
|
 |
J.Gonzalez,
M.Du,
K.Parameshwaran,
V.Suppiramaniam,
and
V.Jayaraman
(2010).
Role of dimer interface in activation and desensitization in AMPA receptors.
|
| |
Proc Natl Acad Sci U S A,
107,
9891-9896.
|
 |
|
|
|
|
 |
M.L.Prieto,
and
L.P.Wollmuth
(2010).
Gating modes in AMPA receptors.
|
| |
J Neurosci,
30,
4449-4459.
|
 |
|
|
|
|
 |
P.A.Postila,
G.T.Swanson,
and
O.T.Pentikäinen
(2010).
Exploring kainate receptor pharmacology using molecular dynamics simulations.
|
| |
Neuropharmacology,
58,
515-527.
|
 |
|
|
|
|
 |
R.Edwards,
J.Madine,
L.Fielding,
and
D.A.Middleton
(2010).
Measurement of multiple torsional angles from one-dimensional solid-state NMR spectra: application to the conformational analysis of a ligand in its biological receptor site.
|
| |
Phys Chem Chem Phys,
12,
13999-14008.
|
 |
|
|
|
|
 |
R.Vijayan,
M.A.Sahai,
T.Czajkowski,
and
P.C.Biggin
(2010).
A comparative analysis of the role of water in the binding pockets of ionotropic glutamate receptors.
|
| |
Phys Chem Chem Phys,
12,
14057-14066.
|
 |
|
|
|
|
 |
T.Nakagawa
(2010).
The biochemistry, ultrastructure, and subunit assembly mechanism of AMPA receptors.
|
| |
Mol Neurobiol,
42,
161-184.
|
 |
|
|
|
|
 |
A.H.Ahmed,
M.D.Thompson,
M.K.Fenwick,
B.Romero,
A.P.Loh,
D.E.Jane,
H.Sondermann,
and
R.E.Oswald
(2009).
Mechanisms of antagonism of the GluR2 AMPA receptor: structure and dynamics of the complex of two willardiine antagonists with the glutamate binding domain.
|
| |
Biochemistry,
48,
3894-3903.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.H.Ahmed,
Q.Wang,
H.Sondermann,
and
R.E.Oswald
(2009).
Structure of the S1S2 glutamate binding domain of GLuR3.
|
| |
Proteins,
75,
628-637.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.I.Sobolevsky,
M.P.Rosconi,
and
E.Gouaux
(2009).
X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor.
|
| |
Nature,
462,
745-756.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.J.Plested,
and
M.L.Mayer
(2009).
AMPA receptor ligand binding domain mobility revealed by functional cross linking.
|
| |
J Neurosci,
29,
11912-11923.
|
 |
|
|
|
|
 |
C.Chaudhry,
A.J.Plested,
P.Schuck,
and
M.L.Mayer
(2009).
Energetics of glutamate receptor ligand binding domain dimer assembly are modulated by allosteric ions.
|
| |
Proc Natl Acad Sci U S A,
106,
12329-12334.
|
 |
|
|
|
|
 |
C.Chaudhry,
M.C.Weston,
P.Schuck,
C.Rosenmund,
and
M.L.Mayer
(2009).
Stability of ligand-binding domain dimer assembly controls kainate receptor desensitization.
|
| |
EMBO J,
28,
1518-1530.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.L.Kussius,
and
G.K.Popescu
(2009).
Kinetic basis of partial agonism at NMDA receptors.
|
| |
Nat Neurosci,
12,
1114-1120.
|
 |
|
|
|
|
 |
C.P.Ptak,
A.H.Ahmed,
and
R.E.Oswald
(2009).
Probing the allosteric modulator binding site of GluR2 with thiazide derivatives.
|
| |
Biochemistry,
48,
8594-8602.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.Sager,
J.Terhag,
S.Kott,
and
M.Hollmann
(2009).
C-terminal domains of transmembrane alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor regulatory proteins not only facilitate trafficking but are major modulators of AMPA receptor function.
|
| |
J Biol Chem,
284,
32413-32424.
|
 |
|
|
|
|
 |
D.B.Tikhonov,
and
L.G.Magazanik
(2009).
Origin and molecular evolution of ionotropic glutamate receptors.
|
| |
Neurosci Behav Physiol,
39,
763-773.
|
 |
|
|
|
|
 |
E.Karakas,
N.Simorowski,
and
H.Furukawa
(2009).
Structure of the zinc-bound amino-terminal domain of the NMDA receptor NR2B subunit.
|
| |
EMBO J,
28,
3910-3920.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Cheung,
M.Le-Khac,
and
W.A.Hendrickson
(2009).
Crystal structure of a histidine kinase sensor domain with similarity to periplasmic binding proteins.
|
| |
Proteins,
77,
235-241.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.B.Hansen,
P.Naur,
N.L.Kurtkaya,
A.S.Kristensen,
M.Gajhede,
J.S.Kastrup,
and
S.F.Traynelis
(2009).
Modulation of the dimer interface at ionotropic glutamate-like receptor delta2 by D-serine and extracellular calcium.
|
| |
J Neurosci,
29,
907-917.
|
 |
|
|
|
|
 |
K.Frydenvang,
L.L.Lash,
P.Naur,
P.A.Postila,
D.S.Pickering,
C.M.Smith,
M.Gajhede,
M.Sasaki,
R.Sakai,
O.T.Pentikaïnen,
G.T.Swanson,
and
J.S.Kastrup
(2009).
Full Domain Closure of the Ligand-binding Core of the Ionotropic Glutamate Receptor iGluR5 Induced by the High Affinity Agonist Dysiherbaine and the Functional Antagonist 8,9-Dideoxyneodysiherbaine.
|
| |
J Biol Chem,
284,
14219-14229.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.Speranskiy,
and
M.G.Kurnikova
(2009).
Modeling of peptides connecting the ligand-binding and transmembrane domains in the GluR2 glutamate receptor.
|
| |
Proteins,
76,
271-280.
|
 |
|
|
|
|
 |
L.Bunch,
and
P.Krogsgaard-Larsen
(2009).
Subtype selective kainic acid receptor agonists: discovery and approaches to rational design.
|
| |
Med Res Rev,
29,
3.
|
 |
|
|
|
|
 |
M.Du,
A.Rambhadran,
and
V.Jayaraman
(2009).
Vibrational spectroscopic investigation of the ligand binding domain of kainate receptors.
|
| |
Protein Sci,
18,
1585-1591.
|
 |
|
|
|
|
 |
M.J.Borrok,
Y.Zhu,
K.T.Forest,
and
L.L.Kiessling
(2009).
Structure-based design of a periplasmic binding protein antagonist that prevents domain closure.
|
| |
ACS Chem Biol,
4,
447-456.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
N.Nayeem,
Y.Zhang,
D.K.Schweppe,
D.R.Madden,
and
T.Green
(2009).
A nondesensitizing kainate receptor point mutant.
|
| |
Mol Pharmacol,
76,
534-542.
|
 |
|
|
|
|
 |
R.Benton,
K.S.Vannice,
C.Gomez-Diaz,
and
L.B.Vosshall
(2009).
Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila.
|
| |
Cell,
136,
149-162.
|
 |
|
|
|
|
 |
R.Jin,
S.K.Singh,
S.Gu,
H.Furukawa,
A.I.Sobolevsky,
J.Zhou,
Y.Jin,
and
E.Gouaux
(2009).
Crystal structure and association behaviour of the GluR2 amino-terminal domain.
|
| |
EMBO J,
28,
1812-1823.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.M.Schmid,
S.Kott,
C.Sager,
T.Huelsken,
and
M.Hollmann
(2009).
The glutamate receptor subunit delta2 is capable of gating its intrinsic ion channel as revealed by ligand binding domain transplantation.
|
| |
Proc Natl Acad Sci U S A,
106,
10320-10325.
|
 |
|
|
|
|
 |
T.P.Möykkynen,
S.K.Coleman,
K.Keinänen,
D.M.Lovinger,
and
E.R.Korpi
(2009).
Ethanol increases desensitization of recombinant GluR-D AMPA receptor and TARP combinations.
|
| |
Alcohol,
43,
277-284.
|
 |
|
|
|
|
 |
W.Zhang,
F.St-Gelais,
C.P.Grabner,
J.C.Trinidad,
A.Sumioka,
M.Morimoto-Tomita,
K.S.Kim,
C.Straub,
A.L.Burlingame,
J.R.Howe,
and
S.Tomita
(2009).
A transmembrane accessory subunit that modulates kainate-type glutamate receptors.
|
| |
Neuron,
61,
385-396.
|
 |
|
|
|
|
 |
Z.Sheng,
Z.Liang,
J.H.Geiger,
M.Prorok,
and
F.J.Castellino
(2009).
The selectivity of conantokin-G for ion channel inhibition of NR2B subunit-containing NMDA receptors is regulated by amino acid residues in the S2 region of NR2B.
|
| |
Neuropharmacology,
57,
127-136.
|
 |
|
|
|
|
 |
A.C.Penn,
S.R.Williams,
and
I.H.Greger
(2008).
Gating motions underlie AMPA receptor secretion from the endoplasmic reticulum.
|
| |
EMBO J,
27,
3056-3068.
|
 |
|
|
|
|
 |
A.D.Milstein,
and
R.A.Nicoll
(2008).
Regulation of AMPA receptor gating and pharmacology by TARP auxiliary subunits.
|
| |
Trends Pharmacol Sci,
29,
333-339.
|
 |
|
|
|
|
 |
A.Gill,
A.Birdsey-Benson,
B.L.Jones,
L.P.Henderson,
and
D.R.Madden
(2008).
Correlating AMPA receptor activation and cleft closure across subunits: crystal structures of the GluR4 ligand-binding domain in complex with full and partial agonists.
|
| |
Biochemistry,
47,
13831-13841.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Gill,
and
D.R.Madden
(2008).
Purification and crystallization of a non-GluR2 AMPA-receptor ligand-binding domain: a case of cryo-incompatibility addressed by room-temperature data collection.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
64,
831-835.
|
 |
|
|
|
|
 |
A.J.Plested,
R.Vijayan,
P.C.Biggin,
and
M.L.Mayer
(2008).
Molecular basis of kainate receptor modulation by sodium.
|
| |
Neuron,
58,
720-735.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.S.Maltsev,
A.H.Ahmed,
M.K.Fenwick,
D.E.Jane,
and
R.E.Oswald
(2008).
Mechanism of partial agonism at the GluR2 AMPA receptor: Measurements of lobe orientation in solution.
|
| |
Biochemistry,
47,
10600-10610.
|
 |
|
|
|
|
 |
D.M.Santucci,
and
S.Raghavachari
(2008).
The effects of NR2 subunit-dependent NMDA receptor kinetics on synaptic transmission and CaMKII activation.
|
| |
PLoS Comput Biol,
4,
e1000208.
|
 |
|
|
|
|
 |
E.J.Bjerrum,
and
P.C.Biggin
(2008).
Rigid body essential X-ray crystallography: distinguishing the bend and twist of glutamate receptor ligand binding domains.
|
| |
Proteins,
72,
434-446.
|
 |
|
|
|
|
 |
H.Abdel-Halim,
J.R.Hanrahan,
D.E.Hibbs,
G.A.Johnston,
and
M.Chebib
(2008).
A molecular basis for agonist and antagonist actions at GABA(C) receptors.
|
| |
Chem Biol Drug Des,
71,
306-327.
|
 |
|
|
|
|
 |
J.Gonzalez,
A.Rambhadran,
M.Du,
and
V.Jayaraman
(2008).
LRET investigations of conformational changes in the ligand binding domain of a functional AMPA receptor.
|
| |
Biochemistry,
47,
10027-10032.
|
 |
|
|
|
|
 |
K.A.Mankiewicz,
A.Rambhadran,
L.Wathen,
and
V.Jayaraman
(2008).
Chemical interplay in the mechanism of partial agonist activation in alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors.
|
| |
Biochemistry,
47,
398-404.
|
 |
|
|
|
|
 |
L.A.Cruz,
E.Estébanez-Perpiñá,
S.Pfaff,
S.Borngraeber,
N.Bao,
J.Blethrow,
R.J.Fletterick,
and
P.M.England
(2008).
6-Azido-7-nitro-1,4-dihydroquinoxaline-2,3-dione (ANQX) forms an irreversible bond to the active site of the GluR2 AMPA receptor.
|
| |
J Med Chem,
51,
5856-5860.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Du,
A.Rambhadran,
and
V.Jayaraman
(2008).
Luminescence resonance energy transfer investigation of conformational changes in the ligand binding domain of a kainate receptor.
|
| |
J Biol Chem,
283,
27074-27078.
|
 |
|
|
|
|
 |
M.K.Fenwick,
and
R.E.Oswald
(2008).
NMR spectroscopy of the ligand-binding core of ionotropic glutamate receptor 2 bound to 5-substituted willardiine partial agonists.
|
| |
J Mol Biol,
378,
673-685.
|
 |
|
|
|
|
 |
M.L.Blanke,
and
A.M.VanDongen
(2008).
Constitutive activation of the N-methyl-D-aspartate receptor via cleft-spanning disulfide bonds.
|
| |
J Biol Chem,
283,
21519-21529.
|
 |
|
|
|
|
 |
N.Yanamala,
K.C.Tirupula,
and
J.Klein-Seetharaman
(2008).
Preferential binding of allosteric modulators to active and inactive conformational states of metabotropic glutamate receptors.
|
| |
BMC Bioinformatics,
9,
S16.
|
 |
|
|
|
|
 |
R.Raabe,
and
L.Gentile
(2008).
Antidepressant Interactions with the NMDA NR1-1b Subunit.
|
| |
J Biophys,
2008,
474205.
|
 |
|
|
|
|
 |
S.A.Pless,
and
J.W.Lynch
(2008).
Illuminating the structure and function of Cys-loop receptors.
|
| |
Clin Exp Pharmacol Physiol,
35,
1137-1142.
|
 |
|
|
|
|
 |
S.M.Schmid,
and
M.Hollmann
(2008).
To gate or not to gate: are the delta subunits in the glutamate receptor family functional ion channels?
|
| |
Mol Neurobiol,
37,
126-141.
|
 |
|
|
|
|
 |
S.O.Yesylevskyy,
V.N.Kharkyanen,
and
A.P.Demchenko
(2008).
The blind search for the closed states of hinge-bending proteins.
|
| |
Proteins,
71,
831-843.
|
 |
|
|
|
|
 |
T.Mamonova,
K.Speranskiy,
and
M.Kurnikova
(2008).
Interplay between structural rigidity and electrostatic interactions in the ligand binding domain of GluR2.
|
| |
Proteins,
73,
656-671.
|
 |
|
|
|
|
 |
T.Mamonova,
M.J.Yonkunas,
and
M.G.Kurnikova
(2008).
Energetics of the cleft closing transition and the role of electrostatic interactions in conformational rearrangements of the glutamate receptor ligand binding domain.
|
| |
Biochemistry,
47,
11077-11085.
|
 |
|
|
|
|
 |
X.Chen,
C.A.Winters,
and
T.S.Reese
(2008).
Life inside a thin section: tomography.
|
| |
J Neurosci,
28,
9321-9327.
|
 |
|
|
|
|
 |
Y.Yao,
C.B.Harrison,
P.L.Freddolino,
K.Schulten,
and
M.L.Mayer
(2008).
Molecular mechanism of ligand recognition by NR3 subtype glutamate receptors.
|
| |
EMBO J,
27,
2158-2170.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.H.Ahmed,
A.P.Loh,
D.E.Jane,
and
R.E.Oswald
(2007).
Dynamics of the S1S2 glutamate binding domain of GluR2 measured using 19F NMR spectroscopy.
|
| |
J Biol Chem,
282,
12773-12784.
|
 |
|
|
|
|
 |
A.J.Plested,
and
M.L.Mayer
(2007).
Structure and mechanism of kainate receptor modulation by anions.
|
| |
Neuron,
53,
829-841.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Y.Lau,
and
B.Roux
(2007).
The free energy landscapes governing conformational changes in a glutamate receptor ligand-binding domain.
|
| |
Structure,
15,
1203-1214.
|
 |
|
|
|
|
 |
B.H.Kaae,
K.Harpsøe,
J.S.Kastrup,
A.C.Sanz,
D.S.Pickering,
B.Metzler,
R.P.Clausen,
M.Gajhede,
P.Sauerberg,
T.Liljefors,
and
U.Madsen
(2007).
Structural proof of a dimeric positive modulator bridging two identical AMPA receptor-binding sites.
|
| |
Chem Biol,
14,
1294-1303.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.G.Jørgensen,
R.P.Clausen,
K.B.Hansen,
H.Bräuner-Osborne,
B.Nielsen,
B.Metzler,
B.B.Metzler,
J.Kehler,
P.Krogsgaard-Larsen,
and
U.Madsen
(2007).
Synthesis and pharmacology of glutamate receptor ligands: new isothiazole analogues of ibotenic acid.
|
| |
Org Biomol Chem,
5,
463-471.
|
 |
|
|
|
|
 |
C.Körber,
M.Werner,
J.Hoffmann,
C.Sager,
M.Tietze,
S.M.Schmid,
S.Kott,
and
M.Hollmann
(2007).
Stargazin interaction with alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors is critically dependent on the amino acid at the narrow constriction of the ion channel.
|
| |
J Biol Chem,
282,
18758-18766.
|
 |
|
|
|
|
 |
D.Catarzi,
V.Colotta,
and
F.Varano
(2007).
Competitive AMPA receptor antagonists.
|
| |
Med Res Rev,
27,
239-278.
|
 |
|
|
|
|
 |
H.Hald,
P.Naur,
D.S.Pickering,
D.Sprogøe,
U.Madsen,
D.B.Timmermann,
P.K.Ahring,
T.Liljefors,
A.Schousboe,
J.Egebjerg,
M.Gajhede,
and
J.S.Kastrup
(2007).
Partial agonism and antagonism of the ionotropic glutamate receptor iGLuR5: structures of the ligand-binding core in complex with domoic acid and 2-amino-3-[5-tert-butyl-3-(phosphonomethoxy)-4-isoxazolyl]propionic acid.
|
| |
J Biol Chem,
282,
25726-25736.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
I.H.Greger,
E.B.Ziff,
and
A.C.Penn
(2007).
Molecular determinants of AMPA receptor subunit assembly.
|
| |
Trends Neurosci,
30,
407-416.
|
 |
|
|
|
|
 |
J.E.Lisman,
S.Raghavachari,
and
R.W.Tsien
(2007).
The sequence of events that underlie quantal transmission at central glutamatergic synapses.
|
| |
Nat Rev Neurosci,
8,
597-609.
|
 |
|
|
|
|
 |
J.H.Kloda,
and
C.Czajkowski
(2007).
Agonist-, antagonist-, and benzodiazepine-induced structural changes in the alpha1 Met113-Leu132 region of the GABAA receptor.
|
| |
Mol Pharmacol,
71,
483-493.
|
 |
|
|
|
|
 |
K.A.Mankiewicz,
A.Rambhadran,
M.Du,
G.Ramanoudjame,
and
V.Jayaraman
(2007).
Role of the chemical interactions of the agonist in controlling alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor activation.
|
| |
Biochemistry,
46,
1343-1349.
|
 |
|
|
|
|
 |
K.A.Mankiewicz,
and
V.Jayaraman
(2007).
Glutamate receptors as seen by light: spectroscopic studies of structure-function relationships.
|
| |
Braz J Med Biol Res,
40,
1419-1427.
|
 |
|
|
|
|
 |
K.Menuz,
R.M.Stroud,
R.A.Nicoll,
and
F.A.Hays
(2007).
TARP auxiliary subunits switch AMPA receptor antagonists into partial agonists.
|
| |
Science,
318,
815-817.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.Montgomery,
E.Suzuki,
M.Kessler,
and
A.C.Arai
(2007).
Factors affecting guanine nucleotide binding to rat AMPA receptors.
|
| |
Brain Res,
1177,
1-8.
|
 |
|
|
|
|
 |
L.Stoll,
J.Hall,
N.Van Buren,
A.Hall,
L.Knight,
A.Morgan,
S.Zuger,
H.Van Deusen,
and
L.Gentile
(2007).
Differential regulation of ionotropic glutamate receptors.
|
| |
Biophys J,
92,
1343-1349.
|
 |
|
|
|
|
 |
M.Du,
H.Ulrich,
X.Zhao,
J.Aronowski,
and
V.Jayaraman
(2007).
Water soluble RNA based antagonist of AMPA receptors.
|
| |
Neuropharmacology,
53,
242-251.
|
 |
|
|
|
|
 |
M.J.Borrok,
L.L.Kiessling,
and
K.T.Forest
(2007).
Conformational changes of glucose/galactose-binding protein illuminated by open, unliganded, and ultra-high-resolution ligand-bound structures.
|
| |
Protein Sci,
16,
1032-1041.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Postlethwaite,
M.H.Hennig,
J.R.Steinert,
B.P.Graham,
and
I.D.Forsythe
(2007).
Acceleration of AMPA receptor kinetics underlies temperature-dependent changes in synaptic strength at the rat calyx of Held.
|
| |
J Physiol,
579,
69-84.
|
 |
|
|
|
|
 |
N.A.Mitchell,
and
M.W.Fleck
(2007).
Targeting AMPA receptor gating processes with allosteric modulators and mutations.
|
| |
Biophys J,
92,
2392-2402.
|
 |
|
|
|
|
 |
P.Gorostiza,
M.Volgraf,
R.Numano,
S.Szobota,
D.Trauner,
and
E.Y.Isacoff
(2007).
Mechanisms of photoswitch conjugation and light activation of an ionotropic glutamate receptor.
|
| |
Proc Natl Acad Sci U S A,
104,
10865-10870.
|
 |
|
|
|
|
 |
P.Naur,
K.B.Hansen,
A.S.Kristensen,
S.M.Dravid,
D.S.Pickering,
L.Olsen,
B.Vestergaard,
J.Egebjerg,
M.Gajhede,
S.F.Traynelis,
and
J.S.Kastrup
(2007).
Ionotropic glutamate-like receptor delta2 binds D-serine and glycine.
|
| |
Proc Natl Acad Sci U S A,
104,
14116-14121.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.van Deursen,
and
J.L.Reymond
(2007).
Chemical Space Travel.
|
| |
ChemMedChem,
2,
636-640.
|
 |
|
|
|
|
 |
S.C.Flores,
and
M.B.Gerstein
(2007).
FlexOracle: predicting flexible hinges by identification of stable domains.
|
| |
BMC Bioinformatics,
8,
215.
|
 |
|
|
|
|
 |
S.Tomita,
R.K.Byrd,
N.Rouach,
C.Bellone,
A.Venegas,
J.L.O'Brien,
K.S.Kim,
O.Olsen,
R.A.Nicoll,
and
D.S.Bredt
(2007).
AMPA receptors and stargazin-like transmembrane AMPA receptor-regulatory proteins mediate hippocampal kainate neurotoxicity.
|
| |
Proc Natl Acad Sci U S A,
104,
18784-18788.
|
 |
|
|
|
|
 |
W.Maier,
R.Schemm,
C.Grewer,
and
B.Laube
(2007).
Disruption of interdomain interactions in the glutamate binding pocket affects differentially agonist affinity and efficacy of N-methyl-D-aspartate receptor activation.
|
| |
J Biol Chem,
282,
1863-1872.
|
 |
|
|
|
|
 |
W.Pei,
M.Ritz,
M.McCarthy,
Z.Huang,
and
L.Niu
(2007).
Receptor occupancy and channel-opening kinetics: a study of GLUR1 L497Y AMPA receptor.
|
| |
J Biol Chem,
282,
22731-22736.
|
 |
|
|
|
|
 |
X.Q.Gong,
R.L.Zabek,
and
D.Bai
(2007).
D-Serine inhibits AMPA receptor-mediated current in rat hippocampal neurons.
|
| |
Can J Physiol Pharmacol,
85,
546-555.
|
 |
|
|
|
|
 |
A.Priel,
S.Selak,
J.Lerma,
and
Y.Stern-Bach
(2006).
Block of kainate receptor desensitization uncovers a key trafficking checkpoint.
|
| |
Neuron,
52,
1037-1046.
|
 |
|
|
|
|
 |
A.S.Kristensen,
M.T.Geballe,
J.P.Snyder,
and
S.F.Traynelis
(2006).
Glutamate receptors: variation in structure-function coupling.
|
| |
Trends Pharmacol Sci,
27,
65-69.
|
 |
|
|
|
|
 |
D.Bleakman,
A.Alt,
and
E.S.Nisenbaum
(2006).
Glutamate receptors and pain.
|
| |
Semin Cell Dev Biol,
17,
592-604.
|
 |
|
|
|
|
 |
G.Ramanoudjame,
M.Du,
K.A.Mankiewicz,
and
V.Jayaraman
(2006).
Allosteric mechanism in AMPA receptors: a FRET-based investigation of conformational changes.
|
| |
Proc Natl Acad Sci U S A,
103,
10473-10478.
|
 |
|
|
|
|
 |
I.H.Greger,
P.Akamine,
L.Khatri,
and
E.B.Ziff
(2006).
Developmentally regulated, combinatorial RNA processing modulates AMPA receptor biogenesis.
|
| |
Neuron,
51,
85-97.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
I.Huvent,
H.Belrhali,
R.Antoine,
C.Bompard,
C.Locht,
F.Jacob-Dubuisson,
and
V.Villeret
(2006).
Structural analysis of Bordetella pertussis BugE solute receptor in a bound conformation.
|
| |
Acta Crystallogr D Biol Crystallogr,
62,
1375-1381.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
I.O.Edafiogho,
K.V.Ananthalakshmi,
and
S.B.Kombian
(2006).
Anticonvulsant evaluation and mechanism of action of benzylamino enaminones.
|
| |
Bioorg Med Chem,
14,
5266-5272.
|
 |
|
|
|
|
 |
L.De Luca,
R.Gitto,
M.L.Barreca,
R.Caruso,
S.Quartarone,
R.Citraro,
G.De Sarro,
and
A.Chimirri
(2006).
3D pharmacophore models for 1,2,3,4-tetrahydroisoquinoline derivatives acting as anticonvulsant agents.
|
| |
Arch Pharm (Weinheim),
339,
388-400.
|
 |
|
|
|
|
 |
M.C.Weston,
P.Schuck,
A.Ghosal,
C.Rosenmund,
and
M.L.Mayer
(2006).
Conformational restriction blocks glutamate receptor desensitization.
|
| |
Nat Struct Mol Biol,
13,
1120-1127.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.L.Mayer
(2006).
Glutamate receptors at atomic resolution.
|
| |
Nature,
440,
456-462.
|
 |
|
|
|
|
 |
M.Volgraf,
P.Gorostiza,
R.Numano,
R.H.Kramer,
E.Y.Isacoff,
and
D.Trauner
(2006).
Allosteric control of an ionotropic glutamate receptor with an optical switch.
|
| |
Nat Chem Biol,
2,
47-52.
|
 |
|
|
|
|
 |
P.E.Chen,
and
D.J.Wyllie
(2006).
Pharmacological insights obtained from structure-function studies of ionotropic glutamate receptors.
|
| |
Br J Pharmacol,
147,
839-853.
|
 |
|
|
|
|
 |
R.A.Nicoll,
S.Tomita,
and
D.S.Bredt
(2006).
Auxiliary subunits assist AMPA-type glutamate receptors.
|
| |
Science,
311,
1253-1256.
|
 |
|
|
|
|
 |
S.Fucile,
R.Miledi,
and
F.Eusebi
(2006).
Effects of cyclothiazide on GluR1/AMPA receptors.
|
| |
Proc Natl Acad Sci U S A,
103,
2943-2947.
|
 |
|
|
|
|
 |
S.L.Kaye,
M.S.Sansom,
and
P.C.Biggin
(2006).
Molecular dynamics simulations of the ligand-binding domain of an N-methyl-D-aspartate receptor.
|
| |
J Biol Chem,
281,
12736-12742.
|
 |
|
|
|
|
 |
T.Nakagawa,
Y.Cheng,
M.Sheng,
and
T.Walz
(2006).
Three-dimensional structure of an AMPA receptor without associated stargazin/TARP proteins.
|
| |
Biol Chem,
387,
179-187.
|
 |
|
|
|
|
 |
U.Pentikäinen,
L.Settimo,
M.S.Johnson,
and
O.T.Pentikäinen
(2006).
Subtype selectivity and flexibility of ionotropic glutamate receptors upon antagonist ligand binding.
|
| |
Org Biomol Chem,
4,
1058-1070.
|
 |
|
|
|
|
 |
W.Zhang,
A.Robert,
S.B.Vogensen,
and
J.R.Howe
(2006).
The relationship between agonist potency and AMPA receptor kinetics.
|
| |
Biophys J,
91,
1336-1346.
|
 |
|
|
|
|
 |
A.Inanobe,
H.Furukawa,
and
E.Gouaux
(2005).
Mechanism of partial agonist action at the NR1 subunit of NMDA receptors.
|
| |
Neuron,
47,
71-84.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Pang,
Y.Arinaminpathy,
M.S.Sansom,
and
P.C.Biggin
(2005).
Comparative molecular dynamics--similar folds and similar motions?
|
| |
Proteins,
61,
809-822.
|
 |
|
|
|
|
 |
B.B.Nielsen,
D.S.Pickering,
J.R.Greenwood,
L.Brehm,
M.Gajhede,
A.Schousboe,
and
J.S.Kastrup
(2005).
Exploring the GluR2 ligand-binding core in complex with the bicyclical AMPA analogue (S)-4-AHCP.
|
| |
FEBS J,
272,
1639-1648.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
B.Frølund,
J.R.Greenwood,
M.M.Holm,
J.Egebjerg,
U.Madsen,
B.Nielsen,
H.Bräuner-Osborne,
T.B.Stensbøl,
and
P.Krogsgaard-Larsen
(2005).
Tetrazolyl isoxazole amino acids as ionotropic glutamate receptor antagonists: synthesis, modelling and molecular pharmacology.
|
| |
Bioorg Med Chem,
13,
5391-5398.
|
 |
|
|
|
|
 |
C.J.Hatton,
and
P.Paoletti
(2005).
Modulation of triheteromeric NMDA receptors by N-terminal domain ligands.
|
| |
Neuron,
46,
261-274.
|
 |
|
|
|
|
 |
D.R.Madden,
N.Armstrong,
D.Svergun,
J.Pérez,
and
P.Vachette
(2005).
Solution X-ray scattering evidence for agonist- and antagonist-induced modulation of cleft closure in a glutamate receptor ligand-binding domain.
|
| |
J Biol Chem,
280,
23637-23642.
|
 |
|
|
|
|
 |
D.R.Madden
(2005).
New light on an open-and-shut case.
|
| |
Nat Chem Biol,
1,
317-319.
|
 |
|
|
|
|
 |
F.Varano,
D.Catarzi,
V.Colotta,
F.R.Calabri,
O.Lenzi,
G.Filacchioni,
A.Galli,
C.Costagli,
F.Deflorian,
and
S.Moro
(2005).
1-Substituted pyrazolo[1,5-c]quinazolines as novel Gly/NMDA receptor antagonists: synthesis, biological evaluation, and molecular modeling study.
|
| |
Bioorg Med Chem,
13,
5536-5549.
|
 |
|
|
|
|
 |
H.Furukawa,
S.K.Singh,
R.Mancusso,
and
E.Gouaux
(2005).
Subunit arrangement and function in NMDA receptors.
|
| |
Nature,
438,
185-192.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.N.Kew,
and
J.A.Kemp
(2005).
Ionotropic and metabotropic glutamate receptor structure and pharmacology.
|
| |
Psychopharmacology (Berl),
179,
4.
|
 |
|
|
|
|
 |
J.Rodriguez,
L.Carcache,
and
K.S.Rein
(2005).
Low-mode docking search in iGluR homology models implicates three residues in the control of ligand selectivity.
|
| |
J Mol Recognit,
18,
183-189.
|
 |
|
|
|
|
 |
K.Strømgaard
(2005).
Natural products as tools for studies of ligand-gated ion channels.
|
| |
Chem Rec,
5,
229-239.
|
 |
|
|
|
|
 |
L.Valluru,
J.Xu,
Y.Zhu,
S.Yan,
A.Contractor,
and
G.T.Swanson
(2005).
Ligand binding is a critical requirement for plasma membrane expression of heteromeric kainate receptors.
|
| |
J Biol Chem,
280,
6085-6093.
|
 |
|
|
|
|
 |
M.C.Blaise,
R.Sowdhamini,
and
N.Pradhan
(2005).
Comparative analysis of different competitive antagonists interaction with NR2A and NR2B subunits of N-methyl-D-aspartate (NMDA) ionotropic glutamate receptor.
|
| |
J Mol Model,
11,
489-502.
|
 |
|
|
|
|
 |
M.Du,
S.A.Reid,
and
V.Jayaraman
(2005).
Conformational changes in the ligand-binding domain of a functional ionotropic glutamate receptor.
|
| |
J Biol Chem,
280,
8633-8636.
|
 |
|
|
|
|
 |
M.H.Nanao,
T.Green,
Y.Stern-Bach,
S.F.Heinemann,
and
S.Choe
(2005).
Structure of the kainate receptor subunit GluR6 agonist-binding domain complexed with domoic acid.
|
| |
Proc Natl Acad Sci U S A,
102,
1708-1713.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.L.Mayer
(2005).
Some assembly required.
|
| |
Nat Struct Mol Biol,
12,
208-209.
|
 |
|
|
|
|
 |
M.L.Mayer
(2005).
Crystal structures of the GluR5 and GluR6 ligand binding cores: molecular mechanisms underlying kainate receptor selectivity.
|
| |
Neuron,
45,
539-552.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.L.Mayer
(2005).
Glutamate receptor ion channels.
|
| |
Curr Opin Neurobiol,
15,
282-288.
|
 |
|
|
|
|
 |
M.M.Holm,
M.L.Lunn,
S.F.Traynelis,
J.S.Kastrup,
and
J.Egebjerg
(2005).
Structural determinants of agonist-specific kinetics at the ionotropic glutamate receptor 2.
|
| |
Proc Natl Acad Sci U S A,
102,
12053-12058.
|
 |
|
|
|
|
 |
M.M.Holm,
P.Naur,
B.Vestergaard,
M.T.Geballe,
M.Gajhede,
J.S.Kastrup,
S.F.Traynelis,
and
J.Egebjerg
(2005).
A binding site tyrosine shapes desensitization kinetics and agonist potency at GluR2. A mutagenic, kinetic, and crystallographic study.
|
| |
J Biol Chem,
280,
35469-35476.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
N.A.Dorofeeva,
D.B.Tikhonov,
O.I.Barygin,
T.B.Tikhonova,
Y.I.Salnikov,
and
L.G.Magazanik
(2005).
Action of extracellular divalent cations on native alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors.
|
| |
J Neurochem,
95,
1704-1712.
|
 |
|
|
|
|
 |
Q.Cheng,
M.Du,
G.Ramanoudjame,
and
V.Jayaraman
(2005).
Evolution of glutamate interactions during binding to a glutamate receptor.
|
| |
Nat Chem Biol,
1,
329-332.
|
 |
|
|
|
|
 |
S.Haider,
A.Grottesi,
B.A.Hall,
F.M.Ashcroft,
and
M.S.Sansom
(2005).
Conformational dynamics of the ligand-binding domain of inward rectifier K channels as revealed by molecular dynamics simulations: toward an understanding of Kir channel gating.
|
| |
Biophys J,
88,
3310-3320.
|
 |
|
|
|
|
 |
S.Tomita,
H.Adesnik,
M.Sekiguchi,
W.Zhang,
K.Wada,
J.R.Howe,
R.A.Nicoll,
and
D.S.Bredt
(2005).
Stargazin modulates AMPA receptor gating and trafficking by distinct domains.
|
| |
Nature,
435,
1052-1058.
|
 |
|
|
|
|
 |
T.Nakagawa,
Y.Cheng,
E.Ramm,
M.Sheng,
and
T.Walz
(2005).
Structure and different conformational states of native AMPA receptor complexes.
|
| |
Nature,
433,
545-549.
|
 |
|
|
|
|
 |
V.Bancila,
T.Cens,
D.Monnier,
F.Chanson,
C.Faure,
Y.Dunant,
and
A.Bloc
(2005).
Two SUR1-specific histidine residues mandatory for zinc-induced activation of the rat KATP channel.
|
| |
J Biol Chem,
280,
8793-8799.
|
 |
|
|
|
|
 |
A.I.Sobolevsky,
M.V.Yelshansky,
and
L.P.Wollmuth
(2004).
The outer pore of the glutamate receptor channel has 2-fold rotational symmetry.
|
| |
Neuron,
41,
367-378.
|
 |
|
|
|
|
 |
A.J.Plested,
S.S.Wildman,
W.R.Lieb,
and
N.P.Franks
(2004).
Determinants of the sensitivity of AMPA receptors to xenon.
|
| |
Anesthesiology,
100,
347-358.
|
 |
|
|
|
|
 |
G.Li,
and
L.Niu
(2004).
How fast does the GluR1Qflip channel open?
|
| |
J Biol Chem,
279,
3990-3997.
|
 |
|
|
|
|
 |
H.Takahashi,
E.Inagaki,
C.Kuroishi,
and
T.H.Tahirov
(2004).
Structure of the Thermus thermophilus putative periplasmic glutamate/glutamine-binding protein.
|
| |
Acta Crystallogr D Biol Crystallogr,
60,
1846-1854.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.Speranskiy,
and
M.Kurnikova
(2004).
Accurate theoretical prediction of vibrational frequencies in an inhomogeneous dynamic environment: a case study of a glutamate molecule in water solution and in a protein-bound form.
|
| |
J Chem Phys,
121,
1516-1524.
|
 |
|
|
|
|
 |
K.Strømgaard,
and
I.Mellor
(2004).
AMPA receptor ligands: synthetic and pharmacological studies of polyamines and polyamine toxins.
|
| |
Med Res Rev,
24,
589-620.
|
 |
|
|
|
|
 |
L.Brehm,
J.R.Greenwood,
F.A.Sløk,
M.M.Holm,
B.Nielsen,
U.Geneser,
T.B.Stensbøl,
H.Bräuner-Osborne,
M.Begtrup,
J.Egebjerg,
and
P.Krogsgaard-Larsen
(2004).
Synthesis, theoretical and structural analyses, and enantiopharmacology of 3-carboxy homologs of AMPA.
|
| |
Chirality,
16,
452-466.
|
 |
|
|
|
|
 |
M.C.Blaise,
R.Sowdhamini,
M.R.Rao,
and
N.Pradhan
(2004).
Evolutionary trace analysis of ionotropic glutamate receptor sequences and modeling the interactions of agonists with different NMDA receptor subunits.
|
| |
J Mol Model,
10,
305-316.
|
 |
|
|
|
|
 |
M.J.Schell
(2004).
The N-methyl D-aspartate receptor glycine site and D-serine metabolism: an evolutionary perspective.
|
| |
Philos Trans R Soc Lond B Biol Sci,
359,
943-964.
|
 |
|
|
|
|
 |
M.Kubo,
and
E.Ito
(2004).
Structural dynamics of an ionotropic glutamate receptor.
|
| |
Proteins,
56,
411-419.
|
 |
|
|
|
|
 |
M.Kubo,
E.Shiomitsu,
K.Odai,
T.Sugimoto,
H.Suzuki,
and
E.Ito
(2004).
Picosecond dynamics of the glutamate receptor in response to agonist-induced vibrational excitation.
|
| |
Proteins,
54,
231-236.
|
 |
|
|
|
|
 |
M.L.Mayer,
and
N.Armstrong
(2004).
Structure and function of glutamate receptor ion channels.
|
| |
Annu Rev Physiol,
66,
161-181.
|
 |
|
|
|
|
 |
M.Papadakis,
L.M.Hawkins,
and
F.A.Stephenson
(2004).
Appropriate NR1-NR1 disulfide-linked homodimer formation is requisite for efficient expression of functional, cell surface N-methyl-D-aspartate NR1/NR2 receptors.
|
| |
J Biol Chem,
279,
14703-14712.
|
 |
|
|
|
|
 |
M.S.Horning,
and
M.L.Mayer
(2004).
Regulation of AMPA receptor gating by ligand binding core dimers.
|
| |
Neuron,
41,
379-388.
|
 |
|
|
|
|
 |
N.L.Han,
J.D.Clements,
and
J.W.Lynch
(2004).
Comparison of taurine- and glycine-induced conformational changes in the M2-M3 domain of the glycine receptor.
|
| |
J Biol Chem,
279,
19559-19565.
|
 |
|
|
|
|
 |
P.E.Chen,
A.R.Johnston,
M.H.Mok,
R.Schoepfer,
and
D.J.Wyllie
(2004).
Influence of a threonine residue in the S2 ligand binding domain in determining agonist potency and deactivation rate of recombinant NR1a/NR2D NMDA receptors.
|
| |
J Physiol,
558,
45-58.
|
 |
|
|
|
|
 |
Q.Cheng,
and
V.Jayaraman
(2004).
Chemistry and conformation of the ligand-binding domain of GluR2 subtype of glutamate receptors.
|
| |
J Biol Chem,
279,
26346-26350.
|
 |
|
|
|
|
 |
S.Tomita,
M.Fukata,
R.A.Nicoll,
and
D.S.Bredt
(2004).
Dynamic interaction of stargazin-like TARPs with cycling AMPA receptors at synapses.
|
| |
Science,
303,
1508-1511.
|
 |
|
|
|
|
 |
A.Pasternack,
S.K.Coleman,
J.Féthière,
D.R.Madden,
J.P.LeCaer,
J.Rossier,
M.Pasternack,
and
K.Keinänen
(2003).
Characterization of the functional role of the N-glycans in the AMPA receptor ligand-binding domain.
|
| |
J Neurochem,
84,
1184-1192.
|
 |
|
|
|
|
 |
B.Foucaud,
B.Laube,
R.Schemm,
A.Kreimeyer,
M.Goeldner,
and
H.Betz
(2003).
Structural model of the N-methyl-D-aspartate receptor glycine site probed by site-directed chemical coupling.
|
| |
J Biol Chem,
278,
24011-24017.
|
 |
|
|
|
|
 |
C.Dubos,
D.Huggins,
G.H.Grant,
M.R.Knight,
and
M.M.Campbell
(2003).
A role for glycine in the gating of plant NMDA-like receptors.
|
| |
Plant J,
35,
800-810.
|
 |
|
|
|
|
 |
C.Tardin,
L.Cognet,
C.Bats,
B.Lounis,
and
D.Choquet
(2003).
Direct imaging of lateral movements of AMPA receptors inside synapses.
|
| |
EMBO J,
22,
4656-4665.
|
 |
|
|
|
|
 |
D.Bowie,
E.P.Garcia,
J.Marshall,
S.F.Traynelis,
and
G.D.Lange
(2003).
Allosteric regulation and spatial distribution of kainate receptors bound to ancillary proteins.
|
| |
J Physiol,
547,
373-385.
|
 |
|
|
|
|
 |
D.Deming,
Q.Cheng,
and
V.Jayaraman
(2003).
Is the isolated ligand binding domain a good model of the domain in the native receptor?
|
| |
J Biol Chem,
278,
17589-17592.
|
 |
|
|
|
|
 |
G.Li,
R.E.Oswald,
and
L.Niu
(2003).
Channel-opening kinetics of GluR6 kainate receptor.
|
| |
Biochemistry,
42,
12367-12375.
|
 |
|
|
|
|
 |
G.Li,
W.Pei,
and
L.Niu
(2003).
Channel-opening kinetics of GluR2Q(flip) AMPA receptor: a laser-pulse photolysis study.
|
| |
Biochemistry,
42,
12358-12366.
|
 |
|
|
|
|
 |
H.Furukawa,
and
E.Gouaux
(2003).
Mechanisms of activation, inhibition and specificity: crystal structures of the NMDA receptor NR1 ligand-binding core.
|
| |
EMBO J,
22,
2873-2885.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.Ren,
Y.Honse,
B.J.Karp,
R.H.Lipsky,
and
R.W.Peoples
(2003).
A site in the fourth membrane-associated domain of the N-methyl-D-aspartate receptor regulates desensitization and ion channel gating.
|
| |
J Biol Chem,
278,
276-283.
|
 |
|
|
|
|
 |
I.H.Greger,
L.Khatri,
X.Kong,
and
E.B.Ziff
(2003).
AMPA receptor tetramerization is mediated by Q/R editing.
|
| |
Neuron,
40,
763-774.
|
 |
|
|
|
|
 |
J.E.Huettner
(2003).
Kainate receptors and synaptic transmission.
|
| |
Prog Neurobiol,
70,
387-407.
|
 |
|
|
|
|
 |
J.Grosskreutz,
A.Zoerner,
F.Schlesinger,
K.Krampfl,
R.Dengler,
and
J.Bufler
(2003).
Kinetic properties of human AMPA-type glutamate receptors expressed in HEK293 cells.
|
| |
Eur J Neurosci,
17,
1173-1178.
|
 |
|
|
|
|
 |
M.L.He,
H.Zemkova,
and
S.S.Stojilkovic
(2003).
Dependence of purinergic P2X receptor activity on ectodomain structure.
|
| |
J Biol Chem,
278,
10182-10188.
|
 |
|
|
|
|
 |
N.Armstrong,
M.Mayer,
and
E.Gouaux
(2003).
Tuning activation of the AMPA-sensitive GluR2 ion channel by genetic adjustment of agonist-induced conformational changes.
|
| |
Proc Natl Acad Sci U S A,
100,
5736-5741.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.K.Sixma,
and
A.B.Smit
(2003).
Acetylcholine binding protein (AChBP): a secreted glial protein that provides a high-resolution model for the extracellular domain of pentameric ligand-gated ion channels.
|
| |
Annu Rev Biophys Biomol Struct,
32,
311-334.
|
 |
|
|
|
|
 |
T.N.Johansen,
J.R.Greenwood,
K.Frydenvang,
U.Madsen,
and
P.Krogsgaard-Larsen
(2003).
Stereostructure-activity studies on agonists at the AMPA and kainate subtypes of ionotropic glutamate receptors.
|
| |
Chirality,
15,
167-179.
|
 |
|
|
|
|
 |
T.Sato,
Y.Shimada,
N.Nagasawa,
S.Nakanishi,
and
H.Jingami
(2003).
Amino acid mutagenesis of the ligand binding site and the dimer interface of the metabotropic glutamate receptor 1. Identification of crucial residues for setting the activated state.
|
| |
J Biol Chem,
278,
4314-4321.
|
 |
|
|
|
|
 |
A.Jouppila,
O.T.Pentikäinen,
L.Settimo,
T.Nyrönen,
J.P.Haapalahti,
M.Lampinen,
D.G.Mottershead,
M.S.Johnson,
and
K.Keinänen
(2002).
Determinants of antagonist binding at the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit, GluR-D. Role of the conserved arginine 507 and glutamate 727 residues.
|
| |
Eur J Biochem,
269,
6261-6270.
|
 |
|
|
|
|
 |
A.Pasternack,
S.K.Coleman,
A.Jouppila,
D.G.Mottershead,
M.Lindfors,
M.Pasternack,
and
K.Keinänen
(2002).
Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor channels lacking the N-terminal domain.
|
| |
J Biol Chem,
277,
49662-49667.
|
 |
|
|
|
|
 |
A.S.Bessis,
P.Rondard,
F.Gaven,
I.Brabet,
N.Triballeau,
L.Prezeau,
F.Acher,
and
J.P.Pin
(2002).
Closure of the Venus flytrap module of mGlu8 receptor and the activation process: Insights from mutations converting antagonists into agonists.
|
| |
Proc Natl Acad Sci U S A,
99,
11097-11102.
|
 |
|
|
|
|
 |
C.Rosenmund,
and
M.Mansour
(2002).
Ion channels: how to be desensitized.
|
| |
Nature,
417,
238-239.
|
 |
|
|
|
|
 |
D.L.Beene,
G.S.Brandt,
W.Zhong,
N.M.Zacharias,
H.A.Lester,
and
D.A.Dougherty
(2002).
Cation-pi interactions in ligand recognition by serotonergic (5-HT3A) and nicotinic acetylcholine receptors: the anomalous binding properties of nicotine.
|
| |
Biochemistry,
41,
10262-10269.
|
 |
|
|
|
|
 |
G.T.Swanson,
T.Green,
R.Sakai,
A.Contractor,
W.Che,
H.Kamiya,
and
S.F.Heinemann
(2002).
Differential activation of individual subunits in heteromeric kainate receptors.
|
| |
Neuron,
34,
589-598.
|
 |
|
|
|
|
 |
H.Xia,
M.von Zastrow,
and
R.C.Malenka
(2002).
A novel anterograde trafficking signal present in the N-terminal extracellular domain of ionotropic glutamate receptors.
|
| |
J Biol Chem,
277,
47765-47769.
|
 |
|
|
|
|
 |
M.Lampinen,
L.Settimo,
O.T.Pentikainen,
A.Jouppila,
D.G.Mottershead,
M.S.Johnson,
and
K.Keinanen
(2002).
Discrimination between agonists and antagonists by the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid-selective glutamate receptor. A mutation analysis of the ligand-binding domain of GluR-D subunit.
|
| |
J Biol Chem,
277,
41940-41947.
|
 |
|
|
|
|
 |
N.Strutz,
C.Villmann,
H.G.Breitinger,
M.Werner,
R.J.Wenthold,
P.Kizelsztein,
V.I.Teichberg,
and
M.Hollmann
(2002).
Kainate-binding proteins are rendered functional ion channels upon transplantation of two short pore-flanking domains from a kainate receptor.
|
| |
J Biol Chem,
277,
48035-48042.
|
 |
|
|
|
|
 |
P.C.Biggin
(2002).
Glutamate receptors: desensitizing dimers.
|
| |
Curr Biol,
12,
R631-R632.
|
 |
|
|
|
|
 |
Q.Cheng,
S.Thiran,
D.Yernool,
E.Gouaux,
and
V.Jayaraman
(2002).
A vibrational spectroscopic investigation of interactions of agonists with GluR0, a prokaryotic glutamate receptor.
|
| |
Biochemistry,
41,
1602-1608.
|
 |
|
|
|
|
 |
S.A.Lipton,
Y.B.Choi,
H.Takahashi,
D.Zhang,
W.Li,
A.Godzik,
and
L.A.Bankston
(2002).
Cysteine regulation of protein function--as exemplified by NMDA-receptor modulation.
|
| |
Trends Neurosci,
25,
474-480.
|
 |
|
|
|
|
 |
T.Rosenbaum,
M.Awaya,
and
S.E.Gordon
(2002).
Subunit modification and association in VR1 ion channels.
|
| |
BMC Neurosci,
3,
4.
|
 |
|
|
|
|
 |
V.I.Torres,
and
D.S.Weiss
(2002).
Identification of a tyrosine in the agonist binding site of the homomeric rho1 gamma-aminobutyric acid (GABA) receptor that, when mutated, produces spontaneous opening.
|
| |
J Biol Chem,
277,
43741-43748.
|
 |
|
|
|
|
 |
Y.Arinaminpathy,
M.S.Sansom,
and
P.C.Biggin
(2002).
Molecular dynamics simulations of the ligand-binding domain of the ionotropic glutamate receptor GluR2.
|
| |
Biophys J,
82,
676-683.
|
 |
|
|
|
|
 |
Y.Sun,
R.Olson,
M.Horning,
N.Armstrong,
M.Mayer,
and
E.Gouaux
(2002).
Mechanism of glutamate receptor desensitization.
|
| |
Nature,
417,
245-253.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.G.Tate
(2001).
A feast of membrane protein structures in Madrid. Workshop: Pumps, channels and transporters: structure and function.
|
| |
EMBO Rep,
2,
476-480.
|
 |
|
|
|
|
 |
G.Ayalon,
and
Y.Stern-Bach
(2001).
Functional assembly of AMPA and kainate receptors is mediated by several discrete protein-protein interactions.
|
| |
Neuron,
31,
103-113.
|
 |
|
|
|
|
 |
J.Changeux,
and
S.J.Edelstein
(2001).
Allosteric mechanisms in normal and pathological nicotinic acetylcholine receptors.
|
| |
Curr Opin Neurobiol,
11,
369-377.
|
 |
|
|
|
|
 |
J.Kardos,
and
L.Nyikos
(2001).
Universality of receptor channel responses.
|
| |
Trends Pharmacol Sci,
22,
642-645.
|
 |
|
|
|
|
 |
M.Mansour,
N.Nagarajan,
R.B.Nehring,
J.D.Clements,
and
C.Rosenmund
(2001).
Heteromeric AMPA receptors assemble with a preferred subunit stoichiometry and spatial arrangement.
|
| |
Neuron,
32,
841-853.
|
 |
|
|
|
|
 |
V.A.Panchenko,
C.R.Glasser,
and
M.L.Mayer
(2001).
Structural similarities between glutamate receptor channels and K(+) channels examined by scanning mutagenesis.
|
| |
J Gen Physiol,
117,
345-360.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |