|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Ligase
|
 |
|
Title:
|
 |
Insights into scf ubiquitin ligases from the structure of the skp1- skp2 complex
|
|
Structure:
|
 |
Cyclin a/cdk2-associated p19. Chain: a, c. Fragment: residues 101-153. Synonym: skp2 f-box. Engineered: yes. Cyclin a/cdk2-associated p45. Chain: b, d. Fragment: residues 1-147. Synonym: skp1.
|
|
Source:
|
 |
Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli. Expression_system_taxid: 562. Expression_system_taxid: 562
|
|
Biol. unit:
|
 |
Tetramer (from
)
|
|
Resolution:
|
 |
|
1.80Å
|
R-factor:
|
0.218
|
R-free:
|
0.274
|
|
|
Authors:
|
 |
B.A.Schulman,A.C.Carrano,P.D.Jeffrey,Z.Bowen,E.R.E.Kinnucan, M.S.Finnin,S.J.Elledge,J.W.Harper,M.Pagano,N.P.Pavletich
|
Key ref:
|
 |
B.A.Schulman
et al.
(2000).
Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex.
Nature,
408,
381-386.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
08-Sep-00
|
Release date:
|
29-Nov-00
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
Chains A, B, C, D:
E.C.?
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Nature
408:381-386
(2000)
|
|
PubMed id:
|
|
|
|
|
| |
|
Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex.
|
|
B.A.Schulman,
A.C.Carrano,
P.D.Jeffrey,
Z.Bowen,
E.R.Kinnucan,
M.S.Finnin,
S.J.Elledge,
J.W.Harper,
M.Pagano,
N.P.Pavletich.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
F-box proteins are members of a large family that regulates the cell cycle, the
immune response, signalling cascades and developmental programmes by targeting
proteins, such as cyclins, cyclin-dependent kinase inhibitors, IkappaBalpha and
beta-catenin, for ubiquitination (reviewed in refs 1-3). F-box proteins are the
substrate-recognition components of SCF (Skp1-Cullin-F-box protein)
ubiquitin-protein ligases. They bind the SCF constant catalytic core by means of
the F-box motif interacting with Skp1, and they bind substrates through their
variable protein-protein interaction domains. The large number of F-box proteins
is thought to allow ubiquitination of numerous, diverse substrates. Most
organisms have several Skp1 family members, but the function of these Skp1
homologues and the rules of recognition between different F-box and Skp1
proteins remain unknown. Here we describe the crystal structure of the human
F-box protein Skp2 bound to Skp1. Skp1 recruits the F-box protein through a
bipartite interface involving both the F-box and the substrate-recognition
domain. The structure raises the possibility that different Skp1 family members
evolved to function with different subsets of F-box proteins, and suggests that
the F-box protein may not only recruit substrate, but may also position it
optimally for the ubiquitination reaction.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 1.
Figure 1: Structure of the Skp1-Skp2 complex. Skp1 is shown
in blue and Skp2 is shown in red. The boundaries of the BTB/POZ
fold, the C-terminal helical extension of Skp1 and of the F-box,
the three non-canonical LRRs, the seven canonical LRRs and the
C-terminal tail of Skp2 are shown in the diagram below the
structure. The 100-residue N-terminal Skp2 region missing from
the crystallized protein is indicated (dashed line). The second
LRR has a partially disordered loop instead of the helix
characteristic of LRRs.
|
 |
Figure 4.
Figure 4: Comparison of the Skp2-Skp1 and VHL-ElonginC-ElonginB
complexes. a, Homologous portions of Skp1 and ElonginC are
aligned and boxed. Skp2 and VHL are red, Skp1 and ElonginC are
blue and ElonginB is green. The LRRs of Skp2 (refs 4, 8, 26, 27)
and the -domain
of VHL are thought to bind substrate^23. Owing to its unique C
terminus, Skp1 binds the F-box differently from the way that
ElonginC binds VHL. The arrangement of helices in the two
interfaces is similar, although the helices come from
non-corresponding members of the complexes (H1 and H2 from VHL
superimpose with H6 and H7 from Skp1, not helices from Skp2). b,
The ElonginC-binding region of VHL resembles the three-helix
cluster structure of the F-box.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Macmillan Publishers Ltd:
Nature
(2000,
408,
381-386)
copyright 2000.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
A.E.Rose,
G.Wang,
D.Hanniford,
S.Monni,
T.Tu,
R.L.Shapiro,
R.S.Berman,
A.C.Pavlick,
M.Pagano,
F.Darvishian,
M.Mazumdar,
E.Hernando,
and
I.Osman
(2011).
Clinical relevance of SKP2 alterations in metastatic melanoma.
|
| |
Pigment Cell Melanoma Res,
24,
197-206.
|
 |
|
|
|
|
 |
A.Sarikas,
T.Hartmann,
and
Z.Q.Pan
(2011).
The cullin protein family.
|
| |
Genome Biol,
12,
220.
|
 |
|
|
|
|
 |
C.Nibau,
D.J.Gibbs,
K.A.Bunting,
L.A.Moody,
E.J.Smiles,
J.A.Tubby,
S.J.Bradshaw,
and
J.C.Coates
(2011).
ARABIDILLO proteins have a novel and conserved domain structure important for the regulation of their stability.
|
| |
Plant Mol Biol,
75,
77-92.
|
 |
|
|
|
|
 |
D.M.Duda,
D.C.Scott,
M.F.Calabrese,
E.S.Zimmerman,
N.Zheng,
and
B.A.Schulman
(2011).
Structural regulation of cullin-RING ubiquitin ligase complexes.
|
| |
Curr Opin Struct Biol,
21,
257-264.
|
 |
|
|
|
|
 |
J.H.Lee,
and
W.T.Kim
(2011).
Regulation of abiotic stress signal transduction by E3 ubiquitin ligases in Arabidopsis.
|
| |
Mol Cells,
31,
201-208.
|
 |
|
|
|
|
 |
Z.Hua,
and
R.D.Vierstra
(2011).
The cullin-RING ubiquitin-protein ligases.
|
| |
Annu Rev Plant Biol,
62,
299-334.
|
 |
|
|
|
|
 |
A.Zumaquero,
A.P.Macho,
J.S.Rufián,
and
C.R.Beuzón
(2010).
Analysis of the role of the type III effector inventory of Pseudomonas syringae pv. phaseolicola 1448a in interaction with the plant.
|
| |
J Bacteriol,
192,
4474-4488.
|
 |
|
|
|
|
 |
C.T.Price,
S.Al-Khodor,
T.Al-Quadan,
and
Y.Abu Kwaik
(2010).
Indispensable role for the eukaryotic-like ankyrin domains of the ankyrin B effector of Legionella pneumophila within macrophages and amoebae.
|
| |
Infect Immun,
78,
2079-2088.
|
 |
|
|
|
|
 |
D.Gao,
L.Wan,
H.Inuzuka,
A.H.Berg,
A.Tseng,
B.Zhai,
S.Shaik,
E.Bennett,
A.E.Tron,
J.A.Gasser,
A.Lau,
S.P.Gygi,
J.W.Harper,
J.A.DeCaprio,
A.Toker,
and
W.Wei
(2010).
Rictor forms a complex with Cullin-1 to promote SGK1 ubiquitination and destruction.
|
| |
Mol Cell,
39,
797-808.
|
 |
|
|
|
|
 |
E.Sakata,
T.Satoh,
S.Yamamoto,
Y.Yamaguchi,
M.Yagi-Utsumi,
E.Kurimoto,
K.Tanaka,
S.Wakatsuki,
and
K.Kato
(2010).
Crystal structure of UbcH5b~ubiquitin intermediate: insight into the formation of the self-assembled E2~Ub conjugates.
|
| |
Structure,
18,
138-147.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Tada,
H.J.Okano,
H.Takagi,
S.Shibata,
I.Yao,
M.Matsumoto,
T.Saiga,
K.I.Nakayama,
H.Kashima,
T.Takahashi,
M.Setou,
and
H.Okano
(2010).
Fbxo45, a novel ubiquitin ligase, regulates synaptic activity.
|
| |
J Biol Chem,
285,
3840-3849.
|
 |
|
|
|
|
 |
J.A.Diehl,
and
B.Ponugoti
(2010).
Ubiquitin-dependent proteolysis in G1/S phase control and its relationship with tumor susceptibility.
|
| |
Genes Cancer,
1,
717-724.
|
 |
|
|
|
|
 |
J.Liu,
and
R.Nussinov
(2010).
Molecular dynamics reveal the essential role of linker motions in the function of cullin-RING E3 ligases.
|
| |
J Mol Biol,
396,
1508-1523.
|
 |
|
|
|
|
 |
L.Zhao,
J.Huang,
Z.Zhao,
Q.Li,
T.L.Sims,
and
Y.Xue
(2010).
The Skp1-like protein SSK1 is required for cross-pollen compatibility in S-RNase-based self-incompatibility.
|
| |
Plant J,
62,
52-63.
|
 |
|
|
|
|
 |
M.Kato,
K.Kito,
K.Ota,
and
T.Ito
(2010).
Remodeling of the SCF complex-mediated ubiquitination system by compositional alteration of incorporated F-box proteins.
|
| |
Proteomics,
10,
115-123.
|
 |
|
|
|
|
 |
M.Lomma,
D.Dervins-Ravault,
M.Rolando,
T.Nora,
H.J.Newton,
F.M.Sansom,
T.Sahr,
L.Gomez-Valero,
M.Jules,
E.L.Hartland,
and
C.Buchrieser
(2010).
The Legionella pneumophila F-box protein Lpp2082 (AnkB) modulates ubiquitination of the host protein parvin B and promotes intracellular replication.
|
| |
Cell Microbiol,
12,
1272-1291.
|
 |
|
|
|
|
 |
Y.Cheli,
M.Ohanna,
R.Ballotti,
and
C.Bertolotto
(2010).
Fifteen-year quest for microphthalmia-associated transcription factor target genes.
|
| |
Pigment Cell Melanoma Res,
23,
27-40.
|
 |
|
|
|
|
 |
Y.Takayama,
and
T.Toda
(2010).
Coupling histone homeostasis to centromere integrity via the ubiquitin-proteasome system.
|
| |
Cell Div,
5,
18.
|
 |
|
|
|
|
 |
C.M.Cummings,
C.A.Bentley,
S.A.Perdue,
P.W.Baas,
and
J.D.Singer
(2009).
The Cul3/Klhdc5 E3 Ligase Regulates p60/Katanin and Is Required for Normal Mitosis in Mammalian Cells.
|
| |
J Biol Chem,
284,
11663-11675.
|
 |
|
|
|
|
 |
C.Riedinger,
and
J.A.Endicott
(2009).
All change: protein conformation and the ubiquitination reaction cascade.
|
| |
F1000 Biol Rep,
1,
0.
|
 |
|
|
|
|
 |
C.T.Price,
S.Al-Khodor,
T.Al-Quadan,
M.Santic,
F.Habyarimana,
A.Kalia,
and
Y.A.Kwaik
(2009).
Molecular mimicry by an F-box effector of Legionella pneumophila hijacks a conserved polyubiquitination machinery within macrophages and protozoa.
|
| |
PLoS Pathog,
5,
e1000704.
|
 |
|
|
|
|
 |
E.B.Askew,
S.Bai,
A.T.Hnat,
J.T.Minges,
and
E.M.Wilson
(2009).
Melanoma antigen gene protein-A11 (MAGE-11) F-box links the androgen receptor NH2-terminal transactivation domain to p160 coactivators.
|
| |
J Biol Chem,
284,
34793-34808.
|
 |
|
|
|
|
 |
I.Jourdain,
N.Spielewoy,
J.Thompson,
S.Dhut,
J.R.Yates,
and
T.Toda
(2009).
Identification of a conserved F-box protein 6 interactor essential for endocytosis and cytokinesis in fission yeast.
|
| |
Biochem J,
420,
169-177.
|
 |
|
|
|
|
 |
J.Hannah,
and
P.Zhou
(2009).
Regulation of DNA damage response pathways by the cullin-RING ubiquitin ligases.
|
| |
DNA Repair (Amst),
8,
536-543.
|
 |
|
|
|
|
 |
J.Liu,
and
R.Nussinov
(2009).
The mechanism of ubiquitination in the cullin-RING E3 ligase machinery: conformational control of substrate orientation.
|
| |
PLoS Comput Biol,
5,
e1000527.
|
 |
|
|
|
|
 |
J.Xiao,
S.Yin,
Y.Li,
S.Xie,
D.Nie,
L.Ma,
X.Wang,
Y.Wu,
and
J.Feng
(2009).
SKP2 siRNA inhibits the degradation of P27kip1 and down-regulates the expression of MRP in HL-60/A cells.
|
| |
Acta Biochim Biophys Sin (Shanghai),
41,
699-708.
|
 |
|
|
|
|
 |
K.Corcoran,
X.Wang,
and
L.Lybarger
(2009).
Adapter-mediated substrate selection for endoplasmic reticulum-associated degradation.
|
| |
J Biol Chem,
284,
17475-17487.
|
 |
|
|
|
|
 |
K.Ecker,
and
L.Hengst
(2009).
Skp2: caught in the Akt.
|
| |
Nat Cell Biol,
11,
377-379.
|
 |
|
|
|
|
 |
K.L.Hindle,
J.Bella,
and
S.C.Lovell
(2009).
Quantitative analysis and prediction of curvature in leucine-rich repeat proteins.
|
| |
Proteins,
77,
342-358.
|
 |
|
|
|
|
 |
K.Nishimura,
T.Fukagawa,
H.Takisawa,
T.Kakimoto,
and
M.Kanemaki
(2009).
An auxin-based degron system for the rapid depletion of proteins in nonplant cells.
|
| |
Nat Methods,
6,
917-922.
|
 |
|
|
|
|
 |
K.S.Plafker,
J.D.Singer,
and
S.M.Plafker
(2009).
The ubiquitin conjugating enzyme, UbcM2, engages in novel interactions with components of cullin-3 based E3 ligases.
|
| |
Biochemistry,
48,
3527-3537.
|
 |
|
|
|
|
 |
L.C.Chang,
C.L.Guo,
Y.S.Lin,
H.Fu,
C.S.Wang,
and
G.Y.Jauh
(2009).
Pollen-specific SKP1-like proteins are components of functional scf complexes and essential for lily pollen tube elongation.
|
| |
Plant Cell Physiol,
50,
1558-1572.
|
 |
|
|
|
|
 |
M.Padmanabhan,
P.Cournoyer,
and
S.P.Dinesh-Kumar
(2009).
The leucine-rich repeat domain in plant innate immunity: a wealth of possibilities.
|
| |
Cell Microbiol,
11,
191-198.
|
 |
|
|
|
|
 |
M.Zhuang,
M.F.Calabrese,
J.Liu,
M.B.Waddell,
A.Nourse,
M.Hammel,
D.J.Miller,
H.Walden,
D.M.Duda,
S.N.Seyedin,
T.Hoggard,
J.W.Harper,
K.P.White,
and
B.A.Schulman
(2009).
Structures of SPOP-substrate complexes: insights into molecular architectures of BTB-Cul3 ubiquitin ligases.
|
| |
Mol Cell,
36,
39-50.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.J.Werden,
J.Lanchbury,
D.Shattuck,
C.Neff,
M.Dufford,
and
G.McFadden
(2009).
The myxoma virus m-t5 ankyrin repeat host range protein is a novel adaptor that coordinately links the cellular signaling pathways mediated by Akt and Skp1 in virus-infected cells.
|
| |
J Virol,
83,
12068-12083.
|
 |
|
|
|
|
 |
S.J.van Wijk,
S.J.de Vries,
P.Kemmeren,
A.Huang,
R.Boelens,
A.M.Bonvin,
and
H.T.Timmers
(2009).
A comprehensive framework of E2-RING E3 interactions of the human ubiquitin-proteasome system.
|
| |
Mol Syst Biol,
5,
295.
|
 |
|
|
|
|
 |
S.Sonnberg,
S.B.Fleming,
and
A.A.Mercer
(2009).
A truncated two-{alpha}-helix F-box present in poxvirus ankyrin-repeat proteins is sufficient for binding the SCF1 ubiquitin ligase complex.
|
| |
J Gen Virol,
90,
1224-1228.
|
 |
|
|
|
|
 |
Y.Shen,
T.Zhang,
J.Chen,
Z.Lv,
J.Chen,
D.Wang,
Z.Nie,
P.He,
J.Wang,
Q.Zheng,
Q.Sheng,
X.Wu,
and
Y.Zhang
(2009).
Molecular characterization and tissue localization of an F-box only protein from silkworm, Bombyx mori.
|
| |
Comp Funct Genomics,
(),
416040.
|
 |
|
|
|
|
 |
Z.A.Wang,
H.van der Wel,
Y.Vohra,
T.Buskas,
G.J.Boons,
and
C.M.West
(2009).
Role of a cytoplasmic dual-function glycosyltransferase in O2 regulation of development in Dictyostelium.
|
| |
J Biol Chem,
284,
28896-28904.
|
 |
|
|
|
|
 |
Z.Zhang,
D.Zhang,
and
Y.Zheng
(2009).
Transcriptional and post-transcriptional regulation of gene expression in submerged root cells of maize.
|
| |
Plant Signal Behav,
4,
132-135.
|
 |
|
|
|
|
 |
A.V.Kajava,
M.Anisimova,
and
N.Peeters
(2008).
Origin and evolution of GALA-LRR, a new member of the CC-LRR subfamily: from plants to bacteria?
|
| |
PLoS ONE,
3,
e1694.
|
 |
|
|
|
|
 |
D.J.Killian,
E.Harvey,
P.Johnson,
M.Otori,
S.Mitani,
and
D.Xue
(2008).
SKR-1, a homolog of Skp1 and a member of the SCF(SEL-10) complex, regulates sex-determination and LIN-12/Notch signaling in C. elegans.
|
| |
Dev Biol,
322,
322-331.
|
 |
|
|
|
|
 |
D.Ju,
X.Wang,
H.Xu,
and
Y.Xie
(2008).
Genome-wide analysis identifies MYND-domain protein Mub1 as an essential factor for Rpn4 ubiquitylation.
|
| |
Mol Cell Biol,
28,
1404-1412.
|
 |
|
|
|
|
 |
D.M.Duda,
L.A.Borg,
D.C.Scott,
H.W.Hunt,
M.Hammel,
and
B.A.Schulman
(2008).
Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation.
|
| |
Cell,
134,
995.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
I.Sumara,
S.Maerki,
and
M.Peter
(2008).
E3 ubiquitin ligases and mitosis: embracing the complexity.
|
| |
Trends Cell Biol,
18,
84-94.
|
 |
|
|
|
|
 |
M.G.Roukens,
M.Alloul-Ramdhani,
S.Moghadasi,
M.Op den Brouw,
and
D.A.Baker
(2008).
Downregulation of vertebrate Tel (ETV6) and Drosophila Yan is facilitated by an evolutionarily conserved mechanism of F-box-mediated ubiquitination.
|
| |
Mol Cell Biol,
28,
4394-4406.
|
 |
|
|
|
|
 |
M.Welcker,
and
B.E.Clurman
(2008).
FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation.
|
| |
Nat Rev Cancer,
8,
83-93.
|
 |
|
|
|
|
 |
N.van Buuren,
B.Couturier,
Y.Xiong,
and
M.Barry
(2008).
Ectromelia virus encodes a novel family of F-box proteins that interact with the SCF complex.
|
| |
J Virol,
82,
9917-9927.
|
 |
|
|
|
|
 |
P.J.Reynolds,
J.R.Simms,
and
R.J.Duronio
(2008).
Identifying determinants of cullin binding specificity among the three functionally different Drosophila melanogaster Roc proteins via domain swapping.
|
| |
PLoS ONE,
3,
e2918.
|
 |
|
|
|
|
 |
S.Sonnberg,
B.T.Seet,
T.Pawson,
S.B.Fleming,
and
A.A.Mercer
(2008).
Poxvirus ankyrin repeat proteins are a unique class of F-box proteins that associate with cellular SCF1 ubiquitin ligase complexes.
|
| |
Proc Natl Acad Sci U S A,
105,
10955-10960.
|
 |
|
|
|
|
 |
T.Ravid,
and
M.Hochstrasser
(2008).
Diversity of degradation signals in the ubiquitin-proteasome system.
|
| |
Nat Rev Mol Cell Biol,
9,
679-690.
|
 |
|
|
|
|
 |
X.Yu,
S.Hong,
and
E.M.Faustman
(2008).
Cadmium-induced activation of stress signaling pathways, disruption of ubiquitin-dependent protein degradation and apoptosis in primary rat Sertoli cell-gonocyte cocultures.
|
| |
Toxicol Sci,
104,
385-396.
|
 |
|
|
|
|
 |
X.Zheng,
L.Xie,
J.Qin,
H.Shen,
Z.Chen,
and
Y.Jin
(2008).
Effects of wortmannin on phosphorylation of PDK1, GSK3-beta, PTEN and expression of Skp2 mRNA after ischemia/reperfusion injury in the mouse kidney.
|
| |
Int Urol Nephrol,
40,
185-192.
|
 |
|
|
|
|
 |
B.Hao,
S.Oehlmann,
M.E.Sowa,
J.W.Harper,
and
N.P.Pavletich
(2007).
Structure of a Fbw7-Skp1-cyclin E complex: multisite-phosphorylated substrate recognition by SCF ubiquitin ligases.
|
| |
Mol Cell,
26,
131-143.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.Nury,
C.Doucet,
and
O.Coux
(2007).
Roles and potential therapeutic targets of the ubiquitin proteasome system in muscle wasting.
|
| |
BMC Biochem,
8,
S7.
|
 |
|
|
|
|
 |
E.H.Chew,
and
T.Hagen
(2007).
Substrate-mediated regulation of cullin neddylation.
|
| |
J Biol Chem,
282,
17032-17040.
|
 |
|
|
|
|
 |
H.Kong,
L.L.Landherr,
M.W.Frohlich,
J.Leebens-Mack,
H.Ma,
and
C.W.dePamphilis
(2007).
Patterns of gene duplication in the plant SKP1 gene family in angiosperms: evidence for multiple mechanisms of rapid gene birth.
|
| |
Plant J,
50,
873-885.
|
 |
|
|
|
|
 |
J.T.Huzil,
R.Pannu,
C.Ptak,
G.Garen,
and
M.J.Ellison
(2007).
Direct catalysis of lysine 48-linked polyubiquitin chains by the ubiquitin-activating enzyme.
|
| |
J Biol Chem,
282,
37454-37460.
|
 |
|
|
|
|
 |
K.Umanskaya,
S.Radke,
H.Chander,
R.Monardo,
X.Xu,
Z.Q.Pan,
M.J.O'Connell,
and
D.Germain
(2007).
Skp2B stimulates mammary gland development by inhibiting REA, the repressor of the estrogen receptor.
|
| |
Mol Cell Biol,
27,
7615-7622.
|
 |
|
|
|
|
 |
L.A.Higa,
and
H.Zhang
(2007).
Stealing the spotlight: CUL4-DDB1 ubiquitin ligase docks WD40-repeat proteins to destroy.
|
| |
Cell Div,
2,
5.
|
 |
|
|
|
|
 |
N.Matsushima,
T.Tanaka,
P.Enkhbayar,
T.Mikami,
M.Taga,
K.Yamada,
and
Y.Kuroki
(2007).
Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors.
|
| |
BMC Genomics,
8,
124.
|
 |
|
|
|
|
 |
S.Xu,
M.Abbasian,
P.Patel,
K.Jensen-Pergakes,
C.R.Lombardo,
B.E.Cathers,
W.Xie,
F.Mercurio,
M.Pagano,
D.Giegel,
and
S.Cox
(2007).
Substrate recognition and ubiquitination of SCFSkp2/Cks1 ubiquitin-protein isopeptide ligase.
|
| |
J Biol Chem,
282,
15462-15470.
|
 |
|
|
|
|
 |
T.Cardozo,
and
M.Pagano
(2007).
Wrenches in the works: drug discovery targeting the SCF ubiquitin ligase and APC/C complexes.
|
| |
BMC Biochem,
8,
S9.
|
 |
|
|
|
|
 |
T.Huyton,
and
C.Wolberger
(2007).
The crystal structure of the tumor suppressor protein pp32 (Anp32a): structural insights into Anp32 family of proteins.
|
| |
Protein Sci,
16,
1308-1315.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.Mizushima,
Y.Yoshida,
T.Kumanomidou,
Y.Hasegawa,
A.Suzuki,
T.Yamane,
and
K.Tanaka
(2007).
Structural basis for the selection of glycosylated substrates by SCF(Fbs1) ubiquitin ligase.
|
| |
Proc Natl Acad Sci U S A,
104,
5777-5781.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
V.Jantsch,
L.Tang,
P.Pasierbek,
A.Penkner,
S.Nayak,
A.Baudrimont,
T.Schedl,
A.Gartner,
and
J.Loidl
(2007).
Caenorhabditis elegans prom-1 is required for meiotic prophase progression and homologous chromosome pairing.
|
| |
Mol Biol Cell,
18,
4911-4920.
|
 |
|
|
|
|
 |
X.Tan,
L.I.Calderon-Villalobos,
M.Sharon,
C.Zheng,
C.V.Robinson,
M.Estelle,
and
N.Zheng
(2007).
Mechanism of auxin perception by the TIR1 ubiquitin ligase.
|
| |
Nature,
446,
640-645.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Y.Chen
(2007).
The enzymes in ubiquitin-like post-translational modifications.
|
| |
Biosci Trends,
1,
16-25.
|
 |
|
|
|
|
 |
A.A.Yunus,
and
C.D.Lima
(2006).
Lysine activation and functional analysis of E2-mediated conjugation in the SUMO pathway.
|
| |
Nat Struct Mol Biol,
13,
491-499.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Angot,
N.Peeters,
E.Lechner,
F.Vailleau,
C.Baud,
L.Gentzbittel,
E.Sartorel,
P.Genschik,
C.Boucher,
and
S.Genin
(2006).
Ralstonia solanacearum requires F-box-like domain-containing type III effectors to promote disease on several host plants.
|
| |
Proc Natl Acad Sci U S A,
103,
14620-14625.
|
 |
|
|
|
|
 |
A.Bernhardt,
E.Lechner,
P.Hano,
V.Schade,
M.Dieterle,
M.Anders,
M.J.Dubin,
G.Benvenuto,
C.Bowler,
P.Genschik,
and
H.Hellmann
(2006).
CUL4 associates with DDB1 and DET1 and its downregulation affects diverse aspects of development in Arabidopsis thaliana.
|
| |
Plant J,
47,
591-603.
|
 |
|
|
|
|
 |
A.N.Bullock,
J.E.Debreczeni,
A.M.Edwards,
M.Sundström,
and
S.Knapp
(2006).
Crystal structure of the SOCS2-elongin C-elongin B complex defines a prototypical SOCS box ubiquitin ligase.
|
| |
Proc Natl Acad Sci U S A,
103,
7637-7642.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.Hermand
(2006).
F-box proteins: more than baits for the SCF?
|
| |
Cell Div,
1,
30.
|
 |
|
|
|
|
 |
D.Ju,
and
Y.Xie
(2006).
Identification of the preferential ubiquitination site and ubiquitin-dependent degradation signal of Rpn4.
|
| |
J Biol Chem,
281,
10657-10662.
|
 |
|
|
|
|
 |
D.Zhao,
X.Yang,
L.Quan,
L.Timofejeva,
N.W.Rigel,
H.Ma,
and
C.A.Makaroff
(2006).
ASK1, a SKP1 homolog, is required for nuclear reorganization, presynaptic homolog juxtaposition and the proper distribution of cohesin during meiosis in Arabidopsis.
|
| |
Plant Mol Biol,
62,
99.
|
 |
|
|
|
|
 |
E.J.Brace,
L.P.Parkinson,
and
R.S.Fuller
(2006).
Skp1p regulates Soi3p/Rav1p association with endosomal membranes but is not required for vacuolar ATPase assembly.
|
| |
Eukaryot Cell,
5,
2104-2113.
|
 |
|
|
|
|
 |
E.Mazzucotelli,
S.Belloni,
D.Marone,
A.De Leonardis,
D.Guerra,
N.Di Fonzo,
L.Cattivelli,
and
A.Mastrangelo
(2006).
The e3 ubiquitin ligase gene family in plants: regulation by degradation.
|
| |
Curr Genomics,
7,
509-522.
|
 |
|
|
|
|
 |
G.A.Tuskan,
S.Difazio,
S.Jansson,
J.Bohlmann,
I.Grigoriev,
U.Hellsten,
N.Putnam,
S.Ralph,
S.Rombauts,
A.Salamov,
J.Schein,
L.Sterck,
A.Aerts,
R.R.Bhalerao,
R.P.Bhalerao,
D.Blaudez,
W.Boerjan,
A.Brun,
A.Brunner,
V.Busov,
M.Campbell,
J.Carlson,
M.Chalot,
J.Chapman,
G.L.Chen,
D.Cooper,
P.M.Coutinho,
J.Couturier,
S.Covert,
Q.Cronk,
R.Cunningham,
J.Davis,
S.Degroeve,
A.Déjardin,
C.Depamphilis,
J.Detter,
B.Dirks,
I.Dubchak,
S.Duplessis,
J.Ehlting,
B.Ellis,
K.Gendler,
D.Goodstein,
M.Gribskov,
J.Grimwood,
A.Groover,
L.Gunter,
B.Hamberger,
B.Heinze,
Y.Helariutta,
B.Henrissat,
D.Holligan,
R.Holt,
W.Huang,
N.Islam-Faridi,
S.Jones,
M.Jones-Rhoades,
R.Jorgensen,
C.Joshi,
J.Kangasjärvi,
J.Karlsson,
C.Kelleher,
R.Kirkpatrick,
M.Kirst,
A.Kohler,
U.Kalluri,
F.Larimer,
J.Leebens-Mack,
J.C.Leplé,
P.Locascio,
Y.Lou,
S.Lucas,
F.Martin,
B.Montanini,
C.Napoli,
D.R.Nelson,
C.Nelson,
K.Nieminen,
O.Nilsson,
V.Pereda,
G.Peter,
R.Philippe,
G.Pilate,
A.Poliakov,
J.Razumovskaya,
P.Richardson,
C.Rinaldi,
K.Ritland,
P.Rouzé,
D.Ryaboy,
J.Schmutz,
J.Schrader,
B.Segerman,
H.Shin,
A.Siddiqui,
F.Sterky,
A.Terry,
C.J.Tsai,
E.Uberbacher,
and
P.Unneberg
(2006).
The genome of black cottonwood, Populus trichocarpa (Torr. & Gray).
|
| |
Science,
313,
1596-1604.
|
 |
|
|
|
|
 |
G.Bornstein,
D.Ganoth,
and
A.Hershko
(2006).
Regulation of neddylation and deneddylation of cullin1 in SCFSkp2 ubiquitin ligase by F-box protein and substrate.
|
| |
Proc Natl Acad Sci U S A,
103,
11515-11520.
|
 |
|
|
|
|
 |
J.Bloom,
A.Peschiaroli,
G.Demartino,
and
M.Pagano
(2006).
Modification of Cul1 regulates its association with proteasomal subunits.
|
| |
Cell Div,
1,
5.
|
 |
|
|
|
|
 |
J.Du,
J.Zeng,
X.Ou,
X.Ren,
and
S.Cai
(2006).
Methylglyoxal downregulates Raf-1 protein through a ubiquitination-mediated mechanism.
|
| |
Int J Biochem Cell Biol,
38,
1084-1091.
|
 |
|
|
|
|
 |
J.H.Thomas
(2006).
Analysis of homologous gene clusters in Caenorhabditis elegans reveals striking regional cluster domains.
|
| |
Genetics,
172,
127-143.
|
 |
|
|
|
|
 |
J.H.Thomas
(2006).
Adaptive evolution in two large families of ubiquitin-ligase adapters in nematodes and plants.
|
| |
Genome Res,
16,
1017-1030.
|
 |
|
|
|
|
 |
J.Huang,
L.Zhao,
Q.Yang,
and
Y.Xue
(2006).
AhSSK1, a novel SKP1-like protein that interacts with the S-locus F-box protein SLF.
|
| |
Plant J,
46,
780-793.
|
 |
|
|
|
|
 |
P.Ji,
L.Goldin,
H.Ren,
D.Sun,
D.Guardavaccaro,
M.Pagano,
and
L.Zhu
(2006).
Skp2 contains a novel cyclin A binding domain that directly protects cyclin A from inhibition by p27Kip1.
|
| |
J Biol Chem,
281,
24058-24069.
|
 |
|
|
|
|
 |
R.F.Nelson,
K.A.Glenn,
V.M.Miller,
H.Wen,
and
H.L.Paulson
(2006).
A novel route for F-box protein-mediated ubiquitination links CHIP to glycoprotein quality control.
|
| |
J Biol Chem,
281,
20242-20251.
|
 |
|
|
|
|
 |
S.Wang,
H.Zheng,
Y.Esaki,
F.Kelly,
and
W.Yan
(2006).
Cullin3 is a KLHL10-interacting protein preferentially expressed during late spermiogenesis.
|
| |
Biol Reprod,
74,
102-108.
|
 |
|
|
|
|
 |
T.Li,
X.Chen,
K.C.Garbutt,
P.Zhou,
and
N.Zheng
(2006).
Structure of DDB1 in complex with a paramyxovirus V protein: viral hijack of a propeller cluster in ubiquitin ligase.
|
| |
Cell,
124,
105-117.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.A.Mercer,
S.B.Fleming,
and
N.Ueda
(2005).
F-box-like domains are present in most poxvirus ankyrin repeat proteins.
|
| |
Virus Genes,
31,
127-133.
|
 |
|
|
|
|
 |
A.d'Azzo,
A.Bongiovanni,
and
T.Nastasi
(2005).
E3 ubiquitin ligases as regulators of membrane protein trafficking and degradation.
|
| |
Traffic,
6,
429-441.
|
 |
|
|
|
|
 |
B.Hao,
N.Zheng,
B.A.Schulman,
G.Wu,
J.J.Miller,
M.Pagano,
and
N.P.Pavletich
(2005).
Structural basis of the Cks1-dependent recognition of p27(Kip1) by the SCF(Skp2) ubiquitin ligase.
|
| |
Mol Cell,
20,
9.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.Wang,
X.Cai,
and
Z.Zheng
(2005).
High humidity represses Cf-4/Avr4- and Cf-9/Avr9-dependent hypersensitive cell death and defense gene expression.
|
| |
Planta,
222,
947-956.
|
 |
|
|
|
|
 |
D.Ungermannova,
Y.Gao,
and
X.Liu
(2005).
Ubiquitination of p27Kip1 requires physical interaction with cyclin E and probable phosphate recognition by SKP2.
|
| |
J Biol Chem,
280,
30301-30309.
|
 |
|
|
|
|
 |
H.Ma
(2005).
Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants.
|
| |
Annu Rev Plant Biol,
56,
393-434.
|
 |
|
|
|
|
 |
K.A.Dickson,
M.C.Haigis,
and
R.T.Raines
(2005).
Ribonuclease inhibitor: structure and function.
|
| |
Prog Nucleic Acid Res Mol Biol,
80,
349-374.
|
 |
|
|
|
|
 |
L.Lu,
Z.M.Zhou,
X.Y.Huang,
M.Xu,
L.L.Yin,
H.Wang,
Z.Y.Xu,
and
J.H.Sha
(2005).
Identification and characterization of cul-3b, a novel hominine CUL-3 transcript variant.
|
| |
Asian J Androl,
7,
205-211.
|
 |
|
|
|
|
 |
M.D.Petroski,
and
R.J.Deshaies
(2005).
Function and regulation of cullin-RING ubiquitin ligases.
|
| |
Nat Rev Mol Cell Biol,
6,
9.
|
 |
|
|
|
|
 |
M.Dentice,
A.Bandyopadhyay,
B.Gereben,
I.Callebaut,
M.A.Christoffolete,
B.W.Kim,
S.Nissim,
J.P.Mornon,
A.M.Zavacki,
A.Zeöld,
L.P.Capelo,
C.Curcio-Morelli,
R.Ribeiro,
J.W.Harney,
C.J.Tabin,
and
A.C.Bianco
(2005).
The Hedgehog-inducible ubiquitin ligase subunit WSB-1 modulates thyroid hormone activation and PTHrP secretion in the developing growth plate.
|
| |
Nat Cell Biol,
7,
698-705.
|
 |
|
|
|
|
 |
M.Quint,
H.Ito,
W.Zhang,
and
W.M.Gray
(2005).
Characterization of a novel temperature-sensitive allele of the CUL1/AXR6 subunit of SCF ubiquitin-ligases.
|
| |
Plant J,
43,
371-383.
|
 |
|
|
|
|
 |
P.J.Stogios,
G.S.Downs,
J.J.Jauhal,
S.K.Nandra,
and
G.G.Privé
(2005).
Sequence and structural analysis of BTB domain proteins.
|
| |
Genome Biol,
6,
R82.
|
 |
|
|
|
|
 |
R.Barbey,
P.Baudouin-Cornu,
T.A.Lee,
A.Rouillon,
P.Zarzov,
M.Tyers,
and
D.Thomas
(2005).
Inducible dissociation of SCF(Met30) ubiquitin ligase mediates a rapid transcriptional response to cadmium.
|
| |
EMBO J,
24,
521-532.
|
 |
|
|
|
|
 |
S.Kepinski,
and
O.Leyser
(2005).
The Arabidopsis F-box protein TIR1 is an auxin receptor.
|
| |
Nature,
435,
446-451.
|
 |
|
|
|
|
 |
S.Matsuzawa,
M.Cuddy,
T.Fukushima,
and
J.C.Reed
(2005).
Method for targeting protein destruction by using a ubiquitin-independent, proteasome-mediated degradation pathway.
|
| |
Proc Natl Acad Sci U S A,
102,
14982-14987.
|
 |
|
|
|
|
 |
S.Radke,
A.Pirkmaier,
and
D.Germain
(2005).
Differential expression of the F-box proteins Skp2 and Skp2B in breast cancer.
|
| |
Oncogene,
24,
3448-3458.
|
 |
|
|
|
|
 |
Y.Kanemori,
K.Uto,
and
N.Sagata
(2005).
Beta-TrCP recognizes a previously undescribed nonphosphorylated destruction motif in Cdc25A and Cdc25B phosphatases.
|
| |
Proc Natl Acad Sci U S A,
102,
6279-6284.
|
 |
|
|
|
|
 |
A.Lehmann,
S.Katayama,
C.Harrison,
S.Dhut,
K.Kitamura,
N.McDonald,
and
T.Toda
(2004).
Molecular interactions of fission yeast Skp1 and its role in the DNA damage checkpoint.
|
| |
Genes Cells,
9,
367-382.
|
 |
|
|
|
|
 |
A.Wilkins,
Q.Ping,
and
C.L.Carpenter
(2004).
RhoBTB2 is a substrate of the mammalian Cul3 ubiquitin ligase complex.
|
| |
Genes Dev,
18,
856-861.
|
 |
|
|
|
|
 |
B.M.Kus,
C.E.Caldon,
R.Andorn-Broza,
and
A.M.Edwards
(2004).
Functional interaction of 13 yeast SCF complexes with a set of yeast E2 enzymes in vitro.
|
| |
Proteins,
54,
455-467.
|
 |
|
|
|
|
 |
H.Yamano,
K.Kominami,
C.Harrison,
K.Kitamura,
S.Katayama,
S.Dhut,
T.Hunt,
and
T.Toda
(2004).
Requirement of the SCFPop1/Pop2 Ubiquitin Ligase for Degradation of the Fission Yeast S Phase Cyclin Cig2.
|
| |
J Biol Chem,
279,
18974-18980.
|
 |
|
|
|
|
 |
J.Jin,
T.Cardozo,
R.C.Lovering,
S.J.Elledge,
M.Pagano,
and
J.W.Harper
(2004).
Systematic analysis and nomenclature of mammalian F-box proteins.
|
| |
Genes Dev,
18,
2573-2580.
|
 |
|
|
|
|
 |
J.Nie,
S.S.Li,
and
C.J.McGlade
(2004).
A novel PTB-PDZ domain interaction mediates isoform-specific ubiquitylation of mammalian Numb.
|
| |
J Biol Chem,
279,
20807-20815.
|
 |
|
|
|
|
 |
K.G.Kumar,
J.J.Krolewski,
and
S.Y.Fuchs
(2004).
Phosphorylation and specific ubiquitin acceptor sites are required for ubiquitination and degradation of the IFNAR1 subunit of type I interferon receptor.
|
| |
J Biol Chem,
279,
46614-46620.
|
 |
|
|
|
|
 |
K.L.Ramsey,
J.J.Smith,
A.Dasgupta,
N.Maqani,
P.Grant,
and
D.T.Auble
(2004).
The NEF4 complex regulates Rad4 levels and utilizes Snf2/Swi2-related ATPase activity for nucleotide excision repair.
|
| |
Mol Cell Biol,
24,
6362-6378.
|
 |
|
|
|
|
 |
L.E.Brunson,
C.Dixon,
L.Kozubowski,
and
N.Mathias
(2004).
The amino-terminal portion of the F-box protein Met30p mediates its nuclear import and assimilation into an SCF complex.
|
| |
J Biol Chem,
279,
6674-6682.
|
 |
|
|
|
|
 |
L.Han,
M.Mason,
E.P.Risseeuw,
W.L.Crosby,
and
D.E.Somers
(2004).
Formation of an SCF(ZTL) complex is required for proper regulation of circadian timing.
|
| |
Plant J,
40,
291-301.
|
 |
|
|
|
|
 |
L.M.Knowles,
F.Axelrod,
C.D.Browne,
and
J.W.Smith
(2004).
A fatty acid synthase blockade induces tumor cell-cycle arrest by down-regulating Skp2.
|
| |
J Biol Chem,
279,
30540-30545.
|
 |
|
|
|
|
 |
L.Pintard,
A.Willems,
and
M.Peter
(2004).
Cullin-based ubiquitin ligases: Cul3-BTB complexes join the family.
|
| |
EMBO J,
23,
1681-1687.
|
 |
|
|
|
|
 |
M.B.Yaffe,
and
S.J.Smerdon
(2004).
The use of in vitro peptide-library screens in the analysis of phosphoserine/threonine-binding domain structure and function.
|
| |
Annu Rev Biophys Biomol Struct,
33,
225-244.
|
 |
|
|
|
|
 |
M.Liang,
Y.Y.Liang,
K.Wrighton,
D.Ungermannova,
X.P.Wang,
F.C.Brunicardi,
X.Liu,
X.H.Feng,
and
X.Lin
(2004).
Ubiquitination and proteolysis of cancer-derived Smad4 mutants by SCFSkp2.
|
| |
Mol Cell Biol,
24,
7524-7537.
|
 |
|
|
|
|
 |
P.Enkhbayar,
M.Kamiya,
M.Osaki,
T.Matsumoto,
and
N.Matsushima
(2004).
Structural principles of leucine-rich repeat (LRR) proteins.
|
| |
Proteins,
54,
394-403.
|
 |
|
|
|
|
 |
Q.Yan,
T.Kamura,
Y.Cai,
J.Jin,
M.Ivan,
A.Mushegian,
R.C.Conaway,
and
J.W.Conaway
(2004).
Identification of Elongin C and Skp1 sequences that determine Cullin selection.
|
| |
J Biol Chem,
279,
43019-43026.
|
 |
|
|
|
|
 |
S.J.Goldenberg,
T.C.Cascio,
S.D.Shumway,
K.C.Garbutt,
J.Liu,
Y.Xiong,
and
N.Zheng
(2004).
Structure of the Cand1-Cul1-Roc1 complex reveals regulatory mechanisms for the assembly of the multisubunit cullin-dependent ubiquitin ligases.
|
| |
Cell,
119,
517-528.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Tokarz,
C.Berset,
J.La Rue,
K.Friedman,
K.Nakayama,
K.Nakayama,
D.E.Zhang,
and
S.Lanker
(2004).
The ISG15 isopeptidase UBP43 is regulated by proteolysis via the SCFSkp2 ubiquitin ligase.
|
| |
J Biol Chem,
279,
46424-46430.
|
 |
|
|
|
|
 |
S.van den Heuvel
(2004).
Protein degradation: CUL-3 and BTB--partners in proteolysis.
|
| |
Curr Biol,
14,
R59-R61.
|
 |
|
|
|
|
 |
T.Cardozo,
and
M.Pagano
(2004).
The SCF ubiquitin ligase: insights into a molecular machine.
|
| |
Nat Rev Mol Cell Biol,
5,
739-751.
|
 |
|
|
|
|
 |
T.Mizushima,
T.Hirao,
Y.Yoshida,
S.J.Lee,
T.Chiba,
K.Iwai,
Y.Yamaguchi,
K.Kato,
T.Tsukihara,
and
K.Tanaka
(2004).
Structural basis of sugar-recognizing ubiquitin ligase.
|
| |
Nat Struct Mol Biol,
11,
365-370.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
W.R.Moyle,
Y.Xing,
W.Lin,
D.Cao,
R.V.Myers,
J.E.Kerrigan,
and
M.P.Bernard
(2004).
Model of glycoprotein hormone receptor ligand binding and signaling.
|
| |
J Biol Chem,
279,
44442-44459.
|
 |
|
|
|
|
 |
W.Wang,
D.Ungermannova,
L.Chen,
and
X.Liu
(2004).
Molecular and biochemical characterization of the Skp2-Cks1 binding interface.
|
| |
J Biol Chem,
279,
51362-51369.
|
 |
|
|
|
|
 |
X.H.Zhu,
H.Nguyen,
H.D.Halicka,
F.Traganos,
and
A.Koff
(2004).
Noncatalytic requirement for cyclin A-cdk2 in p27 turnover.
|
| |
Mol Cell Biol,
24,
6058-6066.
|
 |
|
|
|
|
 |
Y.Li,
S.Gazdoiu,
Z.Q.Pan,
and
S.Y.Fuchs
(2004).
Stability of homologue of Slimb F-box protein is regulated by availability of its substrate.
|
| |
J Biol Chem,
279,
11074-11080.
|
 |
|
|
|
|
 |
Z.Huang,
L.Nie,
M.Xu,
and
X.H.Sun
(2004).
Notch-induced E2A degradation requires CHIP and Hsc70 as novel facilitators of ubiquitination.
|
| |
Mol Cell Biol,
24,
8951-8962.
|
 |
|
|
|
|
 |
A.Di Matteo,
L.Federici,
B.Mattei,
G.Salvi,
K.A.Johnson,
C.Savino,
G.De Lorenzo,
D.Tsernoglou,
and
F.Cervone
(2003).
The crystal structure of polygalacturonase-inhibiting protein (PGIP), a leucine-rich repeat protein involved in plant defense.
|
| |
Proc Natl Acad Sci U S A,
100,
10124-10128.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.Dixon,
L.E.Brunson,
M.M.Roy,
D.Smothers,
M.G.Sehorn,
and
N.Mathias
(2003).
Overproduction of polypeptides corresponding to the amino terminus of the F-box proteins Cdc4p and Met30p inhibits ubiquitin ligase activities of their SCF complexes.
|
| |
Eukaryot Cell,
2,
123-133.
|
 |
|
|
|
|
 |
D.Hermand,
S.Bamps,
L.Tafforeau,
J.Vandenhaute,
and
T.P.Mäkelä
(2003).
Skp1 and the F-box protein Pof6 are essential for cell separation in fission yeast.
|
| |
J Biol Chem,
278,
9671-9677.
|
 |
|
|
|
|
 |
E.P.Risseeuw,
T.E.Daskalchuk,
T.W.Banks,
E.Liu,
J.Cotelesage,
H.Hellmann,
M.Estelle,
D.E.Somers,
and
W.L.Crosby
(2003).
Protein interaction analysis of SCF ubiquitin E3 ligase subunits from Arabidopsis.
|
| |
Plant J,
34,
753-767.
|
 |
|
|
|
|
 |
G.Wu,
G.Xu,
B.A.Schulman,
P.D.Jeffrey,
J.W.Harper,
and
N.P.Pavletich
(2003).
Structure of a beta-TrCP1-Skp1-beta-catenin complex: destruction motif binding and lysine specificity of the SCF(beta-TrCP1) ubiquitin ligase.
|
| |
Mol Cell,
11,
1445-1456.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.F.Ahmad,
A.Melnick,
S.Lax,
D.Bouchard,
J.Liu,
C.L.Kiang,
S.Mayer,
S.Takahashi,
J.D.Licht,
and
G.G.Privé
(2003).
Mechanism of SMRT corepressor recruitment by the BCL6 BTB domain.
|
| |
Mol Cell,
12,
1551-1564.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
L.Kaplun,
Y.Ivantsiv,
A.Bakhrat,
and
D.Raveh
(2003).
DNA damage response-mediated degradation of Ho endonuclease via the ubiquitin system involves its nuclear export.
|
| |
J Biol Chem,
278,
48727-48734.
|
 |
|
|
|
|
 |
L.Pintard,
J.H.Willis,
A.Willems,
J.L.Johnson,
M.Srayko,
T.Kurz,
S.Glaser,
P.E.Mains,
M.Tyers,
B.Bowerman,
and
M.Peter
(2003).
The BTB protein MEL-26 is a substrate-specific adaptor of the CUL-3 ubiquitin-ligase.
|
| |
Nature,
425,
311-316.
|
 |
|
|
|
|
 |
L.Xu,
Y.Wei,
J.Reboul,
P.Vaglio,
T.H.Shin,
M.Vidal,
S.J.Elledge,
and
J.W.Harper
(2003).
BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3.
|
| |
Nature,
425,
316-321.
|
 |
|
|
|
|
 |
M.A.Seeliger,
S.E.Breward,
A.Friedler,
O.Schon,
and
L.S.Itzhaki
(2003).
Cooperative organization in a macromolecular complex.
|
| |
Nat Struct Biol,
10,
718-724.
|
 |
|
|
|
|
 |
P.K.Jackson
(2003).
Ubiquitinating a phosphorylated Cdk inhibitor on the blades of the Cdc4 beta-propeller.
|
| |
Cell,
112,
142-144.
|
 |
|
|
|
|
 |
P.Padma,
Y.Satouh,
K.Wakabayashi,
A.Hozumi,
Y.Ushimaru,
R.Kamiya,
and
K.Inaba
(2003).
Identification of a novel leucine-rich repeat protein as a component of flagellar radial spoke in the Ascidian Ciona intestinalis.
|
| |
Mol Biol Cell,
14,
774-785.
|
 |
|
|
|
|
 |
R.Geyer,
S.Wee,
S.Anderson,
J.Yates,
and
D.A.Wolf
(2003).
BTB/POZ domain proteins are putative substrate adaptors for cullin 3 ubiquitin ligases.
|
| |
Mol Cell,
12,
783-790.
|
 |
|
|
|
|
 |
S.I.Reed
(2003).
Ratchets and clocks: the cell cycle, ubiquitylation and protein turnover.
|
| |
Nat Rev Mol Cell Biol,
4,
855-864.
|
 |
|
|
|
|
 |
S.Orlicky,
X.Tang,
A.Willems,
M.Tyers,
and
F.Sicheri
(2003).
Structural basis for phosphodependent substrate selection and orientation by the SCFCdc4 ubiquitin ligase.
|
| |
Cell,
112,
243-256.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
W.Krek
(2003).
BTB proteins as henchmen of Cul3-based ubiquitin ligases.
|
| |
Nat Cell Biol,
5,
950-951.
|
 |
|
|
|
|
 |
W.Tang,
O.A.Pavlish,
V.S.Spiegelman,
A.A.Parkhitko,
and
S.Y.Fuchs
(2003).
Interaction of Epstein-Barr virus latent membrane protein 1 with SCFHOS/beta-TrCP E3 ubiquitin ligase regulates extent of NF-kappaB activation.
|
| |
J Biol Chem,
278,
48942-48949.
|
 |
|
|
|
|
 |
W.Wang,
D.Ungermannova,
L.Chen,
and
X.Liu
(2003).
A negatively charged amino acid in Skp2 is required for Skp2-Cks1 interaction and ubiquitination of p27Kip1.
|
| |
J Biol Chem,
278,
32390-32396.
|
 |
|
|
|
|
 |
A.Devoto,
M.Nieto-Rostro,
D.Xie,
C.Ellis,
R.Harmston,
E.Patrick,
J.Davis,
L.Sherratt,
M.Coleman,
and
J.G.Turner
(2002).
COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis.
|
| |
Plant J,
32,
457-466.
|
 |
|
|
|
|
 |
A.V.Kajava,
and
B.Kobe
(2002).
Assessment of the ability to model proteins with leucine-rich repeats in light of the latest structural information.
|
| |
Protein Sci,
11,
1082-1090.
|
 |
|
|
|
|
 |
A.Yamanaka,
M.Yada,
H.Imaki,
M.Koga,
Y.Ohshima,
and
K.Nakayama
(2002).
Multiple Skp1-related proteins in Caenorhabditis elegans: diverse patterns of interaction with Cullins and F-box proteins.
|
| |
Curr Biol,
12,
267-275.
|
 |
|
|
|
|
 |
B.T.Kile,
B.A.Schulman,
W.S.Alexander,
N.A.Nicola,
H.M.Martin,
and
D.J.Hilton
(2002).
The SOCS box: a tale of destruction and degradation.
|
| |
Trends Biochem Sci,
27,
235-241.
|
 |
|
|
|
|
 |
C.Berset,
P.Griac,
R.Tempel,
J.La Rue,
C.Wittenberg,
and
S.Lanker
(2002).
Transferable domain in the G(1) cyclin Cln2 sufficient to switch degradation of Sic1 from the E3 ubiquitin ligase SCF(Cdc4) to SCF(Grr1).
|
| |
Mol Cell Biol,
22,
4463-4476.
|
 |
|
|
|
|
 |
C.D.Lima
(2002).
Bridging the gap between SCF and ubiquitin transfer.
|
| |
Structure,
10,
741-742.
|
 |
|
|
|
|
 |
C.Dubacq,
R.Guerois,
R.Courbeyrette,
K.Kitagawa,
and
C.Mann
(2002).
Sgt1p contributes to cyclic AMP pathway activity and physically interacts with the adenylyl cyclase Cyr1p/Cdc35p in budding yeast.
|
| |
Eukaryot Cell,
1,
568-582.
|
 |
|
|
|
|
 |
D.Sitry,
M.A.Seeliger,
T.K.Ko,
D.Ganoth,
S.E.Breward,
L.S.Itzhaki,
M.Pagano,
and
A.Hershko
(2002).
Three different binding sites of Cks1 are required for p27-ubiquitin ligation.
|
| |
J Biol Chem,
277,
42233-42240.
|
 |
|
|
|
|
 |
G.Polekhina,
C.M.House,
N.Traficante,
J.P.Mackay,
F.Relaix,
D.A.Sassoon,
M.W.Parker,
and
D.D.Bowtell
(2002).
Siah ubiquitin ligase is structurally related to TRAF and modulates TNF-alpha signaling.
|
| |
Nat Struct Biol,
9,
68-75.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.P.Bencsath,
M.S.Podgorski,
V.R.Pagala,
C.A.Slaughter,
and
B.A.Schulman
(2002).
Identification of a multifunctional binding site on Ubc9p required for Smt3p conjugation.
|
| |
J Biol Chem,
277,
47938-47945.
|
 |
|
|
|
|
 |
M.Davis,
A.Hatzubai,
J.S.Andersen,
E.Ben-Shushan,
G.Z.Fisher,
A.Yaron,
A.Bauskin,
F.Mercurio,
M.Mann,
and
Y.Ben-Neriah
(2002).
Pseudosubstrate regulation of the SCF(beta-TrCP) ubiquitin ligase by hnRNP-U.
|
| |
Genes Dev,
16,
439-451.
|
 |
|
|
|
|
 |
P.K.Jackson,
and
A.G.Eldridge
(2002).
The SCF ubiquitin ligase: an extended look.
|
| |
Mol Cell,
9,
923-925.
|
 |
|
|
|
|
 |
R.S.Khush,
W.D.Cornwell,
J.N.Uram,
and
B.Lemaitre
(2002).
A ubiquitin-proteasome pathway represses the Drosophila immune deficiency signaling cascade.
|
| |
Curr Biol,
12,
1728-1737.
|
 |
|
|
|
|
 |
S.Nayak,
F.E.Santiago,
H.Jin,
D.Lin,
T.Schedl,
and
E.T.Kipreos
(2002).
The Caenorhabditis elegans Skp1-related gene family: diverse functions in cell proliferation, morphogenesis, and meiosis.
|
| |
Curr Biol,
12,
277-287.
|
 |
|
|
|
|
 |
V.Seibert,
C.Prohl,
I.Schoultz,
E.Rhee,
R.Lopez,
K.Abderazzaq,
C.Zhou,
and
D.A.Wolf
(2002).
Combinatorial diversity of fission yeast SCF ubiquitin ligases by homo- and heterooligomeric assemblies of the F-box proteins Pop1p and Pop2p.
|
| |
BMC Biochem,
3,
22.
|
 |
|
|
|
|
 |
A.C.Carrano,
and
M.Pagano
(2001).
Role of the F-box protein Skp2 in adhesion-dependent cell cycle progression.
|
| |
J Cell Biol,
153,
1381-1390.
|
 |
|
|
|
|
 |
C.Gieffers,
P.Dube,
J.R.Harris,
H.Stark,
and
J.M.Peters
(2001).
Three-dimensional structure of the anaphase-promoting complex.
|
| |
Mol Cell,
7,
907-913.
|
 |
|
|
|
|
 |
C.Spruck,
H.Strohmaier,
M.Watson,
A.P.Smith,
A.Ryan,
T.W.Krek,
and
S.I.Reed
(2001).
A CDK-independent function of mammalian Cks1: targeting of SCF(Skp2) to the CDK inhibitor p27Kip1.
|
| |
Mol Cell,
7,
639-650.
|
 |
|
|
|
|
 |
D.C.Swinney
(2001).
Targeting protein ubiquitination for drug discovery. What is in the drug discovery toolbox?
|
| |
Drug Discov Today,
6,
244-250.
|
 |
|
|
|
|
 |
D.E.Somers
(2001).
Clock-associated genes in Arabidopsis: a family affair.
|
| |
Philos Trans R Soc Lond B Biol Sci,
356,
1745-1753.
|
 |
|
|
|
|
 |
E.Latres,
R.Chiarle,
B.A.Schulman,
N.P.Pavletich,
A.Pellicer,
G.Inghirami,
and
M.Pagano
(2001).
Role of the F-box protein Skp2 in lymphomagenesis.
|
| |
Proc Natl Acad Sci U S A,
98,
2515-2520.
|
 |
|
|
|
|
 |
J.W.Harper
(2001).
Protein destruction: adapting roles for Cks proteins.
|
| |
Curr Biol,
11,
R431-R435.
|
 |
|
|
|
|
 |
M.B.Yaffe,
and
A.E.Elia
(2001).
Phosphoserine/threonine-binding domains.
|
| |
Curr Opin Cell Biol,
13,
131-138.
|
 |
|
|
|
|
 |
P.Polakis
(2001).
More than one way to skin a catenin.
|
| |
Cell,
105,
563-566.
|
 |
|
|
|
|
 |
R.Farrás,
A.Ferrando,
J.Jásik,
T.Kleinow,
L.Okrész,
A.Tiburcio,
K.Salchert,
C.del Pozo,
J.Schell,
and
C.Koncz
(2001).
SKP1-SnRK protein kinase interactions mediate proteasomal binding of a plant SCF ubiquitin ligase.
|
| |
EMBO J,
20,
2742-2756.
|
 |
|
|
|
|
 |
Y.G.Hsiung,
H.C.Chang,
J.L.Pellequer,
R.La Valle,
S.Lanker,
and
C.Wittenberg
(2001).
F-box protein Grr1 interacts with phosphorylated targets via the cationic surface of its leucine-rich repeat.
|
| |
Mol Cell Biol,
21,
2506-2520.
|
 |
|
|
|
|
 |
Y.Xie,
and
A.Varshavsky
(2001).
RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: a negative feedback circuit.
|
| |
Proc Natl Acad Sci U S A,
98,
3056-3061.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |