spacer
spacer

PDBsum entry 1ffh

Go to PDB code: 
protein metals links
Ribonucleoprotein PDB id
1ffh

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
287 a.a. *
Metals
_MG
Waters ×121
* Residue conservation analysis
PDB id:
1ffh
Name: Ribonucleoprotein
Title: N and gtpase domains of the signal sequence recognition protein ffh from thermus aquaticus
Structure: Ffh. Chain: a. Fragment: 'ng' gtpase fragment of ffh. Engineered: yes. Other_details: the ng fragment was generated by proteolysis
Source: Thermus aquaticus. Organism_taxid: 271. Cell_line: bl21. Gene: ffh. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Dimer (from PQS)
Resolution:
2.05Å     R-factor:   0.186     R-free:   0.248
Authors: D.M.Freymann,R.J.Keenan,R.M.Stroud,P.Walter
Key ref: D.M.Freymann et al. (1997). Structure of the conserved GTPase domain of the signal recognition particle. Nature, 385, 361-364. PubMed id: 9002524
Date:
30-Dec-96     Release date:   31-Dec-97    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
O07347  (SRP54_THEAQ) -  Signal recognition particle protein from Thermus aquaticus
Seq:
Struc:
430 a.a.
287 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: E.C.3.6.5.4  - signal-recognition-particle GTPase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: GTP + H2O = GDP + phosphate + H+
GTP
+ H2O
= GDP
+ phosphate
+ H(+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
Nature 385:361-364 (1997)
PubMed id: 9002524  
 
 
Structure of the conserved GTPase domain of the signal recognition particle.
D.M.Freymann, R.J.Keenan, R.M.Stroud, P.Walter.
 
  ABSTRACT  
 
The signal-recognition particle (SRP) and its receptor (SR) function in the co-translational targeting of nascent protein-ribosome complexes to the membrane translocation apparatus. The SRP protein subunit (termed Ffh in bacteria) that recognizes the signal sequence of nascent polypeptides is a GTPase, as is the SR-alpha subunit (termed FtsY). Ffh and FtsY interact directly, each stimulating the GTP hydrolysis activity of the other. The sequence of Ffh suggests three domains: an amino-terminal N domain of unknown function, a central GTPase G domain, and a methionine-rich M domain that binds both SRP RNA and signal peptides. Sequence conservation suggests that structurally similar N and G domains are present in FtsY. Here we report the structure of the nucleotide-free form of the NG fragment of Ffh. Consistent with a role for apo Ffh in protein targeting, the side chains of the empty active-site pocket form a tight network of interactions which may stabilize the nucleotide-free protein. The structural relationship between the two domains suggests that the N domain senses or controls the nucleotide occupancy of the GTPase domain. A structural subdomain unique to these evolutionarily conserved GTPases constitutes them as a distinct subfamily in the GTPase superfamily.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
22056770 G.Bange, N.Kümmerer, P.Grudnik, R.Lindner, G.Petzold, D.Kressler, E.Hurt, K.Wild, and I.Sinning (2011).
Structural basis for the molecular evolution of SRP-GTPase activation by protein.
  Nat Struct Mol Biol, 18, 1376-1380.
PDB code: 3syn
21151118 L.F.Estrozi, D.Boehringer, S.O.Shan, N.Ban, and C.Schaffitzel (2011).
Cryo-EM structure of the E. coli translating ribosome in complex with SRP and its receptor.
  Nat Struct Mol Biol, 18, 88-90.
PDB code: 2xkv
  21465554 M.J.Yang, and X.Zhang (2011).
Molecular dynamics simulations reveal structural coordination of Ffh-FtsY heterodimer toward GTPase activation.
  Proteins, 79, 1774-1785.  
21276251 N.Pawlowski, A.Khaminets, J.P.Hunn, N.Papic, A.Schmidt, R.C.Uthaiah, R.Lange, G.Vopper, S.Martens, E.Wolf, and J.C.Howard (2011).
The activation mechanism of Irga6, an interferon-inducible GTPase contributing to mouse resistance against Toxoplasma gondii.
  BMC Biol, 9, 7.  
21336278 T.Hainzl, S.Huang, G.Meriläinen, K.Brännström, and A.E.Sauer-Eriksson (2011).
Structural basis of signal-sequence recognition by the signal recognition particle.
  Nat Struct Mol Biol, 18, 389-391.
PDB code: 3ndb
20364120 C.Y.Janda, J.Li, C.Oubridge, H.Hernández, C.V.Robinson, and K.Nagai (2010).
Recognition of a signal peptide by the signal recognition particle.
  Nature, 465, 507-510.
PDB code: 3kl4
20544960 M.Yang, X.Zhang, and K.Han (2010).
Molecular dynamics simulation of SRP GTPases: towards an understanding of the complex formation from equilibrium fluctuations.
  Proteins, 78, 2222-2237.  
20204450 S.J.Facey, and A.Kuhn (2010).
Biogenesis of bacterial inner-membrane proteins.
  Cell Mol Life Sci, 67, 2343-2362.  
19675567 A.Mateja, A.Szlachcic, M.E.Downing, M.Dobosz, M.Mariappan, R.S.Hegde, and R.J.Keenan (2009).
The structural basis of tail-anchored membrane protein recognition by Get3.
  Nature, 461, 361-366.
PDB codes: 2woj 2woo
19706470 C.J.Suloway, J.W.Chartron, M.Zaslaver, and W.M.Clemons (2009).
Model for eukaryotic tail-anchored protein binding based on the structure of Get3.
  Proc Natl Acad Sci U S A, 106, 14849-14854.
PDB codes: 3ibg 3idq
19948960 G.Bozkurt, G.Stjepanovic, F.Vilardi, S.Amlacher, K.Wild, G.Bange, V.Favaloro, K.Rippe, E.Hurt, B.Dobberstein, and I.Sinning (2009).
Structural insights into tail-anchored protein binding and membrane insertion by Get3.
  Proc Natl Acad Sci U S A, 106, 21131-21136.
PDB codes: 3iqw 3iqx
19029307 I.A.Buskiewicz, J.Jöckel, M.V.Rodnina, and W.Wintermeyer (2009).
Conformation of the signal recognition particle in ribosomal targeting complexes.
  RNA, 15, 44-54.  
19558326 P.Grudnik, G.Bange, and I.Sinning (2009).
Protein targeting by the signal recognition particle.
  Biol Chem, 390, 775-782.  
19587121 P.Jaru-Ampornpan, T.X.Nguyen, and S.O.Shan (2009).
A distinct mechanism to achieve efficient signal recognition particle (SRP)-SRP receptor interaction by the chloroplast srp pathway.
  Mol Biol Cell, 20, 3965-3973.  
19109978 S.M.Batt, L.E.Bingle, T.R.Dafforn, and C.M.Thomas (2009).
Bacterial genome partitioning: N-terminal domain of IncC protein encoded by broad-host-range plasmid RK2 modulates oligomerisation and DNA binding.
  J Mol Biol, 385, 1361-1374.  
19469550 S.O.Shan, S.L.Schmid, and X.Zhang (2009).
Signal recognition particle (SRP) and SRP receptor: a new paradigm for multistate regulatory GTPases.
  Biochemistry, 48, 6696-6704.  
19174514 X.Zhang, C.Schaffitzel, N.Ban, and S.O.Shan (2009).
Multiple conformational switches in a GTPase complex control co-translational protein targeting.
  Proc Natl Acad Sci U S A, 106, 1754-1759.  
18078384 A.J.Driessen, and N.Nouwen (2008).
Protein translocation across the bacterial cytoplasmic membrane.
  Annu Rev Biochem, 77, 643-667.  
17918185 E.M.Clérico, J.L.Maki, and L.M.Gierasch (2008).
Use of synthetic signal sequences to explore the protein export machinery.
  Biopolymers, 90, 307-319.  
19172744 S.B.Neher, N.Bradshaw, S.N.Floor, J.D.Gross, and P.Walter (2008).
SRP RNA controls a conformational switch regulating the SRP-SRP receptor interaction.
  Nat Struct Mol Biol, 15, 916-923.  
18931411 U.D.Ramirez, P.J.Focia, and D.M.Freymann (2008).
Nucleotide-binding flexibility in ultrahigh-resolution structures of the SRP GTPase Ffh.
  Acta Crystallogr D Biol Crystallogr, 64, 1043-1053.
PDB codes: 2c03 2c04
18617187 X.Zhang, S.Kung, and S.O.Shan (2008).
Demonstration of a multistep mechanism for assembly of the SRP x SRP receptor complex: implications for the catalytic role of SRP RNA.
  J Mol Biol, 381, 581-593.  
17450153 A.Delprato, and D.G.Lambright (2007).
Structural basis for Rab GTPase activation by VPS9 domain exchange factors.
  Nat Struct Mol Biol, 14, 406-412.
PDB code: 2ot3
17151076 C.G.Noble, B.Beuth, and I.A.Taylor (2007).
Structure of a nucleotide-bound Clp1-Pcf11 polyadenylation factor.
  Nucleic Acids Res, 35, 87-99.
PDB code: 2npi
17622352 C.L.Reyes, E.Rutenber, P.Walter, and R.M.Stroud (2007).
X-ray structures of the signal recognition particle receptor reveal targeting cycle intermediates.
  PLoS ONE, 2, e607.
PDB codes: 2q9a 2q9b 2q9c
17699634 G.Bange, G.Petzold, K.Wild, R.O.Parlitz, and I.Sinning (2007).
The crystal structure of the third signal-recognition particle GTPase FlhF reveals a homodimer with bound GTP.
  Proc Natl Acad Sci U S A, 104, 13621-13625.
PDB codes: 2px0 2px3
17184999 J.Gawronski-Salerno, and D.M.Freymann (2007).
Structure of the GMPPNP-stabilized NG domain complex of the SRP GTPases Ffh and FtsY.
  J Struct Biol, 158, 122-128.
PDB code: 2j7p
17186523 J.Gawronski-Salerno, J.S.Coon, P.J.Focia, and D.M.Freymann (2007).
X-ray structure of the T. aquaticus FtsY:GDP complex suggests functional roles for the C-terminal helix of the SRP GTPases.
  Proteins, 66, 984-995.
PDB code: 2iyl
17475780 P.Jaru-Ampornpan, S.Chandrasekar, and S.O.Shan (2007).
Efficient interaction between two GTPases allows the chloroplast SRP pathway to bypass the requirement for an SRP RNA.
  Mol Biol Cell, 18, 2636-2645.  
17468740 S.Gras, V.Chaumont, B.Fernandez, P.Carpentier, F.Charrier-Savournin, S.Schmitt, C.Pineau, D.Flament, A.Hecker, P.Forterre, J.Armengaud, and D.Housset (2007).
Structural insights into a new homodimeric self-activated GTPase family.
  EMBO Rep, 8, 569-575.
PDB codes: 1yr6 1yr7 1yr8 1yr9 1yra 1yrb 2oxr
17682051 S.O.Shan, S.Chandrasekar, and P.Walter (2007).
Conformational changes in the GTPase modules of the signal reception particle and its receptor drive initiation of protein translocation.
  J Cell Biol, 178, 611-620.  
17126854 S.Wu, A.Ke, and J.A.Doudna (2007).
A fast and efficient procedure to produce scFvs specific for large macromolecular complexes.
  J Immunol Methods, 318, 95.  
17846429 T.Hainzl, S.Huang, and A.E.Sauer-Eriksson (2007).
Interaction of signal-recognition particle 54 GTPase domain and signal-recognition particle RNA in the free signal-recognition particle.
  Proc Natl Acad Sci U S A, 104, 14911-14916.
PDB code: 2v3c
16987964 I.L.Mainprize, D.R.Beniac, E.Falkovskaia, R.M.Cleverley, L.M.Gierasch, F.P.Ottensmeyer, and D.W.Andrews (2006).
The structure of Escherichia coli signal recognition particle revealed by scanning transmission electron microscopy.
  Mol Biol Cell, 17, 5063-5074.  
16469117 K.Römisch, F.W.Miller, B.Dobberstein, and S.High (2006).
Human autoantibodies against the 54 kDa protein of the signal recognition particle block function at multiple stages.
  Arthritis Res Ther, 8, R39.  
16824009 S.Martens, and J.Howard (2006).
The interferon-inducible GTPases.
  Annu Rev Cell Dev Biol, 22, 559-589.  
17139088 U.D.Ramirez, and D.M.Freymann (2006).
Analysis of protein hydration in ultrahigh-resolution structures of the SRP GTPase Ffh.
  Acta Crystallogr D Biol Crystallogr, 62, 1520-1534.
PDB codes: 2j45 2j46
15542602 B.Zambelli, M.Stola, F.Musiani, K.De Vriendt, B.Samyn, B.Devreese, J.Van Beeumen, P.Turano, A.Dikiy, D.A.Bryant, and S.Ciurli (2005).
UreG, a chaperone in the urease assembly process, is an intrinsically unstructured GTPase that specifically binds Zn2+.
  J Biol Chem, 280, 4684-4695.  
15923378 I.Buskiewicz, A.Kubarenko, F.Peske, M.V.Rodnina, and W.Wintermeyer (2005).
Domain rearrangement of SRP protein Ffh upon binding 4.5S RNA and the SRP receptor FtsY.
  RNA, 11, 947-957.  
15635448 T.A.Leonard, P.J.Butler, and J.Löwe (2005).
Bacterial chromosome segregation: structure and DNA binding of the Soj dimer--a conserved biological switch.
  EMBO J, 24, 270-282.
PDB codes: 1wcv 2bej 2bek
14749771 E.C.Mandon, and R.Gilmore (2004).
GTPase twins in the SRP family.
  Nat Struct Mol Biol, 11, 115-116.  
15166137 E.H.Williams, X.Perez-Martinez, and T.D.Fox (2004).
MrpL36p, a highly diverged L31 ribosomal protein homolog with additional functional domains in Saccharomyces cerevisiae mitochondria.
  Genetics, 167, 65-75.  
15546976 F.Chu, S.O.Shan, D.T.Moustakas, F.Alber, P.F.Egea, R.M.Stroud, P.Walter, and A.L.Burlingame (2004).
Unraveling the interface of signal recognition particle and its receptor by using chemical cross-linking and tandem mass spectrometry.
  Proc Natl Acad Sci U S A, 101, 16454-16459.  
15189152 J.A.Doudna, and R.T.Batey (2004).
Structural insights into the signal recognition particle.
  Annu Rev Biochem, 73, 539-557.  
15228518 K.Wild, K.R.Rosendal, and I.Sinning (2004).
A structural step into the SRP cycle.
  Mol Microbiol, 53, 357-363.  
15523481 K.Wild, M.Halic, I.Sinning, and R.Beckmann (2004).
SRP meets the ribosome.
  Nat Struct Mol Biol, 11, 1049-1053.  
15296735 M.Goto, R.Omi, N.Nakagawa, I.Miyahara, and K.Hirotsu (2004).
Crystal structures of CTP synthetase reveal ATP, UTP, and glutamine binding sites.
  Structure, 12, 1413-1423.
PDB codes: 1vcm 1vcn 1vco
14975527 M.Pohlschröder, K.Dilks, N.J.Hand, and R.Wesley Rose (2004).
Translocation of proteins across archaeal cytoplasmic membranes.
  FEMS Microbiol Rev, 28, 3.  
14724630 P.F.Egea, S.O.Shan, J.Napetschnig, D.F.Savage, P.Walter, and R.M.Stroud (2004).
Substrate twinning activates the signal recognition particle and its receptor.
  Nature, 427, 215-221.
PDB code: 1rj9
14696184 P.J.Focia, H.Alam, T.Lu, U.D.Ramirez, and D.M.Freymann (2004).
Novel protein and Mg2+ configurations in the Mg2+GDP complex of the SRP GTPase ffh.
  Proteins, 54, 222-230.
PDB code: 1o87
14726591 P.J.Focia, I.V.Shepotinovskaya, J.A.Seidler, and D.M.Freymann (2004).
Heterodimeric GTPase core of the SRP targeting complex.
  Science, 303, 373-377.
PDB code: 1okk
15383838 S.O.Shan, R.M.Stroud, and P.Walter (2004).
Mechanism of association and reciprocal activation of two GTPases.
  PLoS Biol, 2, e320.  
15030489 T.Lichi, G.Ring, and J.Eichler (2004).
Membrane binding of SRP pathway components in the halophilic archaea Haloferax volcanii.
  Eur J Biochem, 271, 1382-1390.  
14501130 I.V.Shepotinovskaya, P.J.Focia, and D.M.Freymann (2003).
Crystallization of the GMPPCP complex of the NG domains of Thermus aquaticus Ffh and FtsY.
  Acta Crystallogr D Biol Crystallogr, 59, 1834-1837.  
12949068 J.H.Peterson, C.A.Woolhead, and H.D.Bernstein (2003).
Basic amino acids in a distinct subset of signal peptides promote interaction with the signal recognition particle.
  J Biol Chem, 278, 46155-46162.  
12750387 J.Helmers, D.Schmidt, J.S.Glavy, G.Blobel, and T.Schwartz (2003).
The beta-subunit of the protein-conducting channel of the endoplasmic reticulum functions as the guanine nucleotide exchange factor for the beta-subunit of the signal recognition particle receptor.
  J Biol Chem, 278, 23686-23690.  
12853463 K.Nagai, C.Oubridge, A.Kuglstatter, E.Menichelli, C.Isel, and L.Jovine (2003).
Structure, function and evolution of the signal recognition particle.
  EMBO J, 22, 3479-3485.  
14657338 K.R.Rosendal, K.Wild, G.Montoya, and I.Sinning (2003).
Crystal structure of the complete core of archaeal signal recognition particle and implications for interdomain communication.
  Proc Natl Acad Sci U S A, 100, 14701-14706.
PDB codes: 1qzw 1qzx
12663860 S.O.Shan, and P.Walter (2003).
Induced nucleotide specificity in a GTPase.
  Proc Natl Acad Sci U S A, 100, 4480-4485.  
12702815 S.Q.Gu, F.Peske, H.J.Wieden, M.V.Rodnina, and W.Wintermeyer (2003).
The signal recognition particle binds to protein L23 at the peptide exit of the Escherichia coli ribosome.
  RNA, 9, 566-573.  
12654246 T.Schwartz, and G.Blobel (2003).
Structural basis for the function of the beta subunit of the eukaryotic signal recognition particle receptor.
  Cell, 112, 793-803.
PDB code: 1nrj
12244299 A.Kuglstatter, C.Oubridge, and K.Nagai (2002).
Induced structural changes of 7SL RNA during the assembly of human signal recognition particle.
  Nat Struct Biol, 9, 740-744.
PDB code: 1mfq
12086622 C.Oubridge, A.Kuglstatter, L.Jovine, and K.Nagai (2002).
Crystal structure of SRP19 in complex with the S domain of SRP RNA and its implication for the assembly of the signal recognition particle.
  Mol Cell, 9, 1251-1261.
PDB code: 1l9a
12244113 L.Liu, X.H.Liang, S.Uliel, R.Unger, E.Ullu, and S.Michaeli (2002).
RNA interference of signal peptide-binding protein SRP54 elicits deleterious effects and protein sorting defects in trypanosomes.
  J Biol Chem, 277, 47348-47357.  
12244111 R.M.Cleverley, and L.M.Gierasch (2002).
Mapping the signal sequence-binding site on SRP reveals a significant role for the NG domain.
  J Biol Chem, 277, 46763-46768.  
11239791 J.Eichler, and R.Moll (2001).
The signal recognition particle of Archaea.
  Trends Microbiol, 9, 130-136.  
11233986 J.R.Jagath, N.B.Matassova, E.de Leeuw, J.M.Warnecke, G.Lentzen, M.V.Rodnina, J.Luirink, and W.Wintermeyer (2001).
Important role of the tetraloop region of 4.5S RNA in SRP binding to its receptor FtsY.
  RNA, 7, 293-301.  
11259585 N.Bonnefoy, N.Bsat, and T.D.Fox (2001).
Mitochondrial translation of Saccharomyces cerevisiae COX2 mRNA is controlled by the nucleotide sequence specifying the pre-Cox2p leader peptide.
  Mol Cell Biol, 21, 2359-2372.  
11350037 O.Weichenrieder, C.Stehlin, U.Kapp, D.E.Birse, P.A.Timmins, K.Strub, and S.Cusack (2001).
Hierarchical assembly of the Alu domain of the mammalian signal recognition particle.
  RNA, 7, 731-740.  
11735405 P.Peluso, S.O.Shan, S.Nock, D.Herschlag, and P.Walter (2001).
Role of SRP RNA in the GTPase cycles of Ffh and FtsY.
  Biochemistry, 40, 15224-15233.  
11395422 R.J.Keenan, D.M.Freymann, R.M.Stroud, and P.Walter (2001).
The signal recognition particle.
  Annu Rev Biochem, 70, 755-775.  
11566135 S.Padmanabhan, and D.M.Freymann (2001).
The conformation of bound GMPPNP suggests a mechanism for gating the active site of the SRP GTPase.
  Structure, 9, 859-867.
PDB codes: 1jpj 1jpn
11331598 T.A.Fulga, I.Sinning, B.Dobberstein, and M.R.Pool (2001).
SRbeta coordinates signal sequence release from SRP with ribosome binding to the translocon.
  EMBO J, 20, 2338-2347.  
11726508 Y.Lu, H.Y.Qi, J.B.Hyndman, N.D.Ulbrandt, A.Teplyakov, N.Tomasevic, and H.D.Bernstein (2001).
Evidence for a novel GTPase priming step in the SRP protein targeting pathway.
  EMBO J, 20, 6724-6734.  
11123669 A.A.Herskovits, E.S.Bochkareva, and E.Bibi (2000).
New prospects in studying the bacterial signal recognition particle pathway.
  Mol Microbiol, 38, 927-939.  
10801496 G.Montoya, K.Kaat, R.Moll, G.Schäfer, and I.Sinning (2000).
The crystal structure of the conserved GTPase of SRP54 from the archaeon Acidianus ambivalens and its comparison with related structures suggests a model for the SRP-SRP receptor complex.
  Structure, 8, 515-525.
PDB codes: 1j8m 1j8y
  11048650 J.Kim, and D.A.Kendall (2000).
Sec-dependent protein export and the involvement of the molecular chaperone SecB.
  Cell Stress Chaperones, 5, 267-275.  
11041851 J.L.Diener, and C.Wilson (2000).
Role of SRP19 in assembly of the Archaeoglobus fulgidus signal recognition particle.
  Biochemistry, 39, 12862-12874.  
10834842 P.Peluso, D.Herschlag, S.Nock, D.M.Freymann, A.E.Johnson, and P.Walter (2000).
Role of 4.5S RNA in assembly of the bacterial signal recognition particle with its receptor.
  Science, 288, 1640-1643.  
10678824 R.T.Batey, R.P.Rambo, L.Lucast, B.Rha, and J.A.Doudna (2000).
Crystal structure of the ribonucleoprotein core of the signal recognition particle.
  Science, 287, 1232-1239.
PDB code: 1dul
10684931 S.H.Bhuiyan, K.Gowda, H.Hotokezaka, and C.Zwieb (2000).
Assembly of archaeal signal recognition particle from recombinant components.
  Nucleic Acids Res, 28, 1365-1373.  
10611978 A.E.Johnson, and M.A.van Waes (1999).
The translocon: a dynamic gateway at the ER membrane.
  Annu Rev Cell Dev Biol, 15, 799-842.  
10459008 G.Bacher, M.Pool, and B.Dobberstein (1999).
The ribosome regulates the GTPase of the beta-subunit of the signal recognition particle receptor.
  J Cell Biol, 146, 723-730.  
10531505 G.Montoya, K.te Kaat, R.Moll, G.Schäfer, and I.Sinning (1999).
Crystallization and preliminary x-ray diffraction studies on the conserved GTPase domain of the signal recognition particle from Acidianus ambivalens.
  Acta Crystallogr D Biol Crystallogr, 55, 1949-1951.  
10559196 J.S.Millman, and D.W.Andrews (1999).
A site-specific, membrane-dependent cleavage event defines the membrane binding domain of FtsY.
  J Biol Chem, 274, 33227-33234.  
  10338025 K.Gowda, W.M.Clemons, C.Zwieb, and S.D.Black (1999).
Expression, purification, and crystallography of the conserved methionine-rich domain of human signal recognition particle 54 kDa protein.
  Protein Sci, 8, 1144-1151.  
10574798 K.Wild, O.Weichenrieder, G.A.Leonard, and S.Cusack (1999).
The 2 A structure of helix 6 of the human signal recognition particle RNA.
  Structure, 7, 1345-1352.
PDB code: 1d4r
10195420 N.Bui, and K.Strub (1999).
New insights into signal recognition and elongation arrest activities of the signal recognition particle.
  Biol Chem, 380, 135-145.  
  10066835 P.Fekkes, and A.J.Driessen (1999).
Protein targeting to the bacterial cytoplasmic membrane.
  Microbiol Mol Biol Rev, 63, 161-173.  
10607673 R.M.Stroud, and P.Walter (1999).
Signal sequence recognition and protein targeting.
  Curr Opin Struct Biol, 9, 754-759.  
9914525 R.Moll, S.Schmidtke, and G.Schäfer (1999).
Domain structure, GTP-hydrolyzing activity and 7S RNA binding of Acidianus ambivalens ffh-homologous protein suggest an SRP-like complex in archaea.
  Eur J Biochem, 259, 441-448.  
10411886 X.Chen, D.L.Court, and X.Ji (1999).
Crystal structure of ERA: a GTPase-dependent cell cycle regulator containing an RNA binding motif.
  Proc Natl Acad Sci U S A, 96, 8396-8401.
PDB code: 1ega
9778518 H.D.Bernstein (1998).
Protein targeting: getting into the groove.
  Curr Biol, 8, R715-R718.  
9665173 H.L.Schubert, K.S.Wilson, E.Raux, S.C.Woodcock, and M.J.Warren (1998).
The X-ray structure of a cobalamin biosynthetic enzyme, cobalt-precorrin-4 methyltransferase.
  Nat Struct Biol, 5, 585-592.
PDB codes: 1cbf 2cbf
9748332 J.C.Milne, A.C.Eliot, N.L.Kelleher, and C.T.Walsh (1998).
ATP/GTP hydrolysis is required for oxazole and thiazole biosynthesis in the peptide antibiotic microcin B17.
  Biochemistry, 37, 13250-13261.  
9511762 K.Gowda, S.D.Black, I.Moeller, Y.Sakakibara, M.C.Liu, and C.Zwieb (1998).
Protein SRP54 of human signal recognition particle: cloning, expression, and comparative analysis of functional sites.
  Gene, 207, 197-207.  
9695947 R.J.Keenan, D.M.Freymann, P.Walter, and R.M.Stroud (1998).
Crystal structure of the signal sequence binding subunit of the signal recognition particle.
  Cell, 94, 181-191.
PDB code: 2ffh
  9563818 R.Jaenicke (1998).
Protein self-organization in vitro and in vivo: partitioning between physical biochemistry and cell biology.
  Biol Chem, 379, 237-243.  
9679135 S.C.Ogg, W.P.Barz, and P.Walter (1998).
A functional GTPase domain, but not its transmembrane domain, is required for function of the SRP receptor beta-subunit.
  J Cell Biol, 142, 341-354.  
9326611 C.Moser, O.Mol, R.S.Goody, and I.Sinning (1997).
The signal recognition particle receptor of Escherichia coli (FtsY) has a nucleotide exchange factor built into the GTPase domain.
  Proc Natl Acad Sci U S A, 94, 11339-11344.  
9183011 J.A.Newitt, and H.D.Bernstein (1997).
The N-domain of the signal recognition particle 54-kDa subunit promotes efficient signal sequence binding.
  Eur J Biochem, 245, 720-729.  
9182753 J.S.Millman, and D.W.Andrews (1997).
Switching the model: a concerted mechanism for GTPases in protein targeting.
  Cell, 89, 673-676.  
9353225 M.Sakaguchi (1997).
Eukaryotic protein secretion.
  Curr Opin Biotechnol, 8, 595-601.  
9659905 N.Zheng, and L.M.Gierasch (1997).
Domain interactions in E. coli SRP: stabilization of M domain by RNA is required for effective signal sequence modulation of NG domain.
  Mol Cell, 1, 79-87.  
9182758 P.J.Rapiejko, and R.Gilmore (1997).
Empty site forms of the SRP54 and SR alpha GTPases mediate targeting of ribosome-nascent chain complexes to the endoplasmic reticulum.
  Cell, 89, 703-713.  
9434906 S.R.Sprang (1997).
G proteins, effectors and GAPs: structure and mechanism.
  Curr Opin Struct Biol, 7, 849-856.  
9305630 T.Powers, and P.Walter (1997).
Co-translational protein targeting catalyzed by the Escherichia coli signal recognition particle and its receptor.
  EMBO J, 16, 4880-4886.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer