spacer
spacer

PDBsum entry 1f9w

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Contractile protein PDB id
1f9w

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
300 a.a. *
Ligands
ADP ×2
Metals
_MG ×2
Waters ×135
* Residue conservation analysis
PDB id:
1f9w
Name: Contractile protein
Title: Crystal structures of mutants reveal a signalling pathway for activation of the kinesin motor atpase
Structure: Kinesin-like protein kar3. Chain: a, b. Fragment: e631a mutant motor domain. Engineered: yes. Mutation: yes
Source: Saccharomyces cerevisiae. Baker's yeast. Organism_taxid: 4932. Expressed in: escherichia coli. Expression_system_taxid: 562. Other_details: saccharomyces cerevisiae
Resolution:
2.50Å     R-factor:   0.230     R-free:   0.276
Authors: M.Yun,X.Zhang,C.G.Park,H.W.Park,S.A.Endow
Key ref:
M.Yun et al. (2001). A structural pathway for activation of the kinesin motor ATPase. EMBO J, 20, 2611-2618. PubMed id: 11387196 DOI: 10.1093/emboj/20.11.2611
Date:
11-Jul-00     Release date:   13-Jun-01    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P17119  (KAR3_YEAST) -  Kinesin-like protein KAR3 from Saccharomyces cerevisiae (strain ATCC 204508 / S288c)
Seq:
Struc:
 
Seq:
Struc:
729 a.a.
300 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1093/emboj/20.11.2611 EMBO J 20:2611-2618 (2001)
PubMed id: 11387196  
 
 
A structural pathway for activation of the kinesin motor ATPase.
M.Yun, X.Zhang, C.G.Park, H.W.Park, S.A.Endow.
 
  ABSTRACT  
 
Molecular motors move along actin or microtubules by rapidly hydrolyzing ATP and undergoing changes in filament-binding affinity with steps of the nucleotide hydrolysis cycle. It is generally accepted that motor binding to its filament greatly increases the rate of ATP hydrolysis, but the structural changes in the motor associated with ATPase activation are not known. To identify the conformational changes underlying motor movement on its filament, we solved the crystal structures of three kinesin mutants that decouple nucleotide and microtubule binding by the motor, and block microtubule-activated, but not basal, ATPase activity. Conformational changes in the structures include a disordered loop and helices in the switch I region and a visible switch II loop, which is disordered in wild-type structures. Switch I moved closer to the bound nucleotide in two mutant structures, perturbing water-mediated interactions with the Mg2+. This could weaken Mg2+ binding and accelerate ADP release to activate the motor ATPASE: The structural changes we observe define a signaling pathway within the motor for ATPase activation that is likely to be essential for motor movement on microtubules.
 
  Selected figure(s)  
 
Figure 1.
Figure 1 Wild-type Kar3 and mutated residues. (A) The conserved switch I (SwI, green) and switch II (SwII, cyan) residues are indicated in Kar3+N11 together with helices 3 and 4 (gray). The switch II loop between R632 and the end of helix 4 (dotted line) is disordered and is not present in the model. Residues mutated in the Kar3 N650K uncoupling mutant (gray), Kar3 SwII R632A mutant (gray) and Kar3 salt-bridge mutants (R598A, green; E631A, cyan) are shown space-filled and enlarged in (B). (B) N650 of the Kar3 N650K uncoupling mutant interacts with R632 of SwII in wild-type Kar3. The salt bridge forms between R598 of SwI and E631 of SwII in wild-type Kar3. ADP (black) and Mg2+ (red) are shown as ball-and-stick models. Figure produced using RIBBONS (Carson, 1997).
Figure 5.
Figure 5 Coordination of the Mg2+ ion in wild-type Kar3. The bound Mg2+ of wild-type Kar3 has a tetragonal bipyramidal or octahedral coordination due to the P[ ]oxygen, the hydroxyl group of T481 and four water molecules that also interact with D626 of switch II (cyan), R585 and T587 of loop L9, and N593 of helix 3a. R585 is hydrogen bonded by a water molecule to the D626 side chain that interacts with the Mg2+.
 
  The above figures are reprinted from an Open Access publication published by Macmillan Publishers Ltd: EMBO J (2001, 20, 2611-2618) copyright 2001.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20160108 C.V.Sindelar, and K.H.Downing (2010).
An atomic-level mechanism for activation of the kinesin molecular motors.
  Proc Natl Acad Sci U S A, 107, 4111-4116.  
20602775 E.Heuston, C.E.Bronner, F.J.Kull, and S.A.Endow (2010).
A kinesin motor in a force-producing conformation.
  BMC Struct Biol, 10, 19.
PDB code: 3l1c
19880375 H.Shishido, K.Nakazato, E.Katayama, S.Chaen, and S.Maruta (2010).
Kinesin-Calmodulin fusion protein as a molecular shuttle.
  J Biochem, 147, 213-223.  
20167803 K.W.Wood, L.Lad, L.Luo, X.Qian, S.D.Knight, N.Nevins, K.Brejc, D.Sutton, A.G.Gilmartin, P.R.Chua, R.Desai, S.P.Schauer, D.E.McNulty, R.S.Annan, L.D.Belmont, C.Garcia, Y.Lee, M.A.Diamond, L.F.Faucette, M.Giardiniere, S.Zhang, C.M.Sun, J.D.Vidal, S.Lichtsteiner, W.D.Cornwell, J.D.Greshock, R.F.Wooster, J.T.Finer, R.A.Copeland, P.S.Huang, D.J.Morgans, D.Dhanak, G.Bergnes, R.Sakowicz, and J.R.Jackson (2010).
Antitumor activity of an allosteric inhibitor of centromere-associated protein-E.
  Proc Natl Acad Sci U S A, 107, 5839-5844.  
20418504 N.Suetsugu, N.Yamada, T.Kagawa, H.Yonekura, T.Q.Uyeda, A.Kadota, and M.Wada (2010).
Two kinesin-like proteins mediate actin-based chloroplast movement in Arabidopsis thaliana.
  Proc Natl Acad Sci U S A, 107, 8860-8865.  
20224548 S.Uchimura, Y.Oguchi, Y.Hachikubo, S.Ishiwata, and E.Muto (2010).
Key residues on microtubule responsible for activation of kinesin ATPase.
  EMBO J, 29, 1167-1175.  
19858211 E.Kocik, K.J.Skowronek, and A.A.Kasprzak (2009).
Interactions between subunits in heterodimeric Ncd molecules.
  J Biol Chem, 284, 35735-35745.  
19135893 J.C.Cochran, C.V.Sindelar, N.K.Mulko, K.A.Collins, S.E.Kong, R.S.Hawley, and F.J.Kull (2009).
ATPase cycle of the nonmotile kinesin NOD allows microtubule end tracking and drives chromosome movement.
  Cell, 136, 110-122.
PDB codes: 3dc4 3dcb 3dco
18463165 J.C.Hoeng, S.C.Dawson, S.A.House, M.S.Sagolla, J.K.Pham, J.J.Mancuso, J.Löwe, and W.Z.Cande (2008).
High-resolution crystal structure and in vivo function of a kinesin-2 homologue in Giardia intestinalis.
  Mol Biol Cell, 19, 3124-3137.
PDB code: 2vvg
18806800 R.Nitta, Y.Okada, and N.Hirokawa (2008).
Structural model for strain-dependent microtubule activation of Mg-ADP release from kinesin.
  Nat Struct Mol Biol, 15, 1067-1075.
PDB codes: 2zfi 2zfj 2zfk 2zfl 2zfm
18702529 T.Thoresen, and J.Gelles (2008).
Processive movement by a kinesin heterodimer with an inactivating mutation in one head.
  Biochemistry, 47, 9514-9521.  
17470637 C.V.Sindelar, and K.H.Downing (2007).
The beginning of kinesin's force-generating cycle visualized at 9-A resolution.
  J Cell Biol, 177, 377-385.
PDB code: 2p4n
17660552 J.K.Jang, T.Rahman, V.S.Kober, J.Cesario, and K.S.McKim (2007).
Misregulation of the kinesin-like protein Subito induces meiotic spindle formation in the absence of chromosomes and centrosomes.
  Genetics, 177, 267-280.  
17620411 K.Tanaka, E.Kitamura, Y.Kitamura, and T.U.Tanaka (2007).
Molecular mechanisms of microtubule-dependent kinetochore transport toward spindle poles.
  J Cell Biol, 178, 269-281.  
17989090 L.A.Amos, and K.Hirose (2007).
A cool look at the structural changes in kinesin motor domains.
  J Cell Sci, 120, 3919-3927.  
16005518 C.Soderblom, and C.Blackstone (2006).
Traffic accidents: molecular genetic insights into the pathogenesis of the hereditary spastic paraplegias.
  Pharmacol Ther, 109, 42-56.  
16973442 K.Hirose, E.Akimaru, T.Akiba, S.A.Endow, and L.A.Amos (2006).
Large conformational changes in a kinesin motor catalyzed by interaction with microtubules.
  Mol Cell, 23, 913-923.  
16946706 M.Kikkawa, and N.Hirokawa (2006).
High-resolution cryo-EM maps show the nucleotide binding pocket of KIF1A in open and closed conformations.
  EMBO J, 25, 4187-4194.
PDB codes: 2hxf 2hxh
16118217 S.D.Auerbach, and K.A.Johnson (2005).
Kinetic effects of kinesin switch I and switch II mutations.
  J Biol Chem, 280, 37061-37068.  
15879477 W.Zheng, and B.R.Brooks (2005).
Probing the local dynamics of nucleotide-binding pocket coupled to the global dynamics: myosin versus kinesin.
  Biophys J, 89, 167-178.  
15247293 J.C.Cochran, C.A.Sontag, Z.Maliga, T.M.Kapoor, J.J.Correia, and S.P.Gilbert (2004).
Mechanistic analysis of the mitotic kinesin Eg5.
  J Biol Chem, 279, 38861-38870.  
15029249 K.Shipley, M.Hekmat-Nejad, J.Turner, C.Moores, R.Anderson, R.Milligan, R.Sakowicz, and R.Fletterick (2004).
Structure of a kinesin microtubule depolymerization machine.
  EMBO J, 23, 1422-1432.
PDB code: 1ry6
15005614 L.M.Klumpp, K.M.Brendza, J.E.Gatial, A.Hoenger, W.M.Saxton, and S.P.Gilbert (2004).
Microtubule-kinesin interface mutants reveal a site critical for communication.
  Biochemistry, 43, 2792-2803.  
15180827 M.A.Berezuk, and T.A.Schroer (2004).
Fractionation and characterization of kinesin II species in vertebrate brain.
  Traffic, 5, 503-513.  
14988396 M.V.Vinogradova, V.S.Reddy, A.S.Reddy, E.P.Sablin, and R.J.Fletterick (2004).
Crystal structure of kinesin regulated by Ca(2+)-calmodulin.
  J Biol Chem, 279, 23504-23509.
PDB code: 1sdm
15286375 R.Nitta, M.Kikkawa, Y.Okada, and N.Hirokawa (2004).
KIF1A alternately uses two loops to bind microtubules.
  Science, 305, 678-683.
PDB codes: 1vfv 1vfw 1vfx 1vfz
14980225 T.Ogawa, R.Nitta, Y.Okada, and N.Hirokawa (2004).
A common mechanism for microtubule destabilizers-M type kinesins stabilize curling of the protofilament using the class-specific neck and loops.
  Cell, 116, 591-602.
PDB codes: 1v8j 1v8k
12894167 H.Browning, D.D.Hackney, and P.Nurse (2003).
Targeted movement of cell end factors in fission yeast.
  Nat Cell Biol, 5, 812-818.  
12860992 L.M.Klumpp, A.T.Mackey, C.M.Farrell, J.M.Rosenberg, and S.P.Gilbert (2003).
A kinesin switch I arginine to lysine mutation rescues microtubule function.
  J Biol Chem, 278, 39059-39067.  
14532111 M.Yun, C.E.Bronner, C.G.Park, S.S.Cha, H.W.Park, and S.A.Endow (2003).
Rotation of the stalk/neck and one head in a new crystal structure of the kinesin motor protein, Ncd.
  EMBO J, 22, 5382-5389.
PDB code: 1n6m
12719248 N.Naber, S.Rice, M.Matuska, R.D.Vale, R.Cooke, and E.Pate (2003).
EPR spectroscopy shows a microtubule-dependent conformational change in the kinesin switch 1 domain.
  Biophys J, 84, 3190-3196.  
12730601 N.Naber, T.J.Minehardt, S.Rice, X.Chen, J.Grammer, M.Matuska, R.D.Vale, P.A.Kollman, R.Car, R.G.Yount, R.Cooke, and E.Pate (2003).
Closing of the nucleotide pocket of kinesin-family motors upon binding to microtubules.
  Science, 300, 798-801.
PDB codes: 1ozx 1syj 1syp 1sz4 1sz5
12783580 P.Chène (2003).
The ATPases: a new family for a family-based drug design approach.
  Expert Opin Ther Targets, 7, 453-461.  
12208993 S.A.Endow, and D.S.Barker (2003).
Processive and nonprocessive models of kinesin movement.
  Annu Rev Physiol, 65, 161-175.  
14635256 S.A.Endow (2003).
Kinesin motors as molecular machines.
  Bioessays, 25, 1212-1219.  
12609886 S.Rice, Y.Cui, C.Sindelar, N.Naber, M.Matuska, R.Vale, and R.Cooke (2003).
Thermodynamic properties of the kinesin neck-region docking to the catalytic core.
  Biophys J, 84, 1844-1854.  
11864969 C.M.Farrell, A.T.Mackey, L.M.Klumpp, and S.P.Gilbert (2002).
The role of ATP hydrolysis for kinesin processivity.
  J Biol Chem, 277, 17079-17087.  
12355402 E.Reid, M.Kloos, A.Ashley-Koch, L.Hughes, S.Bevan, I.K.Svenson, F.L.Graham, P.C.Gaskell, A.Dearlove, M.A.Pericak-Vance, D.C.Rubinsztein, and D.A.Marchuk (2002).
A kinesin heavy chain (KIF5A) mutation in hereditary spastic paraplegia (SPG10).
  Am J Hum Genet, 71, 1189-1194.  
12209147 P.Chène (2002).
ATPases as drug targets: learning from their structure.
  Nat Rev Drug Discov, 1, 665-673.  
12379658 V.S.Reddy, and A.S.Reddy (2002).
The calmodulin-binding domain from a plant kinesin functions as a modular domain in conferring Ca2+-calmodulin regulation to animal plus- and minus-end kinesins.
  J Biol Chem, 277, 48058-48065.  
11707393 Y.H.Song, A.Marx, J.Müller, G.Woehlke, M.Schliwa, A.Krebs, A.Hoenger, and E.Mandelkow (2001).
Structure of a fast kinesin: implications for ATPase mechanism and interactions with microtubules.
  EMBO J, 20, 6213-6225.
PDB code: 1goj
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer