spacer
spacer

PDBsum entry 1f5y

Go to PDB code: 
Top Page protein metals links
Lipid binding protein PDB id
1f5y
Contents
Protein chain
85 a.a. *
Metals
_CA ×2
* Residue conservation analysis

References listed in PDB file
Key reference
Title Nmr structure of a concatemer of the first and second ligand-Binding modules of the human low-Density lipoprotein receptor.
Authors N.D.Kurniawan, A.R.Atkins, S.Bieri, C.J.Brown, I.M.Brereton, P.A.Kroon, R.Smith.
Ref. Protein Sci, 2000, 9, 1282-1293. [DOI no: 10.1110/ps.9.7.1282]
PubMed id 10933493
Abstract
The ligand-binding domain of the human low-density lipoprotein receptor consists of seven modules, each of 40-45 residues. In the presence of calcium, these modules adopt a common polypeptide fold with three conserved disulfide bonds. A concatemer of the first and second modules (LB(1-2)) folds efficiently in the presence of calcium ions, forming the same disulfide connectivities as in the isolated modules. The three-dimensional structure of LB(1-2) has now been solved using two-dimensional 1H NMR spectroscopy and restrained molecular dynamics calculations. No intermodule nuclear Overhauser effects were observed, indicating the absence of persistent interaction between them. The near random-coil NH and H alpha chemical shifts and the low phi and psi angle order parameters of the four-residue linker suggest that it has considerable flexibility. The family of LB(1-2) structures superimposed well over LB1 or LB2, but not over both modules simultaneously. LB1 and LB2 have a similar pattern of calcium ligands, but the orientations of the indole rings of the tryptophan residues W23 and W66 differ, with the latter limiting solvent access to the calcium ion. From these studies, it appears that although most of the modules in the ligand-binding region of the receptor are joined by short segments, these linkers may impart considerable flexibility on this region.
Secondary reference #1
Title Calcium is essential for the structural integrity of the cysteine-Rich, Ligand-Binding repeat of the low-Density lipoprotein receptor.
Authors A.R.Atkins, I.M.Brereton, P.A.Kroon, H.T.Lee, R.Smith.
Ref. Biochemistry, 1998, 37, 1662-1670. [DOI no: 10.1021/bi972529n]
PubMed id 9484237
Full text Abstract
Secondary reference #2
Title Folding, Calcium binding, And structural characterization of a concatemer of the first and second ligand-Binding modules of the low-Density lipoprotein receptor.
Authors S.Bieri, A.R.Atkins, H.T.Lee, D.J.Winzor, R.Smith, P.A.Kroon.
Ref. Biochemistry, 1998, 37, 10994-11002. [DOI no: 10.1021/bi980452c]
PubMed id 9692993
Full text Abstract
Secondary reference #3
Title Three-Dimensional structure of a cysteine-Rich repeat from the low-Density lipoprotein receptor.
Authors N.L.Daly, M.J.Scanlon, J.T.Djordjevic, P.A.Kroon, R.Smith.
Ref. Proc Natl Acad Sci U S A, 1995, 92, 6334-6338. [DOI no: 10.1073/pnas.92.14.6334]
PubMed id 7603991
Full text Abstract
Secondary reference #4
Title Three-Dimensional structure of the second cysteine-Rich repeat from the human low-Density lipoprotein receptor.
Authors N.L.Daly, J.T.Djordjevic, P.A.Kroon, R.Smith.
Ref. Biochemistry, 1995, 34, 14474-14481.
PubMed id 7578052
Abstract
PROCHECK
Go to PROCHECK summary
 Headers

 

spacer

spacer