spacer
spacer

PDBsum entry 1f5w

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Viral protein receptor PDB id
1f5w

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
124 a.a. *
Ligands
SO4 ×3
Waters ×232
* Residue conservation analysis
PDB id:
1f5w
Name: Viral protein receptor
Title: Dimeric structure of the coxsackie virus and adenovirus receptor d1 domain
Structure: Coxsackie virus and adenovirus receptor. Chain: a, b. Fragment: d1 domain. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli. Expression_system_taxid: 562. Other_details: hela cell cdna library
Biol. unit: Dimer (from PQS)
Resolution:
1.70Å     R-factor:   0.160     R-free:   0.193
Authors: M.J.Van Raaij,E.Chouin,H.Van Der Zandt,J.M.Bergelson,S.Cusack
Key ref:
M.J.van Raaij et al. (2000). Dimeric structure of the coxsackievirus and adenovirus receptor D1 domain at 1.7 A resolution. Structure, 8, 1147-1155. PubMed id: 11080637 DOI: 10.1016/S0969-2126(00)00528-1
Date:
18-Jun-00     Release date:   08-Nov-00    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P78310  (CXAR_HUMAN) -  Coxsackievirus and adenovirus receptor from Homo sapiens
Seq:
Struc:
365 a.a.
124 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 

 
DOI no: 10.1016/S0969-2126(00)00528-1 Structure 8:1147-1155 (2000)
PubMed id: 11080637  
 
 
Dimeric structure of the coxsackievirus and adenovirus receptor D1 domain at 1.7 A resolution.
M.J.van Raaij, E.Chouin, H.van der Zandt, J.M.Bergelson, S.Cusack.
 
  ABSTRACT  
 
BACKGROUND: The coxsackievirus and adenovirus receptor (CAR) comprises two extracellular immunoglobulin domains, a transmembrane helix and a C-terminal intracellular domain. The amino-terminal immunoglobulin domain (D1) of CAR is necessary and sufficient for adenovirus binding, whereas the site of coxsackievirus attachment has not yet been localized. The normal cellular role of CAR is currently unknown, although CAR was recently proposed to function as a homophilic cell adhesion molecule. RESULTS: The human CAR D1 domain was bacterially expressed and crystallized. The structure was solved by molecular replacement using the structure of CAR D1 bound to the adenovirus type 12 fiber head and refined to 1.7 A resolution, including individual anisotropic temperature factors. The two CAR D1 structures are virtually identical, apart from the BC, C"D, and FG loops that are involved both in fiber head binding and homodimerization in the crystal. Analytical equilibrium ultracentrifugation shows that a dimer also exists in solution, with a dissociation constant of 16 microM. CONCLUSIONS: The CAR D1 domain forms homodimers in the crystal using the same GFCC'C" surface that interacts with the adenovirus fiber head. The homodimer is very similar to the CD2 D1-CD58 D1 heterodimer. CAR D1 also forms dimers in solution with a dissociation constant typical of other cell adhesion complexes. These results are consistent with reports that CAR may function physiologically as a homophilic cell adhesion molecule in the developing mouse brain. Adenovirus may thus have recruited an existing and conserved interaction surface of CAR to use for its own cell attachment.
 
  Selected figure(s)  
 
Figure 3.
Figure 3. The CAR D1 Homodimer(a) The CAR D1 dimer viewed down the noncrystallographic dyad. Monomer A is colored blue, and B is yellow. Residues involved in direct hydrogen bonds between the two monomers are shown in orange and labeled for monomer A. The N- and C-termini are labeled and the approximate position of the noncrystallographic dyad is indicated.(b) Surface representation of monomer A in blue. The surface that gets buried upon homodimer formation with monomer B is shown in yellow. Residues involved in dimer interactions are indicated. This figure was prepared using the program GRASP [48]

 
  The above figure is reprinted by permission from Cell Press: Structure (2000, 8, 1147-1155) copyright 2000.  
  Figure was selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21366418 D.Henaff, S.Salinas, and E.J.Kremer (2011).
An adenovirus traffic update: from receptor engagement to the nuclear pore.
  Future Microbiol, 6, 179-192.  
20010840 C.Santiago, M.L.Celma, T.Stehle, and J.M.Casasnovas (2010).
Structure of the measles virus hemagglutinin bound to the CD46 receptor.
  Nat Struct Mol Biol, 17, 124-129.
PDB code: 3inb
  20536563 G.J.Freeman, J.M.Casasnovas, D.T.Umetsu, and R.H.DeKruyff (2010).
TIM genes: a family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity.
  Immunol Rev, 235, 172-189.  
20030557 N.Maitland, K.Chambers, L.Georgopoulos, M.Simpson-Holley, R.Leadley, H.Evans, M.Essand, A.Danielsson, W.van Weerden, C.de Ridder, R.Kraaij, and C.H.Bangma (2010).
Gene transfer vectors targeted to human prostate cancer: do we need better preclinical testing systems?
  Hum Gene Ther, 21, 815-827.  
19506548 M.S.Veena, M.Qin, A.Andersson, S.Sharma, and R.K.Batra (2009).
CAR mediates efficient tumor engraftment of mesenchymal type lung cancer cells.
  Lab Invest, 89, 875-886.  
19956667 T.S.Dermody, E.Kirchner, K.M.Guglielmi, and T.Stehle (2009).
Immunoglobulin superfamily virus receptors and the evolution of adaptive immunity.
  PLoS Pathog, 5, e1000481.  
18186463 D.Motiejunas, R.Gabdoulline, T.Wang, A.Feldman-Salit, T.Johann, P.J.Winn, and R.C.Wade (2008).
Protein-protein docking by simulating the process of association subject to biochemical constraints.
  Proteins, 71, 1955-1969.  
19079583 E.Kirchner, K.M.Guglielmi, H.M.Strauss, T.S.Dermody, and T.Stehle (2008).
Structure of reovirus sigma1 in complex with its receptor junctional adhesion molecule-A.
  PLoS Pathog, 4, e1000235.
PDB code: 3eoy
18086185 N.Korotkova, Y.Yang, I.Le Trong, E.Cota, B.Demeler, J.Marchant, W.E.Thomas, R.E.Stenkamp, S.L.Moseley, and S.Matthews (2008).
Binding of Dr adhesins of Escherichia coli to carcinoembryonic antigen triggers receptor dissociation.
  Mol Microbiol, 67, 420-434.
PDB codes: 2qsq 2qst 2ver
17698604 C.Q.Wang, and C.Y.Cheng (2007).
A seamless trespass: germ cell migration across the seminiferous epithelium during spermatogenesis.
  J Cell Biol, 178, 549-556.  
17359973 C.Q.Wang, D.D.Mruk, W.M.Lee, and C.Y.Cheng (2007).
Coxsackie and adenovirus receptor (CAR) is a product of Sertoli and germ cells in rat testes which is localized at the Sertoli-Sertoli and Sertoli-germ cell interface.
  Exp Cell Res, 313, 1373-1392.  
17363299 C.Santiago, A.Ballesteros, C.Tami, L.Martínez-Muñoz, G.G.Kaplan, and J.M.Casasnovas (2007).
Structures of T Cell immunoglobulin mucin receptors 1 and 2 reveal mechanisms for regulation of immune responses by the TIM receptor family.
  Immunity, 26, 299-310.
PDB codes: 2or7 2or8
17369261 D.Hatherley, K.Harlos, D.C.Dunlop, D.I.Stuart, and A.N.Barclay (2007).
The structure of the macrophage signal regulatory protein alpha (SIRPalpha) inhibitory receptor reveals a binding face reminiscent of that used by T cell receptors.
  J Biol Chem, 282, 14567-14575.
PDB code: 2uv3
17278108 D.Reimer, I.Steppan, A.Wiedemair, N.Concin, G.Hofstetter, C.Marth, E.Müller-Holzner, and A.G.Zeimet (2007).
Soluble isoforms but not the transmembrane form of coxsackie-adenovirus receptor are of clinical relevance in epithelial ovarian cancer.
  Int J Cancer, 120, 2568-2575.  
17538635 K.Kawabata, K.Tashiro, F.Sakurai, N.Osada, J.Kusuda, T.Hayakawa, K.Yamanishi, and H.Mizuguchi (2007).
Positive and negative regulation of adenovirus infection by CAR-like soluble protein, CLSP.
  Gene Ther, 14, 1199-1207.  
17603268 K.Kawabata (2007).
[Role of a novel protein, CAR-like soluble protein (CLSP), in adenovirus infection]
  Yakugaku Zasshi, 127, 1091-1096.  
17452315 K.M.Guglielmi, E.Kirchner, G.H.Holm, T.Stehle, and T.S.Dermody (2007).
Reovirus binding determinants in junctional adhesion molecule-A.
  J Biol Chem, 282, 17930-17940.  
17546646 M.Yamashita, A.Ino, K.Kawabata, F.Sakurai, and H.Mizuguchi (2007).
Expression of coxsackie and adenovirus receptor reduces the lung metastatic potential of murine tumor cells.
  Int J Cancer, 121, 1690-1696.  
17210569 P.T.Fok, K.C.Huang, P.C.Holland, and J.Nalbantoglu (2007).
The Coxsackie and adenovirus receptor binds microtubules and plays a role in cell migration.
  J Biol Chem, 282, 7512-7521.  
17322536 S.Jiang, and M.Caffrey (2007).
Solution structure of the coxsackievirus and adenovirus receptor domain 2.
  Protein Sci, 16, 539-542.
PDB code: 2npl
17506641 S.Yamada, and W.J.Nelson (2007).
Synapses: sites of cell recognition, adhesion, and functional specification.
  Annu Rev Biochem, 76, 267-294.  
16923808 E.Seiradake, H.Lortat-Jacob, O.Billet, E.J.Kremer, and S.Cusack (2006).
Structural and mutational analysis of human Ad37 and canine adenovirus 2 fiber heads in complex with the D1 domain of coxsackie and adenovirus receptor.
  J Biol Chem, 281, 33704-33716.
PDB codes: 2j12 2j1k 2j2j
16799561 J.A.Hernández Prada, R.N.Haire, M.Allaire, J.Jakoncic, V.Stojanoff, J.P.Cannon, G.W.Litman, and D.A.Ostrov (2006).
Ancient evolutionary origin of diversified variable regions demonstrated by crystal structures of an immune-type receptor in amphioxus.
  Nat Immunol, 7, 875-882.
PDB codes: 1xt5 2fbo
15864812 D.R.Asher, A.M.Cerny, S.R.Weiler, J.W.Horner, M.L.Keeler, M.A.Neptune, S.N.Jones, R.T.Bronson, R.A.Depinho, and R.W.Finberg (2005).
Coxsackievirus and adenovirus receptor is essential for cardiomyocyte development.
  Genesis, 42, 77-85.  
15956543 J.A.Campbell, P.Schelling, J.D.Wetzel, E.M.Johnson, J.C.Forrest, G.A.Wilson, M.Aurrand-Lions, B.A.Imhof, T.Stehle, and T.S.Dermody (2005).
Junctional adhesion molecule a serves as a receptor for prototype and field-isolate strains of mammalian reovirus.
  J Virol, 79, 7967-7978.  
14978041 A.Dörner, D.Xiong, K.Couch, T.Yajima, and K.U.Knowlton (2004).
Alternatively spliced soluble coxsackie-adenovirus receptors inhibit coxsackievirus infection.
  J Biol Chem, 279, 18497-18503.  
15199966 L.Du Pasquier, I.Zucchetti, and R.De Santis (2004).
Immunoglobulin superfamily receptors in protochordates: before RAG time.
  Immunol Rev, 198, 233-248.  
15000844 S.D.Carson, B.L.Switzer, S.M.Tracy, and N.M.Chapman (2004).
Monoclonal antibody against mouse CAR following genetic immunization.
  Hybrid Hybridomics, 23, 19-22.  
15279694 T.Stehle, and T.S.Dermody (2004).
Structural similarities in the cellular receptors used by adenovirus and reovirus.
  Viral Immunol, 17, 129-143.  
15163736 V.Awasthi, G.Meinken, K.Springer, S.C.Srivastava, and P.Freimuth (2004).
Biodistribution of radioiodinated adenovirus fiber protein knob domain after intravenous injection in mice.
  J Virol, 78, 6431-6438.  
12915534 A.Segerman, J.P.Atkinson, M.Marttila, V.Dennerquist, G.Wadell, and N.Arnberg (2003).
Adenovirus type 11 uses CD46 as a cellular receptor.
  J Virol, 77, 9183-9191.  
12573237 D.L.Goosney, and G.R.Nemerow (2003).
Adenovirus infection: taking the back roads to viral entry.
  Curr Biol, 13, R99.  
12805421 E.Wu, L.Pache, D.J.Von Seggern, T.M.Mullen, Y.Mikyas, P.L.Stewart, and G.R.Nemerow (2003).
Flexibility of the adenovirus fiber is required for efficient receptor interaction.
  J Virol, 77, 7225-7235.  
12966102 J.C.Forrest, J.A.Campbell, P.Schelling, T.Stehle, and T.S.Dermody (2003).
Structure-function analysis of reovirus binding to junctional adhesion molecule 1. Implications for the mechanism of reovirus attachment.
  J Biol Chem, 278, 48434-48444.  
12716886 J.Howitt, M.C.Bewley, V.Graziano, J.M.Flanagan, and P.Freimuth (2003).
Structural basis for variation in adenovirus affinity for the cellular coxsackievirus and adenovirus receptor.
  J Biol Chem, 278, 26208-26215.
PDB codes: 1p69 1p6a
12502819 J.W.Schoggins, J.G.Gall, and E.Falck-Pedersen (2003).
Subgroup B and F fiber chimeras eliminate normal adenovirus type 5 vector transduction in vitro and in vivo.
  J Virol, 77, 1039-1048.  
12753648 L.C.Trotman, D.P.Achermann, S.Keller, M.Straub, and U.F.Greber (2003).
Non-classical export of an adenovirus structural protein.
  Traffic, 4, 390-402.  
12615890 P.A.van der Merwe, and S.J.Davis (2003).
Molecular interactions mediating T cell antigen recognition.
  Annu Rev Immunol, 21, 659-684.  
14606962 S.M.Hanna, P.Kirk, O.J.Holt, M.J.Puklavec, M.H.Brown, and A.N.Barclay (2003).
A novel form of the membrane protein CD147 that contains an extra Ig-like domain and interacts homophilically.
  BMC Biochem, 4, 17.  
12627395 T.Stehle, and T.S.Dermody (2003).
Structural evidence for common functions and ancestry of the reovirus and adenovirus attachment proteins.
  Rev Med Virol, 13, 123-132.  
11893508 J.Wang (2002).
Protein recognition by cell surface receptors: physiological receptors versus virus interactions.
  Trends Biochem Sci, 27, 122-126.  
12110211 M.G.Rossmann, Y.He, and R.J.Kuhn (2002).
Picornavirus-receptor interactions.
  Trends Microbiol, 10, 324-331.  
11988465 M.G.Rudolph, J.G.Luz, and I.A.Wilson (2002).
Structural and thermodynamic correlates of T cell signaling.
  Annu Rev Biophys Biomol Struct, 31, 121-149.  
12297051 R.W.Walters, P.Freimuth, T.O.Moninger, I.Ganske, J.Zabner, and M.J.Welsh (2002).
Adenovirus fiber disrupts CAR-mediated intercellular adhesion allowing virus escape.
  Cell, 110, 789-799.  
11389357 A.S.Batra, and A.B.Lewis (2001).
Acute myocarditis.
  Curr Opin Pediatr, 13, 234-239.  
11734628 C.J.Cohen, J.T.Shieh, R.J.Pickles, T.Okegawa, J.T.Hsieh, and J.M.Bergelson (2001).
The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction.
  Proc Natl Acad Sci U S A, 98, 15191-15196.  
11573093 Y.He, P.R.Chipman, J.Howitt, C.M.Bator, M.A.Whitt, T.S.Baker, R.J.Kuhn, C.W.Anderson, P.Freimuth, and M.G.Rossmann (2001).
Interaction of coxsackievirus B3 with the full length coxsackievirus-adenovirus receptor.
  Nat Struct Biol, 8, 874-878.
PDB code: 1jew
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer