|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
335 a.a.
|
 |
|
|
|
|
|
|
|
36 a.a.
|
 |
|
|
|
|
|
|
|
140 a.a.
|
 |
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Hydrolase/hydrolase inhibitor
|
 |
|
Title:
|
 |
Crystal structure of a serpin:protease complex
|
|
Structure:
|
 |
Alpha-1-antitrypsin. Chain: a. Fragment: n-terminal fragment of proteolytic cleavage at met358- ser359. Engineered: yes. Alpha-1-antitrypsin. Chain: b. Fragment: c-terminal fragment of proteolytic cleavage at met358- ser359.
|
|
Source:
|
 |
Homo sapiens. Human. Organism_taxid: 9606. Tissue: blood. Expressed in: escherichia coli. Expression_system_taxid: 562. Bos taurus. Cattle. Organism_taxid: 9913.
|
|
Biol. unit:
|
 |
Trimer (from
)
|
|
Resolution:
|
 |
|
2.60Å
|
R-factor:
|
0.205
|
R-free:
|
0.239
|
|
|
Authors:
|
 |
J.A.Huntington,R.W.Carrell
|
Key ref:
|
 |
J.A.Huntington
et al.
(2000).
Structure of a serpin-protease complex shows inhibition by deformation.
Nature,
407,
923-926.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
12-May-00
|
Release date:
|
25-Oct-00
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
P01009
(A1AT_HUMAN) -
Alpha-1-antitrypsin from Homo sapiens
|
|
|
|
Seq: Struc:
|
 |
 |
 |
418 a.a.
335 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
Chain C:
E.C.3.4.21.4
- trypsin.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
Preferential cleavage: Arg-|-Xaa, Lys-|-Xaa.
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Nature
407:923-926
(2000)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structure of a serpin-protease complex shows inhibition by deformation.
|
|
J.A.Huntington,
R.J.Read,
R.W.Carrell.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The serpins have evolved to be the predominant family of serine-protease
inhibitors in man. Their unique mechanism of inhibition involves a profound
change in conformation, although the nature and significance of this change has
been controversial. Here we report the crystallographic structure of a typical
serpin-protease complex and show the mechanism of inhibition. The conformational
change is initiated by reaction of the active serine of the protease with the
reactive centre of the serpin. This cleaves the reactive centre, which then
moves 71 A to the opposite pole of the serpin, taking the tethered protease with
it. The tight linkage of the two molecules and resulting overlap of their
structures does not affect the hyperstable serpin, but causes a surprising 37%
loss of structure in the protease. This is induced by the plucking of the serine
from its active site, together with breakage of interactions formed during
zymogen activation. The disruption of the catalytic site prevents the release of
the protease from the complex, and the structural disorder allows its
proteolytic destruction. It is this ability of the conformational mechanism to
crush as well as inhibit proteases that provides the serpins with their
selective advantage.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 1.
Figure 1: Formation of the complex. Ribbon depictions of
native [1]-antitrypsin8
with trypsin aligned above it in the docking orientation (left),
and of the complex showing the 71 Å shift of the P1 methionine
of [1]-antitrypsin,
with full insertion of the cleaved reactive-centre loop into the
A-sheet (right). Regions of disordered structure in the
complexed trypsin are shown as interrupted coils projected from
the native structure of trypsin. Red, [1]-antitrypsin
-sheet
A; yellow, reactive-centre loop; green ball-and-stick, P1 Met;
cyan, trypsin (with helices in magenta for orientation); red
ball-and-stick, active serine 195.
|
 |
Figure 2.
Figure 2: Proteolytic susceptibility of the complexed protease.
A stereo side view of the complex coloured according to C temperature
factors for trypsin ( [1]-antitrypsin,
coloured as in Fig. 1, retains the low B-factors of its isolated
cleaved form). The nine sites of proteolytic cleavage are shown
as balls and all occur in regions of crystallographic disorder
or high mobility. Cleavage sites: green, of trypsin, by
trypsin5; yellow, of chymotrypsin, by chymotrypsin 6; magenta,
of chymotrypsin, by neutrophil elastase^6. Temperature factors
from blue to red, going through green at 40 Å 2, yellow at 60 Å2
and red at 90 Å 2. When the full native trypsin structure is
superimposed on the ordered region of trypsin in the complex
there are no clashes with symmetry related molecules. The only
significant steric overlap is within the asymmetric unit between
the serpin and the disordered region of trypsin, as denoted here
by cyan balls.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Macmillan Publishers Ltd:
Nature
(2000,
407,
923-926)
copyright 2000.
|
|
| |
Figures were
selected
by the author.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
B.Krishnan,
and
L.M.Gierasch
(2011).
Dynamic local unfolding in the serpin α-1 antitrypsin provides a mechanism for loop insertion and polymerization.
|
| |
Nat Struct Mol Biol,
18,
222-226.
|
 |
|
|
|
|
 |
B.Wladyka,
A.J.Kozik,
M.Bukowski,
A.Rojowska,
T.Kantyka,
G.Dubin,
and
A.Dubin
(2011).
α(1)-Antichymotrypsin inactivates staphylococcal cysteine protease in cross-class inhibition.
|
| |
Biochimie,
93,
948-953.
|
 |
|
|
|
|
 |
C.Klein
(2011).
Genetic defects in severe congenital neutropenia: emerging insights into life and death of human neutrophil granulocytes.
|
| |
Annu Rev Immunol,
29,
399-413.
|
 |
|
|
|
|
 |
C.S.Craik,
M.J.Page,
and
E.L.Madison
(2011).
Proteases as therapeutics.
|
| |
Biochem J,
435,
1.
|
 |
|
|
|
|
 |
L.C.Thompson,
S.Goswami,
D.S.Ginsberg,
D.E.Day,
I.M.Verhamme,
and
C.B.Peterson
(2011).
Metals affect the structure and activity of human plasminogen activator inhibitor-1. I. Modulation of stability and protease inhibition.
|
| |
Protein Sci,
20,
353-365.
|
 |
|
|
|
|
 |
L.Meinert Niclasen,
J.G.Olsen,
R.Dagil,
Z.Qing,
O.E.Sørensen,
and
B.B.Kragelund
(2011).
Streptococcal pyogenic exotoxin B (SpeB) boosts the contact system via binding of α-1 antitrypsin.
|
| |
Biochem J,
434,
123-132.
|
 |
|
|
|
|
 |
N.Umasuthan,
I.Whang,
J.O.Kim,
M.J.Oh,
S.J.Jung,
C.Y.Choi,
S.Y.Yeo,
J.H.Lee,
J.K.Noh,
and
J.Lee
(2011).
Rock bream (Oplegnathus fasciatus) serpin, protease nexin-1: transcriptional analysis and characterization of its antiprotease and anticoagulant activities.
|
| |
Dev Comp Immunol,
35,
785-798.
|
 |
|
|
|
|
 |
T.Yamada,
T.Tomita,
L.M.Weiss,
and
A.Orlofsky
(2011).
Toxoplasma gondii inhibits granzyme B-mediated apoptosis by the inhibition of granzyme B function in host cells.
|
| |
Int J Parasitol,
41,
595-607.
|
 |
|
|
|
|
 |
A.Sirmaci,
S.Erbek,
J.Price,
M.Huang,
D.Duman,
F.B.Cengiz,
G.Bademci,
S.Tokgöz-Yilmaz,
B.HiÅŸmi,
H.OzdaÄŸ,
B.Oztürk,
S.KulaksizoÄŸlu,
E.Yildirim,
H.Kokotas,
M.Grigoriadou,
M.B.Petersen,
H.Shahin,
M.Kanaan,
M.C.King,
Z.Y.Chen,
S.H.Blanton,
X.Z.Liu,
S.Zuchner,
N.Akar,
and
M.Tekin
(2010).
A truncating mutation in SERPINB6 is associated with autosomal-recessive nonsyndromic sensorineural hearing loss.
|
| |
Am J Hum Genet,
86,
797-804.
|
 |
|
|
|
|
 |
D.Kaiserman,
and
P.I.Bird
(2010).
Control of granzymes by serpins.
|
| |
Cell Death Differ,
17,
586-595.
|
 |
|
|
|
|
 |
D.Lwalaba,
S.Weidlich,
K.H.Hoffmann,
and
J.Woodring
(2010).
Exogenous and endogenous protease inhibitors in the gut of the fall armyworm larvae, Spodoptera frugiperda.
|
| |
Arch Insect Biochem Physiol,
74,
114-126.
|
 |
|
|
|
|
 |
E.Karnaukhova
(2010).
Interactions of alpha1-proteinase inhibitor with small ligands of therapeutic potential: binding with retinoic acid.
|
| |
Amino Acids,
38,
1011-1020.
|
 |
|
|
|
|
 |
F.Turroni,
E.Foroni,
M.O'Connell Motherway,
F.Bottacini,
V.Giubellini,
A.Zomer,
A.Ferrarini,
M.Delledonne,
Z.Zhang,
D.van Sinderen,
and
M.Ventura
(2010).
Characterization of the serpin-encoding gene of Bifidobacterium breve 210B.
|
| |
Appl Environ Microbiol,
76,
3206-3219.
|
 |
|
|
|
|
 |
J.A.Huntington,
and
J.C.Whisstock
(2010).
Molecular contortionism - on the physical limits of serpin 'loop-sheet' polymers.
|
| |
Biol Chem,
391,
973-982.
|
 |
|
|
|
|
 |
J.E.Swedberg,
S.J.de Veer,
and
J.M.Harris
(2010).
Natural and engineered kallikrein inhibitors: an emerging pharmacopoeia.
|
| |
Biol Chem,
391,
357-374.
|
 |
|
|
|
|
 |
P.Goettig,
V.Magdolen,
and
H.Brandstetter
(2010).
Natural and synthetic inhibitors of kallikrein-related peptidases (KLKs).
|
| |
Biochimie,
92,
1546-1567.
|
 |
|
|
|
|
 |
P.Przygodzka,
B.Ramstedt,
T.Tengel,
G.Larsson,
and
M.Wilczynska
(2010).
Bomapin is a redox-sensitive nuclear serpin that affects responsiveness of myeloid progenitor cells to growth environment.
|
| |
BMC Cell Biol,
11,
30.
|
 |
|
|
|
|
 |
R.Wallis,
D.A.Mitchell,
R.Schmid,
W.J.Schwaeble,
and
A.H.Keeble
(2010).
Paths reunited: Initiation of the classical and lectin pathways of complement activation.
|
| |
Immunobiology,
215,
1.
|
 |
|
|
|
|
 |
S.Ricagno,
M.Pezzullo,
A.Barbiroli,
M.Manno,
M.Levantino,
M.G.Santangelo,
F.Bonomi,
and
M.Bolognesi
(2010).
Two latent and two hyperstable polymeric forms of human neuroserpin.
|
| |
Biophys J,
99,
3402-3411.
|
 |
|
|
|
|
 |
V.Stoka,
and
V.Turk
(2010).
A structural network associated with the kallikrein-kinin and renin-angiotensin systems.
|
| |
Biol Chem,
391,
443-454.
|
 |
|
|
|
|
 |
W.J.Higgins,
D.M.Fox,
P.S.Kowalski,
J.E.Nielsen,
and
D.M.Worrall
(2010).
Heparin enhances serpin inhibition of the cysteine protease cathepsin L.
|
| |
J Biol Chem,
285,
3722-3729.
|
 |
|
|
|
|
 |
A.S.Knaupp,
and
S.P.Bottomley
(2009).
Serpin polymerization and its role in disease--the molecular basis of alpha1-antitrypsin deficiency.
|
| |
IUBMB Life,
61,
1-5.
|
 |
|
|
|
|
 |
B.Gooptu,
and
D.A.Lomas
(2009).
Conformational pathology of the serpins: themes, variations, and therapeutic strategies.
|
| |
Annu Rev Biochem,
78,
147-176.
|
 |
|
|
|
|
 |
B.Gooptu,
E.Miranda,
I.Nobeli,
M.Mallya,
A.Purkiss,
S.C.Brown,
C.Summers,
R.L.Phillips,
D.A.Lomas,
and
T.E.Barrett
(2009).
Crystallographic and cellular characterisation of two mechanisms stabilising the native fold of alpha1-antitrypsin: implications for disease and drug design.
|
| |
J Mol Biol,
387,
857-868.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
B.Richard,
R.Swanson,
and
S.T.Olson
(2009).
The signature 3-O-sulfo group of the anticoagulant heparin sequence is critical for heparin binding to antithrombin but is not required for allosteric activation.
|
| |
J Biol Chem,
284,
27054-27064.
|
 |
|
|
|
|
 |
C.Boudier,
A.S.Klymchenko,
Y.Mely,
and
A.Follenius-Wund
(2009).
Local environment perturbations in alpha(1)-antitrypsin monitored by a ratiometric fluorescent label.
|
| |
Photochem Photobiol Sci,
8,
814-821.
|
 |
|
|
|
|
 |
C.W.Ko,
Z.Wei,
R.J.Marsh,
D.A.Armoogum,
N.Nicolaou,
A.J.Bain,
A.Zhou,
and
L.Ying
(2009).
Probing nanosecond motions of plasminogen activator inhibitor-1 by time-resolved fluorescence anisotropy.
|
| |
Mol Biosyst,
5,
1025-1031.
|
 |
|
|
|
|
 |
D.C.Rijken,
and
H.R.Lijnen
(2009).
New insights into the molecular mechanisms of the fibrinolytic system.
|
| |
J Thromb Haemost,
7,
4.
|
 |
|
|
|
|
 |
G.Izaguirre,
A.R.Rezaie,
and
S.T.Olson
(2009).
Engineering functional antithrombin exosites in alpha1-proteinase inhibitor that specifically promote the inhibition of factor Xa and factor IXa.
|
| |
J Biol Chem,
284,
1550-1558.
|
 |
|
|
|
|
 |
H.Kroeger,
E.Miranda,
I.MacLeod,
J.Pérez,
D.C.Crowther,
S.J.Marciniak,
and
D.A.Lomas
(2009).
Endoplasmic reticulum-associated degradation (ERAD) and autophagy cooperate to degrade polymerogenic mutant serpins.
|
| |
J Biol Chem,
284,
22793-22802.
|
 |
|
|
|
|
 |
J.A.Huntington,
T.J.Sendall,
and
M.Yamasaki
(2009).
New insight into serpin polymerization and aggregation.
|
| |
Prion,
3,
12-14.
|
 |
|
|
|
|
 |
J.H.Baek,
W.S.Yang,
C.Lee,
and
M.H.Yu
(2009).
Functional unfolding of alpha1-antitrypsin probed by hydrogen-deuterium exchange coupled with mass spectrometry.
|
| |
Mol Cell Proteomics,
8,
1072-1081.
|
 |
|
|
|
|
 |
J.K.Jensen,
K.Dolmer,
and
P.G.Gettins
(2009).
Specificity of Binding of the Low Density Lipoprotein Receptor-related Protein to Different Conformational States of the Clade E Serpins Plasminogen Activator Inhibitor-1 and Proteinase Nexin-1.
|
| |
J Biol Chem,
284,
17989-17997.
|
 |
|
|
|
|
 |
J.Langdown,
K.J.Belzar,
W.J.Savory,
T.P.Baglin,
and
J.A.Huntington
(2009).
The critical role of hinge-region expulsion in the induced-fit heparin binding mechanism of antithrombin.
|
| |
J Mol Biol,
386,
1278-1289.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.W.Ahn,
B.J.Atwell,
and
T.H.Roberts
(2009).
Serpin genes AtSRP2 and AtSRP3 are required for normal growth sensitivity to a DNA alkylating agent in Arabidopsis.
|
| |
BMC Plant Biol,
9,
52.
|
 |
|
|
|
|
 |
K.A.Tanaka,
N.S.Key,
and
J.H.Levy
(2009).
Blood coagulation: hemostasis and thrombin regulation.
|
| |
Anesth Analg,
108,
1433-1446.
|
 |
|
|
|
|
 |
L.Yang,
S.H.Qureshi,
C.Manithody,
and
A.R.Rezaie
(2009).
Role of P2 glycine in determining the specificity of antithrombin reaction with coagulation proteases.
|
| |
Biochem Biophys Res Commun,
389,
162-167.
|
 |
|
|
|
|
 |
M.Cugno,
A.Zanichelli,
F.Foieni,
S.Caccia,
and
M.Cicardi
(2009).
C1-inhibitor deficiency and angioedema: molecular mechanisms and clinical progress.
|
| |
Trends Mol Med,
15,
69-78.
|
 |
|
|
|
|
 |
M.Garrett,
A.Fullaondo,
L.Troxler,
G.Micklem,
and
D.Gubb
(2009).
Identification and analysis of serpin-family genes by homology and synteny across the 12 sequenced Drosophilid genomes.
|
| |
BMC Genomics,
10,
489.
|
 |
|
|
|
|
 |
P.C.Ong,
S.J.Golding,
M.C.Pearce,
J.A.Irving,
S.A.Grigoryev,
D.Pike,
C.G.Langendorf,
T.A.Bashtannyk-Puhalovich,
S.P.Bottomley,
J.C.Whisstock,
R.N.Pike,
and
S.McGowan
(2009).
Conformational change in the chromatin remodelling protein MENT.
|
| |
PLoS ONE,
4,
e4727.
|
 |
|
|
|
|
 |
R.Bass,
L.Wagstaff,
L.Ravenhill,
and
V.Ellis
(2009).
Binding of extracellular maspin to beta1 integrins inhibits vascular smooth muscle cell migration.
|
| |
J Biol Chem,
284,
27712-27720.
|
 |
|
|
|
|
 |
S.F.Soukup,
J.Culi,
and
D.Gubb
(2009).
Uptake of the necrotic serpin in Drosophila melanogaster via the lipophorin receptor-1.
|
| |
PLoS Genet,
5,
e1000532.
|
 |
|
|
|
|
 |
T.K.Huang,
M.A.Plesha,
B.W.Falk,
A.M.Dandekar,
and
K.A.McDonald
(2009).
Bioreactor strategies for improving production yield and functionality of a recombinant human protein in transgenic tobacco cell cultures.
|
| |
Biotechnol Bioeng,
102,
508-520.
|
 |
|
|
|
|
 |
T.Zögg,
and
H.Brandstetter
(2009).
Structural basis of the cofactor- and substrate-assisted activation of human coagulation factor IXa.
|
| |
Structure,
17,
1669-1678.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
U.I.Ekeowa,
B.Gooptu,
D.Belorgey,
P.Hägglöf,
S.Karlsson-Li,
E.Miranda,
J.Pérez,
I.MacLeod,
H.Kroger,
S.J.Marciniak,
D.C.Crowther,
and
D.A.Lomas
(2009).
alpha1-Antitrypsin deficiency, chronic obstructive pulmonary disease and the serpinopathies.
|
| |
Clin Sci (Lond),
116,
837-850.
|
 |
|
|
|
|
 |
Y.P.Chang,
R.Mahadeva,
W.S.Chang,
S.C.Lin,
and
Y.H.Chu
(2009).
Small-molecule peptides inhibit Z alpha1-antitrypsin polymerization.
|
| |
J Cell Mol Med,
13,
2304-2316.
|
 |
|
|
|
|
 |
Z.Li,
S.Alam,
J.Wang,
C.S.Sandstrom,
S.Janciauskiene,
and
R.Mahadeva
(2009).
Oxidized {alpha}1-antitrypsin stimulates the release of monocyte chemotactic protein-1 from lung epithelial cells: potential role in emphysema.
|
| |
Am J Physiol Lung Cell Mol Physiol,
297,
L388-L400.
|
 |
|
|
|
|
 |
Z.Volovyk,
D.M.Monroe,
Y.Qi,
R.Becker,
and
M.Hoffman
(2009).
A rationally designed heparin, M118, has anticoagulant activity similar to unfractionated heparin and different from Lovenox in a cell-based model of thrombin generation.
|
| |
J Thromb Thrombolysis,
28,
132-139.
|
 |
|
|
|
|
 |
Z.Zou,
Z.Picheng,
H.Weng,
K.Mita,
and
H.Jiang
(2009).
A comparative analysis of serpin genes in the silkworm genome.
|
| |
Genomics,
93,
367-375.
|
 |
|
|
|
|
 |
A.Eissa,
and
E.P.Diamandis
(2008).
Human tissue kallikreins as promiscuous modulators of homeostatic skin barrier functions.
|
| |
Biol Chem,
389,
669-680.
|
 |
|
|
|
|
 |
B.Gooptu,
and
D.A.Lomas
(2008).
Polymers and inflammation: disease mechanisms of the serpinopathies.
|
| |
J Exp Med,
205,
1529-1534.
|
 |
|
|
|
|
 |
B.Richard,
R.Swanson,
S.Schedin-Weiss,
B.Ramirez,
G.Izaguirre,
P.G.Gettins,
and
S.T.Olson
(2008).
Characterization of the conformational alterations, reduced anticoagulant activity, and enhanced antiangiogenic activity of prelatent antithrombin.
|
| |
J Biol Chem,
283,
14417-14429.
|
 |
|
|
|
|
 |
D.J.Askew,
and
G.A.Silverman
(2008).
Intracellular and extracellular serpins modulate lung disease.
|
| |
J Perinatol,
28,
S127-S135.
|
 |
|
|
|
|
 |
D.R.Croucher,
D.N.Saunders,
S.Lobov,
and
M.Ranson
(2008).
Revisiting the biological roles of PAI2 (SERPINB2) in cancer.
|
| |
Nat Rev Cancer,
8,
535-545.
|
 |
|
|
|
|
 |
D.Wouters,
I.Wagenaar-Bos,
M.van Ham,
and
S.Zeerleder
(2008).
C1 inhibitor: just a serine protease inhibitor? New and old considerations on therapeutic applications of C1 inhibitor.
|
| |
Expert Opin Biol Ther,
8,
1225-1240.
|
 |
|
|
|
|
 |
G.A.Heresi,
and
J.K.Stoller
(2008).
Augmentation therapy in alpha-1 antitrypsin deficiency.
|
| |
Expert Opin Biol Ther,
8,
515-526.
|
 |
|
|
|
|
 |
J.C.Whisstock,
and
S.P.Bottomley
(2008).
Structural biology: Serpins' mystery solved.
|
| |
Nature,
455,
1189-1190.
|
 |
|
|
|
|
 |
M.Onda,
K.Nakatani,
S.Takehara,
M.Nishiyama,
N.Takahashi,
and
M.Hirose
(2008).
Cleaved serpin refolds into the relaxed state via a stressed conformer.
|
| |
J Biol Chem,
283,
17568-17578.
|
 |
|
|
|
|
 |
M.S.Mangan,
D.Kaiserman,
and
P.I.Bird
(2008).
The role of serpins in vertebrate immunity.
|
| |
Tissue Antigens,
72,
1.
|
 |
|
|
|
|
 |
M.Yamasaki,
W.Li,
D.J.Johnson,
and
J.A.Huntington
(2008).
Crystal structure of a stable dimer reveals the molecular basis of serpin polymerization.
|
| |
Nature,
455,
1255-1258.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.H.Li,
N.V.Gorlatova,
D.A.Lawrence,
and
B.S.Schwartz
(2008).
Structural differences between active forms of plasminogen activator inhibitor type 1 revealed by conformationally sensitive ligands.
|
| |
J Biol Chem,
283,
18147-18157.
|
 |
|
|
|
|
 |
S.J.Marciniak,
and
D.A.Lomas
(2008).
Intracellular serpins, firewalls and tissue necrosis.
|
| |
Trends Cell Biol,
18,
45-47.
|
 |
|
|
|
|
 |
T.H.Roberts,
and
J.Hejgaard
(2008).
Serpins in plants and green algae.
|
| |
Funct Integr Genomics,
8,
1.
|
 |
|
|
|
|
 |
T.W.Lee,
L.C.Coates,
and
N.P.Birch
(2008).
Neuroserpin regulates N-cadherin-mediated cell adhesion independently of its activity as an inhibitor of tissue plasminogen activator.
|
| |
J Neurosci Res,
86,
1243-1253.
|
 |
|
|
|
|
 |
W.Li,
T.E.Adams,
J.Nangalia,
C.T.Esmon,
and
J.A.Huntington
(2008).
Molecular basis of thrombin recognition by protein C inhibitor revealed by the 1.6-A structure of the heparin-bridged complex.
|
| |
Proc Natl Acad Sci U S A,
105,
4661-4666.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
X.Huang,
R.Swanson,
G.J.Broze,
and
S.T.Olson
(2008).
Kinetic Characterization of the Protein Z-dependent Protease Inhibitor Reaction with Blood Coagulation Factor Xa.
|
| |
J Biol Chem,
283,
29770-29783.
|
 |
|
|
|
|
 |
X.Zheng,
P.L.Wintrode,
and
M.R.Chance
(2008).
Complementary structural mass spectrometry techniques reveal local dynamics in functionally important regions of a metastable serpin.
|
| |
Structure,
16,
38-51.
|
 |
|
|
|
|
 |
A.A.Komissarov,
A.Zhou,
and
P.J.Declerck
(2007).
Modulation of serpin reaction through stabilization of transient intermediate by ligands bound to alpha-helix F.
|
| |
J Biol Chem,
282,
26306-26315.
|
 |
|
|
|
|
 |
D.Belorgey,
P.Hägglöf,
S.Karlsson-Li,
and
D.A.Lomas
(2007).
Protein misfolding and the serpinopathies.
|
| |
Prion,
1,
15-20.
|
 |
|
|
|
|
 |
D.Hernández-Espinosa,
R.Mota,
A.Miñano,
A.Ordóñez,
J.Yélamos,
V.Vicente,
and
J.Corral
(2007).
In vivo effects of hyperthermia on the functional and conformational characteristics of antithrombin.
|
| |
J Thromb Haemost,
5,
963-970.
|
 |
|
|
|
|
 |
D.J.Askew,
S.Cataltepe,
V.Kumar,
C.Edwards,
S.M.Pace,
R.N.Howarth,
S.C.Pak,
Y.S.Askew,
D.Brömme,
C.J.Luke,
J.C.Whisstock,
and
G.A.Silverman
(2007).
SERPINB11 is a new noninhibitory intracellular serpin. Common single nucleotide polymorphisms in the scaffold impair conformational change.
|
| |
J Biol Chem,
282,
24948-24960.
|
 |
|
|
|
|
 |
D.P.Knox
(2007).
Proteinase inhibitors and helminth parasite infection.
|
| |
Parasite Immunol,
29,
57-71.
|
 |
|
|
|
|
 |
G.Galliciotti,
M.Glatzel,
J.Kinter,
S.V.Kozlov,
P.Cinelli,
T.Rülicke,
and
P.Sonderegger
(2007).
Accumulation of mutant neuroserpin precedes development of clinical symptoms in familial encephalopathy with neuroserpin inclusion bodies.
|
| |
Am J Pathol,
170,
1305-1313.
|
 |
|
|
|
|
 |
G.Izaguirre,
R.Swanson,
S.M.Raja,
A.R.Rezaie,
and
S.T.Olson
(2007).
Mechanism by which exosites promote the inhibition of blood coagulation proteases by heparin-activated antithrombin.
|
| |
J Biol Chem,
282,
33609-33622.
|
 |
|
|
|
|
 |
I.Y.Sazonova,
B.M.Thomas,
I.P.Gladysheva,
A.K.Houng,
and
G.L.Reed
(2007).
Fibrinolysis is amplified by converting alpha-antiplasmin from a plasmin inhibitor to a substrate.
|
| |
J Thromb Haemost,
5,
2087-2094.
|
 |
|
|
|
|
 |
J.A.Bornhorst,
F.R.Calderon,
M.Procter,
W.Tang,
E.R.Ashwood,
and
R.Mao
(2007).
Genotypes and serum concentrations of human alpha-1-antitrypsin "P" protein variants in a clinical population.
|
| |
J Clin Pathol,
60,
1124-1128.
|
 |
|
|
|
|
 |
J.A.Kummer,
O.Micheau,
P.Schneider,
N.Bovenschen,
R.Broekhuizen,
R.Quadir,
M.C.Strik,
C.E.Hack,
and
J.Tschopp
(2007).
Ectopic expression of the serine protease inhibitor PI9 modulates death receptor-mediated apoptosis.
|
| |
Cell Death Differ,
14,
1486-1496.
|
 |
|
|
|
|
 |
J.C.Rau,
L.M.Beaulieu,
J.A.Huntington,
and
F.C.Church
(2007).
Serpins in thrombosis, hemostasis and fibrinolysis.
|
| |
J Thromb Haemost,
5,
102-115.
|
 |
|
|
|
|
 |
J.H.Baek,
H.Im,
U.B.Kang,
K.M.Seong,
C.Lee,
J.Kim,
and
M.H.Yu
(2007).
Probing the local conformational change of alpha1-antitrypsin.
|
| |
Protein Sci,
16,
1842-1850.
|
 |
|
|
|
|
 |
J.Y.Yi,
and
H.Im
(2007).
Structural factors affecting the choice between latency transition and polymerization in inhibitory serpins.
|
| |
Protein Sci,
16,
833-841.
|
 |
|
|
|
|
 |
L.Beinrohr,
V.Harmat,
J.Dobó,
Z.Lörincz,
P.Gál,
and
P.Závodszky
(2007).
C1 inhibitor serpin domain structure reveals the likely mechanism of heparin potentiation and conformational disease.
|
| |
J Biol Chem,
282,
21100-21109.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
L.D.Cabrita,
J.A.Irving,
M.C.Pearce,
J.C.Whisstock,
and
S.P.Bottomley
(2007).
Aeropin from the extremophile Pyrobaculum aerophilum bypasses the serpin misfolding trap.
|
| |
J Biol Chem,
282,
26802-26809.
|
 |
|
|
|
|
 |
L.Liu,
N.Mushero,
L.Hedstrom,
and
A.Gershenson
(2007).
Short-lived protease serpin complexes: partial disruption of the rat trypsin active site.
|
| |
Protein Sci,
16,
2403-2411.
|
 |
|
|
|
|
 |
M.Al-Ayyoubi,
B.S.Schwartz,
and
P.G.Gettins
(2007).
Maspin binds to urokinase-type and tissue-type plasminogen activator through exosite-exosite interactions.
|
| |
J Biol Chem,
282,
19502-19509.
|
 |
|
|
|
|
 |
M.C.Pearce,
L.D.Cabrita,
A.M.Ellisdon,
and
S.P.Bottomley
(2007).
The loss of tryptophan 194 in antichymotrypsin lowers the kinetic barrier to misfolding.
|
| |
FEBS J,
274,
3622-3632.
|
 |
|
|
|
|
 |
M.Kjellberg,
B.Rimac,
and
J.Stenflo
(2007).
An immunochemical method for quantitative determination of latent antithrombin, the reactive center loop-inserted uncleaved form of antithrombin.
|
| |
J Thromb Haemost,
5,
127-132.
|
 |
|
|
|
|
 |
M.Mallya,
R.L.Phillips,
S.A.Saldanha,
B.Gooptu,
S.C.Brown,
D.J.Termine,
A.M.Shirvani,
Y.Wu,
R.N.Sifers,
R.Abagyan,
and
D.A.Lomas
(2007).
Small molecules block the polymerization of Z alpha1-antitrypsin and increase the clearance of intracellular aggregates.
|
| |
J Med Chem,
50,
5357-5363.
|
 |
|
|
|
|
 |
N.V.Gorlatova,
J.M.Cale,
H.Elokdah,
D.Li,
K.Fan,
M.Warnock,
D.L.Crandall,
and
D.A.Lawrence
(2007).
Mechanism of inactivation of plasminogen activator inhibitor-1 by a small molecule inhibitor.
|
| |
J Biol Chem,
282,
9288-9296.
|
 |
|
|
|
|
 |
P.C.Ong,
S.McGowan,
M.C.Pearce,
J.A.Irving,
W.T.Kan,
S.A.Grigoryev,
B.Turk,
G.A.Silverman,
K.Brix,
S.P.Bottomley,
J.C.Whisstock,
and
R.N.Pike
(2007).
DNA accelerates the inhibition of human cathepsin v by serpins.
|
| |
J Biol Chem,
282,
36980-36986.
|
 |
|
|
|
|
 |
P.Chowdhury,
W.Wang,
S.Lavender,
M.R.Bunagan,
J.W.Klemke,
J.Tang,
J.G.Saven,
B.S.Cooperman,
and
F.Gai
(2007).
Fluorescence correlation spectroscopic study of serpin depolymerization by computationally designed peptides.
|
| |
J Mol Biol,
369,
462-473.
|
 |
|
|
|
|
 |
P.R.Gonzales,
T.D.Walston,
L.O.Camacho,
D.M.Kielar,
F.C.Church,
A.R.Rezaie,
and
S.T.Cooper
(2007).
Mutation of the H-helix in antithrombin decreases heparin stimulation of protease inhibition.
|
| |
Biochim Biophys Acta,
1774,
1431-1437.
|
 |
|
|
|
|
 |
Q.Zhang,
A.M.Buckle,
R.H.Law,
M.C.Pearce,
L.D.Cabrita,
G.J.Lloyd,
J.A.Irving,
A.I.Smith,
K.Ruzyla,
J.Rossjohn,
S.P.Bottomley,
and
J.C.Whisstock
(2007).
The N terminus of the serpin, tengpin, functions to trap the metastable native state.
|
| |
EMBO Rep,
8,
658-663.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.Swanson,
M.P.Raghavendra,
W.Zhang,
C.Froelich,
P.G.Gettins,
and
S.T.Olson
(2007).
Serine and cysteine proteases are translocated to similar extents upon formation of covalent complexes with serpins. Fluorescence perturbation and fluorescence resonance energy transfer mapping of the protease binding site in CrmA complexes with granzyme B and caspase-1.
|
| |
J Biol Chem,
282,
2305-2313.
|
 |
|
|
|
|
 |
W.Li,
T.E.Adams,
M.Kjellberg,
J.Stenflo,
and
J.A.Huntington
(2007).
Structure of native protein C inhibitor provides insight into its multiple functions.
|
| |
J Biol Chem,
282,
13759-13768.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Dementiev,
J.Dobó,
and
P.G.Gettins
(2006).
Active site distortion is sufficient for proteinase inhibition by serpins: structure of the covalent complex of alpha1-proteinase inhibitor with porcine pancreatic elastase.
|
| |
J Biol Chem,
281,
3452-3457.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.S.Robertson,
D.Belorgey,
D.Gubb,
T.R.Dafforn,
and
D.A.Lomas
(2006).
Inhibitory activity of the Drosophila melanogaster serpin Necrotic is dependent on lysine residues in the D-helix.
|
| |
J Biol Chem,
281,
26437-26443.
|
 |
|
|
|
|
 |
A.Srinivasan,
A.P.Giri,
and
V.S.Gupta
(2006).
Structural and functional diversities in lepidopteran serine proteases.
|
| |
Cell Mol Biol Lett,
11,
132-154.
|
 |
|
|
|
|
 |
A.Zhou,
Z.Wei,
R.J.Read,
and
R.W.Carrell
(2006).
Structural mechanism for the carriage and release of thyroxine in the blood.
|
| |
Proc Natl Acad Sci U S A,
103,
13321-13326.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.T.Pham
(2006).
Neutrophil serine proteases: specific regulators of inflammation.
|
| |
Nat Rev Immunol,
6,
541-550.
|
 |
|
|
|
|
 |
C.V.Obiezu,
I.P.Michael,
M.A.Levesque,
and
E.P.Diamandis
(2006).
Human kallikrein 4: enzymatic activity, inhibition, and degradation of extracellular matrix proteins.
|
| |
Biol Chem,
387,
749-759.
|
 |
|
|
|
|
 |
D.Croucher,
D.N.Saunders,
and
M.Ranson
(2006).
The urokinase/PAI-2 complex: a new high affinity ligand for the endocytosis receptor low density lipoprotein receptor-related protein.
|
| |
J Biol Chem,
281,
10206-10213.
|
 |
|
|
|
|
 |
D.Ivanov,
C.Emonet,
F.Foata,
M.Affolter,
M.Delley,
M.Fisseha,
S.Blum-Sperisen,
S.Kochhar,
and
F.Arigoni
(2006).
A serpin from the gut bacterium Bifidobacterium longum inhibits eukaryotic elastase-like serine proteases.
|
| |
J Biol Chem,
281,
17246-17252.
|
 |
|
|
|
|
 |
D.J.Johnson,
W.Li,
T.E.Adams,
and
J.A.Huntington
(2006).
Antithrombin-S195A factor Xa-heparin structure reveals the allosteric mechanism of antithrombin activation.
|
| |
EMBO J,
25,
2029-2037.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
E.Karnaukhova,
Y.Ophir,
and
B.Golding
(2006).
Recombinant human alpha-1 proteinase inhibitor: towards therapeutic use.
|
| |
Amino Acids,
30,
317-332.
|
 |
|
|
|
|
 |
G.Izaguirre,
and
S.T.Olson
(2006).
Residues Tyr253 and Glu255 in strand 3 of beta-sheet C of antithrombin are key determinants of an exosite made accessible by heparin activation to promote rapid inhibition of factors Xa and IXa.
|
| |
J Biol Chem,
281,
13424-13432.
|
 |
|
|
|
|
 |
H.R.Stennicke,
and
G.S.Salvesen
(2006).
Chemical ligation--an unusual paradigm in protease inhibition.
|
| |
Mol Cell,
21,
727-728.
|
 |
|
|
|
|
 |
J.A.Huntington
(2006).
Shape-shifting serpins--advantages of a mobile mechanism.
|
| |
Trends Biochem Sci,
31,
427-435.
|
 |
|
|
|
|
 |
J.C.Whisstock,
and
S.P.Bottomley
(2006).
Molecular gymnastics: serpin structure, folding and misfolding.
|
| |
Curr Opin Struct Biol,
16,
761-768.
|
 |
|
|
|
|
 |
J.Dobó,
R.Swanson,
G.S.Salvesen,
S.T.Olson,
and
P.G.Gettins
(2006).
Cytokine response modifier a inhibition of initiator caspases results in covalent complex formation and dissociation of the caspase tetramer.
|
| |
J Biol Chem,
281,
38781-38790.
|
 |
|
|
|
|
 |
J.H.McKerrow,
C.Caffrey,
B.Kelly,
P.Loke,
and
M.Sajid
(2006).
Proteases in parasitic diseases.
|
| |
Annu Rev Pathol,
1,
497-536.
|
 |
|
|
|
|
 |
K.J.Kinghorn,
D.C.Crowther,
L.K.Sharp,
C.Nerelius,
R.L.Davis,
H.T.Chang,
C.Green,
D.C.Gubb,
J.Johansson,
and
D.A.Lomas
(2006).
Neuroserpin binds Abeta and is a neuroprotective component of amyloid plaques in Alzheimer disease.
|
| |
J Biol Chem,
281,
29268-29277.
|
 |
|
|
|
|
 |
L.K.Sharp,
M.Mallya,
K.J.Kinghorn,
Z.Wang,
D.C.Crowther,
J.A.Huntington,
D.Belorgey,
and
D.A.Lomas
(2006).
Sugar and alcohol molecules provide a therapeutic strategy for the serpinopathies that cause dementia and cirrhosis.
|
| |
FEBS J,
273,
2540-2552.
|
 |
|
|
|
|
 |
M.Bots,
L.VAN Bostelen,
M.T.Rademaker,
R.Offringa,
and
J.P.Medema
(2006).
Serpins prevent granzyme-induced death in a species-specific manner.
|
| |
Immunol Cell Biol,
84,
79-86.
|
 |
|
|
|
|
 |
M.Kjellberg,
T.Ikonomou,
and
J.Stenflo
(2006).
The cleaved and latent forms of antithrombin are normal constituents of blood plasma: a quantitative method to measure cleaved antithrombin.
|
| |
J Thromb Haemost,
4,
168-176.
|
 |
|
|
|
|
 |
M.Rajavel,
T.Warrier,
and
B.Gopal
(2006).
Old fold in a new X-ray diffraction dataset? Low-resolution molecular replacement using representative structural templates can provide phase information.
|
| |
Proteins,
64,
923-930.
|
 |
|
|
|
|
 |
R.H.Law,
Q.Zhang,
S.McGowan,
A.M.Buckle,
G.A.Silverman,
W.Wong,
C.J.Rosado,
C.G.Langendorf,
R.N.Pike,
P.I.Bird,
and
J.C.Whisstock
(2006).
An overview of the serpin superfamily.
|
| |
Genome Biol,
7,
216.
|
 |
|
|
|
|
 |
S.H.Hung,
W.Zhang,
R.A.Pixley,
B.A.Jameson,
Y.C.Huang,
R.F.Colman,
and
R.W.Colman
(2006).
New insights from the structure-function analysis of the catalytic region of human platelet phosphodiesterase 3A: a role for the unique 44-amino acid insert.
|
| |
J Biol Chem,
281,
29236-29244.
|
 |
|
|
|
|
 |
S.McGowan,
A.M.Buckle,
J.A.Irving,
P.C.Ong,
T.A.Bashtannyk-Puhalovich,
W.T.Kan,
K.N.Henderson,
Y.A.Bulynko,
E.Y.Popova,
A.I.Smith,
S.P.Bottomley,
J.Rossjohn,
S.A.Grigoryev,
R.N.Pike,
and
J.C.Whisstock
(2006).
X-ray crystal structure of MENT: evidence for functional loop-sheet polymers in chromatin condensation.
|
| |
EMBO J,
25,
3144-3155.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Skeldal,
J.V.Larsen,
K.E.Pedersen,
H.H.Petersen,
R.Egelund,
A.Christensen,
J.K.Jensen,
J.Gliemann,
and
P.A.Andreasen
(2006).
Binding areas of urokinase-type plasminogen activator-plasminogen activator inhibitor-1 complex for endocytosis receptors of the low-density lipoprotein receptor family, determined by site-directed mutagenesis.
|
| |
FEBS J,
273,
5143-5159.
|
 |
|
|
|
|
 |
T.Kishi,
S.M.Cloutier,
C.Kündig,
D.Deperthes,
and
E.P.Diamandis
(2006).
Activation and enzymatic characterization of recombinant human kallikrein 8.
|
| |
Biol Chem,
387,
723-731.
|
 |
|
|
|
|
 |
Y.Charron,
R.Madani,
S.Nef,
C.Combepine,
J.Govin,
S.Khochbin,
and
J.D.Vassalli
(2006).
Expression of serpinb6 serpins in germ and somatic cells of mouse gonads.
|
| |
Mol Reprod Dev,
73,
9.
|
 |
|
|
|
|
 |
A.A.Komissarov,
P.A.Andreasen,
J.S.Bødker,
P.J.Declerck,
J.Y.Anagli,
and
J.D.Shore
(2005).
Additivity in effects of vitronectin and monoclonal antibodies against alpha-helix F of plasminogen activator inhibitor-1 on its reactions with target proteinases.
|
| |
J Biol Chem,
280,
1482-1489.
|
 |
|
|
|
|
 |
A.J.Horvath,
J.A.Irving,
J.Rossjohn,
R.H.Law,
S.P.Bottomley,
N.S.Quinsey,
R.N.Pike,
P.B.Coughlin,
and
J.C.Whisstock
(2005).
The murine orthologue of human antichymotrypsin: a structural paradigm for clade A3 serpins.
|
| |
J Biol Chem,
280,
43168-43178.
|
 |
|
|
|
|
 |
C.Benarafa,
and
E.Remold-O'Donnell
(2005).
The ovalbumin serpins revisited: perspective from the chicken genome of clade B serpin evolution in vertebrates.
|
| |
Proc Natl Acad Sci U S A,
102,
11367-11372.
|
 |
|
|
|
|
 |
C.Boudier,
A.Gils,
P.J.Declerck,
and
J.G.Bieth
(2005).
The conversion of active to latent plasminogen activator inhibitor-1 is an energetically silent event.
|
| |
Biophys J,
88,
2848-2854.
|
 |
|
|
|
|
 |
D.Kaiserman,
and
P.I.Bird
(2005).
Analysis of vertebrate genomes suggests a new model for clade B serpin evolution.
|
| |
BMC Genomics,
6,
167.
|
 |
|
|
|
|
 |
E.K.Dufour,
A.Désilets,
J.M.Longpré,
and
R.Leduc
(2005).
Stability of mutant serpin/furin complexes: dependence on pH and regulation at the deacylation step.
|
| |
Protein Sci,
14,
303-315.
|
 |
|
|
|
|
 |
I.G.Winkler,
J.Hendy,
P.Coughlin,
A.Horvath,
and
J.P.Lévesque
(2005).
Serine protease inhibitors serpina1 and serpina3 are down-regulated in bone marrow during hematopoietic progenitor mobilization.
|
| |
J Exp Med,
201,
1077-1088.
|
 |
|
|
|
|
 |
J.A.Huntington
(2005).
Molecular recognition mechanisms of thrombin.
|
| |
J Thromb Haemost,
3,
1861-1872.
|
 |
|
|
|
|
 |
J.C.Whisstock,
S.P.Bottomley,
P.I.Bird,
R.N.Pike,
and
P.Coughlin
(2005).
Serpins 2005 - fun between the beta-sheets. Meeting report based upon presentations made at the 4th International Symposium on Serpin Structure, Function and Biology (Cairns, Australia).
|
| |
FEBS J,
272,
4868-4873.
|
 |
|
|
|
|
 |
J.Hejgaard
(2005).
Inhibitory plant serpins with a sequence of three glutamine residues in the reactive center.
|
| |
Biol Chem,
386,
1319-1323.
|
 |
|
|
|
|
 |
J.K.Stoller,
and
L.S.Aboussouan
(2005).
Alpha1-antitrypsin deficiency.
|
| |
Lancet,
365,
2225-2236.
|
 |
|
|
|
|
 |
J.Otlewski,
F.Jelen,
M.Zakrzewska,
and
A.Oleksy
(2005).
The many faces of protease-protein inhibitor interaction.
|
| |
EMBO J,
24,
1303-1310.
|
 |
|
|
|
|
 |
K.F.Fulton,
A.M.Buckle,
L.D.Cabrita,
J.A.Irving,
R.E.Butcher,
I.Smith,
S.Reeve,
A.M.Lesk,
S.P.Bottomley,
J.Rossjohn,
and
J.C.Whisstock
(2005).
The high resolution crystal structure of a native thermostable serpin reveals the complex mechanism underpinning the stressed to relaxed transition.
|
| |
J Biol Chem,
280,
8435-8442.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
L.D.Tesch,
M.P.Raghavendra,
T.Bedsted-Faarvang,
P.G.Gettins,
and
S.T.Olson
(2005).
Specificity and reactive loop length requirements for crmA inhibition of serine proteases.
|
| |
Protein Sci,
14,
533-542.
|
 |
|
|
|
|
 |
N.Yan,
and
Y.Shi
(2005).
Mechanisms of apoptosis through structural biology.
|
| |
Annu Rev Cell Dev Biol,
21,
35-56.
|
 |
|
|
|
|
 |
R.H.Law,
J.A.Irving,
A.M.Buckle,
K.Ruzyla,
M.Buzza,
T.A.Bashtannyk-Puhalovich,
T.C.Beddoe,
K.Nguyen,
D.M.Worrall,
S.P.Bottomley,
P.I.Bird,
J.Rossjohn,
and
J.C.Whisstock
(2005).
The high resolution crystal structure of the human tumor suppressor maspin reveals a novel conformational switch in the G-helix.
|
| |
J Biol Chem,
280,
22356-22364.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
W.A.Sherman,
G.E.Blouse,
M.J.Perron,
T.Tran,
J.D.Shore,
and
A.Gafni
(2005).
Enthalpy measurement using calorimetry shows a significant difference in potential energy between the active and latent conformations of PAI-1.
|
| |
Biol Chem,
386,
111-116.
|
 |
|
|
|
|
 |
W.Bode
(2005).
The structure of thrombin, a chameleon-like proteinase.
|
| |
J Thromb Haemost,
3,
2379-2388.
|
 |
|
|
|
|
 |
Y.R.Na,
and
H.Im
(2005).
The length of the reactive center loop modulates the latency transition of plasminogen activator inhibitor-1.
|
| |
Protein Sci,
14,
55-63.
|
 |
|
|
|
|
 |
A.A.Komissarov,
P.J.Declerck,
and
J.D.Shore
(2004).
Protonation state of a single histidine residue contributes significantly to the kinetics of the reaction of plasminogen activator inhibitor-1 with tissue-type plasminogen activator.
|
| |
J Biol Chem,
279,
23007-23013.
|
 |
|
|
|
|
 |
A.Mushunje,
G.Evans,
S.O.Brennan,
R.W.Carrell,
and
A.Zhou
(2004).
Latent antithrombin and its detection, formation and turnover in the circulation.
|
| |
J Thromb Haemost,
2,
2170-2177.
|
 |
|
|
|
|
 |
B.De Taeye,
G.Compernolle,
and
P.J.Declerck
(2004).
Site-directed targeting of plasminogen activator inhibitor-1 as an example for a novel approach in rational drug design.
|
| |
J Biol Chem,
279,
20447-20450.
|
 |
|
|
|
|
 |
C.A.Ibarra,
G.E.Blouse,
T.D.Christian,
and
J.D.Shore
(2004).
The contribution of the exosite residues of plasminogen activator inhibitor-1 to proteinase inhibition.
|
| |
J Biol Chem,
279,
3643-3650.
|
 |
|
|
|
|
 |
C.H.Jung,
Y.R.Na,
and
H.Im
(2004).
Retarded protein folding of deficient human alpha 1-antitrypsin D256V and L41P variants.
|
| |
Protein Sci,
13,
694-702.
|
 |
|
|
|
|
 |
D.A.Lomas,
and
H.Parfrey
(2004).
Alpha1-antitrypsin deficiency. 4: Molecular pathophysiology.
|
| |
Thorax,
59,
529-535.
|
 |
|
|
|
|
 |
D.J.Johnson,
and
J.A.Huntington
(2004).
The influence of hinge region residue Glu-381 on antithrombin allostery and metastability.
|
| |
J Biol Chem,
279,
4913-4921.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.Saerens,
J.Kinne,
E.Bosmans,
U.Wernery,
S.Muyldermans,
and
K.Conrath
(2004).
Single domain antibodies derived from dromedary lymph node and peripheral blood lymphocytes sensing conformational variants of prostate-specific antigen.
|
| |
J Biol Chem,
279,
51965-51972.
|
 |
|
|
|
|
 |
J.Corral,
J.A.Huntington,
R.González-Conejero,
A.Mushunje,
M.Navarro,
P.Marco,
V.Vicente,
and
R.W.Carrell
(2004).
Mutations in the shutter region of antithrombin result in formation of disulfide-linked dimers and severe venous thrombosis.
|
| |
J Thromb Haemost,
2,
931-939.
|
 |
|
|
|
|
 |
J.Dobó,
and
P.G.Gettins
(2004).
alpha1-Proteinase inhibitor forms initial non-covalent and final covalent complexes with elastase analogously to other serpin-proteinase pairs, suggesting a common mechanism of inhibition.
|
| |
J Biol Chem,
279,
9264-9269.
|
 |
|
|
|
|
 |
J.Langdown,
D.J.Johnson,
T.P.Baglin,
and
J.A.Huntington
(2004).
Allosteric activation of antithrombin critically depends upon hinge region extension.
|
| |
J Biol Chem,
279,
47288-47297.
|
 |
|
|
|
|
 |
K.L.Scarff,
K.S.Ung,
H.Nandurkar,
P.J.Crack,
C.H.Bird,
and
P.I.Bird
(2004).
Targeted disruption of SPI3/Serpinb6 does not result in developmental or growth defects, leukocyte dysfunction, or susceptibility to stroke.
|
| |
Mol Cell Biol,
24,
4075-4082.
|
 |
|
|
|
|
 |
L.N.Benning,
J.C.Whisstock,
J.Sun,
P.I.Bird,
and
S.P.Bottomley
(2004).
The human serpin proteinase inhibitor-9 self-associates at physiological temperatures.
|
| |
Protein Sci,
13,
1859-1864.
|
 |
|
|
|
|
 |
M.J.Richer,
C.A.Keays,
J.Waterhouse,
J.Minhas,
C.Hashimoto,
and
F.Jean
(2004).
The Spn4 gene of Drosophila encodes a potent furin-directed secretory pathway serpin.
|
| |
Proc Natl Acad Sci U S A,
101,
10560-10565.
|
 |
|
|
|
|
 |
N.S.Quinsey,
A.L.Greedy,
S.P.Bottomley,
J.C.Whisstock,
and
R.N.Pike
(2004).
Antithrombin: in control of coagulation.
|
| |
Int J Biochem Cell Biol,
36,
386-389.
|
 |
|
|
|
|
 |
P.Pontisso,
F.Calabrese,
L.Benvegnù,
M.Lise,
C.Belluco,
M.G.Ruvoletto,
M.Marino,
M.Valente,
D.Nitti,
A.Gatta,
and
G.Fassina
(2004).
Overexpression of squamous cell carcinoma antigen variants in hepatocellular carcinoma.
|
| |
Br J Cancer,
90,
833-837.
|
 |
|
|
|
|
 |
R.Carrell,
and
J.Corral
(2004).
What can Drosophila tell us about serpins, thrombosis and dementia?
|
| |
Bioessays,
26,
1-5.
|
 |
|
|
|
|
 |
S.Brinkmeyer,
R.Eckert,
and
H.Ragg
(2004).
Reformable intramolecular cross-linking of the N-terminal domain of heparin cofactor II: effects on enzyme inhibition.
|
| |
Eur J Biochem,
271,
4275-4283.
|
 |
|
|
|
|
 |
S.J.Riedl,
and
Y.Shi
(2004).
Molecular mechanisms of caspase regulation during apoptosis.
|
| |
Nat Rev Mol Cell Biol,
5,
897-907.
|
 |
|
|
|
|
 |
S.Janciauskiene,
S.Eriksson,
F.Callea,
M.Mallya,
A.Zhou,
K.Seyama,
S.Hata,
and
D.A.Lomas
(2004).
Differential detection of PAS-positive inclusions formed by the Z, Siiyama, and Mmalton variants of alpha1-antitrypsin.
|
| |
Hepatology,
40,
1203-1210.
|
 |
|
|
|
|
 |
S.M.Cloutier,
C.Kündig,
L.M.Felber,
O.M.Fattah,
J.R.Chagas,
C.M.Gygi,
P.Jichlinski,
H.J.Leisinger,
and
D.Deperthes
(2004).
Development of recombinant inhibitors specific to human kallikrein 2 using phage-display selected substrates.
|
| |
Eur J Biochem,
271,
607-613.
|
 |
|
|
|
|
 |
T.H.Roberts,
J.Hejgaard,
N.F.Saunders,
R.Cavicchioli,
and
P.M.Curmi
(2004).
Serpins in unicellular Eukarya, Archaea, and Bacteria: sequence analysis and evolution.
|
| |
J Mol Evol,
59,
437-447.
|
 |
|
|
|
|
 |
U.R.Desai
(2004).
New antithrombin-based anticoagulants.
|
| |
Med Res Rev,
24,
151-181.
|
 |
|
|
|
|
 |
W.W.Lathem,
T.Bergsbaken,
and
R.A.Welch
(2004).
Potentiation of C1 esterase inhibitor by StcE, a metalloprotease secreted by Escherichia coli O157:H7.
|
| |
J Exp Med,
199,
1077-1087.
|
 |
|
|
|
|
 |
Y.Sakata,
K.Arima,
T.Takai,
W.Sakurai,
K.Masumoto,
N.Yuyama,
Y.Suminami,
F.Kishi,
T.Yamashita,
T.Kato,
H.Ogawa,
K.Fujimoto,
Y.Matsuo,
Y.Sugita,
and
K.Izuhara
(2004).
The squamous cell carcinoma antigen 2 inhibits the cysteine proteinase activity of a major mite allergen, Der p 1.
|
| |
J Biol Chem,
279,
5081-5087.
|
 |
|
|
|
|
 |
A.S.Robertson,
D.Belorgey,
K.S.Lilley,
D.A.Lomas,
D.Gubb,
and
T.R.Dafforn
(2003).
Characterization of the necrotic protein that regulates the Toll-mediated immune response in Drosophila.
|
| |
J Biol Chem,
278,
6175-6180.
|
 |
|
|
|
|
 |
A.Zhou,
P.E.Stein,
J.A.Huntington,
and
R.W.Carrell
(2003).
Serpin polymerization is prevented by a hydrogen bond network that is centered on his-334 and stabilized by glycerol.
|
| |
J Biol Chem,
278,
15116-15122.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
B.De Taeye,
G.Compernolle,
M.Dewilde,
W.Biesemans,
and
P.J.Declerck
(2003).
Immobilization of the distal hinge in the labile serpin plasminogen activator inhibitor 1: identification of a transition state with distinct conformational and functional properties.
|
| |
J Biol Chem,
278,
23899-23905.
|
 |
|
|
|
|
 |
D.Naessens,
A.Gils,
G.Compernolle,
and
P.J.Declerck
(2003).
Elucidation of a novel epitope of a substrate-inducing monoclonal antibody against the serpin PAI-1.
|
| |
J Thromb Haemost,
1,
1028-1033.
|
 |
|
|
|
|
 |
D.van Gent,
P.Sharp,
K.Morgan,
and
N.Kalsheker
(2003).
Serpins: structure, function and molecular evolution.
|
| |
Int J Biochem Cell Biol,
35,
1536-1547.
|
 |
|
|
|
|
 |
G.E.Blouse,
M.J.Perron,
J.O.Kvassman,
S.Yunus,
J.H.Thompson,
R.L.Betts,
L.C.Lutter,
and
J.D.Shore
(2003).
Mutation of the highly conserved tryptophan in the serpin breach region alters the inhibitory mechanism of plasminogen activator inhibitor-1.
|
| |
Biochemistry,
42,
12260-12272.
|
 |
|
|
|
|
 |
G.Izaguirre,
W.Zhang,
R.Swanson,
T.Bedsted,
and
S.T.Olson
(2003).
Localization of an antithrombin exosite that promotes rapid inhibition of factors Xa and IXa dependent on heparin activation of the serpin.
|
| |
J Biol Chem,
278,
51433-51440.
|
 |
|
|
|
|
 |
G.L.Long,
M.Kjellberg,
B.O.Villoutreix,
and
J.Stenflo
(2003).
Probing plasma clearance of the thrombin-antithrombin complex with a monoclonal antibody against the putative serpin-enzyme complex receptor-binding site.
|
| |
Eur J Biochem,
270,
4059-4069.
|
 |
|
|
|
|
 |
G.Xu,
R.L.Rich,
C.Steegborn,
T.Min,
Y.Huang,
D.G.Myszka,
and
H.Wu
(2003).
Mutational analyses of the p35-caspase interaction. A bowstring kinetic model of caspase inhibition by p35.
|
| |
J Biol Chem,
278,
5455-5461.
|
 |
|
|
|
|
 |
H.Shao,
I.Schvartz,
and
S.Shaltiel
(2003).
Secretion of pigment epithelium-derived factor. Mutagenic study.
|
| |
Eur J Biochem,
270,
822-831.
|
 |
|
|
|
|
 |
H.Yamamoto,
N.Takahashi,
M.Yamasaki,
Y.Arii,
and
M.Hirose
(2003).
Thermostabilization of ovalbumin by an alkaline treatment: examination for the possible implications of an altered serpin loop structure.
|
| |
Biosci Biotechnol Biochem,
67,
830-837.
|
 |
|
|
|
|
 |
I.G.Bos,
Y.T.Lubbers,
D.Roem,
J.P.Abrahams,
C.E.Hack,
and
E.Eldering
(2003).
The functional integrity of the serpin domain of C1-inhibitor depends on the unique N-terminal domain, as revealed by a pathological mutant.
|
| |
J Biol Chem,
278,
29463-29470.
|
 |
|
|
|
|
 |
J.A.Huntington
(2003).
Mechanisms of glycosaminoglycan activation of the serpins in hemostasis.
|
| |
J Thromb Haemost,
1,
1535-1549.
|
 |
|
|
|
|
 |
J.Bédard,
S.Brûlé,
C.A.Price,
D.W.Silversides,
and
J.G.Lussier
(2003).
Serine protease inhibitor-E2 (SERPINE2) is differentially expressed in granulosa cells of dominant follicle in cattle.
|
| |
Mol Reprod Dev,
64,
152-165.
|
 |
|
|
|
|
 |
J.S.Bødker,
T.Wind,
J.K.Jensen,
M.Hansen,
K.E.Pedersen,
and
P.A.Andreasen
(2003).
Mapping of the epitope of a monoclonal antibody protecting plasminogen activator inhibitor-1 against inactivating agents.
|
| |
Eur J Biochem,
270,
1672-1679.
|
 |
|
|
|
|
 |
K.Masumoto,
Y.Sakata,
K.Arima,
I.Nakao,
and
K.Izuhara
(2003).
Inhibitory mechanism of a cross-class serpin, the squamous cell carcinoma antigen 1.
|
| |
J Biol Chem,
278,
45296-45304.
|
 |
|
|
|
|
 |
M.Buck
(2003).
Crystallography: embracing conformational flexibility in proteins.
|
| |
Structure,
11,
735-736.
|
 |
|
|
|
|
 |
M.J.Perron,
G.E.Blouse,
and
J.D.Shore
(2003).
Distortion of the catalytic domain of tissue-type plasminogen activator by plasminogen activator inhibitor-1 coincides with the formation of stable serpin-proteinase complexes.
|
| |
J Biol Chem,
278,
48197-48203.
|
 |
|
|
|
|
 |
M.Onda,
and
M.Hirose
(2003).
Refolding mechanism of ovalbumin: investigation by using a starting urea-denatured disulfide isomer with mispaired CYS367-CYS382.
|
| |
J Biol Chem,
278,
23600-23609.
|
 |
|
|
|
|
 |
M.Wilczynska,
S.Lobov,
P.I.Ohlsson,
and
T.Ny
(2003).
A redox-sensitive loop regulates plasminogen activator inhibitor type 2 (PAI-2) polymerization.
|
| |
EMBO J,
22,
1753-1761.
|
 |
|
|
|
|
 |
N.V.Gorlatova,
H.Elokdah,
K.Fan,
D.L.Crandall,
and
D.A.Lawrence
(2003).
Mapping of a conformational epitope on plasminogen activator inhibitor-1 by random mutagenesis. Implications for serpin function.
|
| |
J Biol Chem,
278,
16329-16335.
|
 |
|
|
|
|
 |
R.Filipek,
M.Rzychon,
A.Oleksy,
M.Gruca,
A.Dubin,
J.Potempa,
and
M.Bochtler
(2003).
The Staphostatin-staphopain complex: a forward binding inhibitor in complex with its target cysteine protease.
|
| |
J Biol Chem,
278,
40959-40966.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.D.Shapiro,
N.M.Goldstein,
A.M.Houghton,
D.K.Kobayashi,
D.Kelley,
and
A.Belaaouaj
(2003).
Neutrophil elastase contributes to cigarette smoke-induced emphysema in mice.
|
| |
Am J Pathol,
163,
2329-2335.
|
 |
|
|
|
|
 |
T.Wind,
J.K.Jensen,
D.M.Dupont,
P.Kulig,
and
P.A.Andreasen
(2003).
Mutational analysis of plasminogen activator inhibitor-1.
|
| |
Eur J Biochem,
270,
1680-1688.
|
 |
|
|
|
|
 |
U.Karlson,
G.Pejler,
B.Tomasini-Johansson,
and
L.Hellman
(2003).
Extended substrate specificity of rat mast cell protease 5, a rodent alpha-chymase with elastase-like primary specificity.
|
| |
J Biol Chem,
278,
39625-39631.
|
 |
|
|
|
|
 |
A.A.Komissarov,
P.J.Declerck,
and
J.D.Shore
(2002).
Mechanisms of conversion of plasminogen activator inhibitor 1 from a suicide inhibitor to a substrate by monoclonal antibodies.
|
| |
J Biol Chem,
277,
43858-43865.
|
 |
|
|
|
|
 |
B.Fell,
A.M.Smith,
R.M.Hill,
P.K.Parmar,
L.C.Coates,
E.Mezey,
and
N.P.Birch
(2002).
Characterisation of two serine protease inhibitors expressed in the pituitary gland.
|
| |
Arch Physiol Biochem,
110,
26-33.
|
 |
|
|
|
|
 |
C.Benarafa,
J.Cooley,
W.Zeng,
P.I.Bird,
and
E.Remold-O'Donnell
(2002).
Characterization of four murine homologs of the human ov-serpin monocyte neutrophil elastase inhibitor MNEI (SERPINB1).
|
| |
J Biol Chem,
277,
42028-42033.
|
 |
|
|
|
|
 |
D.A.Lomas,
and
R.W.Carrell
(2002).
Serpinopathies and the conformational dementias.
|
| |
Nat Rev Genet,
3,
759-768.
|
 |
|
|
|
|
 |
D.Belorgey,
D.C.Crowther,
R.Mahadeva,
and
D.A.Lomas
(2002).
Mutant Neuroserpin (S49P) that causes familial encephalopathy with neuroserpin inclusion bodies is a poor proteinase inhibitor and readily forms polymers in vitro.
|
| |
J Biol Chem,
277,
17367-17373.
|
 |
|
|
|
|
 |
D.C.Crowther
(2002).
Familial conformational diseases and dementias.
|
| |
Hum Mutat,
20,
1.
|
 |
|
|
|
|
 |
E.J.Seo,
C.Lee,
and
M.H.Yu
(2002).
Concerted regulation of inhibitory activity of alpha 1-antitrypsin by the native strain distributed throughout the molecule.
|
| |
J Biol Chem,
277,
14216-14220.
|
 |
|
|
|
|
 |
H.Im,
M.S.Woo,
K.Y.Hwang,
and
M.H.Yu
(2002).
Interactions causing the kinetic trap in serpin protein folding.
|
| |
J Biol Chem,
277,
46347-46354.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.R.Stennicke,
C.A.Ryan,
and
G.S.Salvesen
(2002).
Reprieval from execution: the molecular basis of caspase inhibition.
|
| |
Trends Biochem Sci,
27,
94.
|
 |
|
|
|
|
 |
J.A.Irving,
R.N.Pike,
W.Dai,
D.Brömme,
D.M.Worrall,
G.A.Silverman,
T.H.Coetzer,
C.Dennison,
S.P.Bottomley,
and
J.C.Whisstock
(2002).
Evidence that serpin architecture intrinsically supports papain-like cysteine protease inhibition: engineering alpha(1)-antitrypsin to inhibit cathepsin proteases.
|
| |
Biochemistry,
41,
4998-5004.
|
 |
|
|
|
|
 |
J.A.Irving,
S.S.Shushanov,
R.N.Pike,
E.Y.Popova,
D.Brömme,
T.H.Coetzer,
S.P.Bottomley,
I.A.Boulynko,
S.A.Grigoryev,
and
J.C.Whisstock
(2002).
Inhibitory activity of a heterochromatin-associated serpin (MENT) against papain-like cysteine proteinases affects chromatin structure and blocks cell proliferation.
|
| |
J Biol Chem,
277,
13192-13201.
|
 |
|
|
|
|
 |
J.E.Chipuk,
L.V.Stewart,
A.Ranieri,
K.Song,
and
D.Danielpour
(2002).
Identification and characterization of a novel rat ov-serpin family member, trespin.
|
| |
J Biol Chem,
277,
26412-26421.
|
 |
|
|
|
|
 |
J.Hejgaard,
and
S.Hauge
(2002).
Serpins of oat (Avena sativa) grain with distinct reactive centres and inhibitory specificity.
|
| |
Physiol Plant,
116,
155-163.
|
 |
|
|
|
|
 |
J.S.Shin,
and
M.H.Yu
(2002).
Kinetic dissection of alpha 1-antitrypsin inhibition mechanism.
|
| |
J Biol Chem,
277,
11629-11635.
|
 |
|
|
|
|
 |
K.Barker-Carlson,
D.A.Lawrence,
and
B.S.Schwartz
(2002).
Acyl-enzyme complexes between tissue-type plasminogen activator and neuroserpin are short-lived in vitro.
|
| |
J Biol Chem,
277,
46852-46857.
|
 |
|
|
|
|
 |
K.J.Belzar,
A.Zhou,
R.W.Carrell,
P.G.Gettins,
and
J.A.Huntington
(2002).
Helix D elongation and allosteric activation of antithrombin.
|
| |
J Biol Chem,
277,
8551-8558.
|
 |
|
|
|
|
 |
M.Backovic,
E.Stratikos,
D.A.Lawrence,
and
P.G.Gettins
(2002).
Structural similarity of the covalent complexes formed between the serpin plasminogen activator inhibitor-1 and the arginine-specific proteinases trypsin, LMW u-PA, HMW u-PA, and t-PA: use of site-specific fluorescent probes of local environment.
|
| |
Protein Sci,
11,
1182-1191.
|
 |
|
|
|
|
 |
M.Budayova-Spano,
M.Lacroix,
N.M.Thielens,
G.J.Arlaud,
J.C.Fontecilla-Camps,
and
C.Gaboriaud
(2002).
The crystal structure of the zymogen catalytic domain of complement protease C1r reveals that a disruptive mechanical stress is required to trigger activation of the C1 complex.
|
| |
EMBO J,
21,
231-239.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.C.Hsieh,
and
B.S.Cooperman
(2002).
Inhibition of prostate-specific antigen (PSA) by alpha(1)-antichymotrypsin: salt-dependent activation mediated by a conformational change.
|
| |
Biochemistry,
41,
2990-2997.
|
 |
|
|
|
|
 |
M.I.Plotnick,
H.Rubin,
and
N.M.Schechter
(2002).
The effects of reactive site location on the inhibitory properties of the serpin alpha(1)-antichymotrypsin.
|
| |
J Biol Chem,
277,
29927-29935.
|
 |
|
|
|
|
 |
P.Mellet,
Y.Mély,
L.Hedstrom,
M.Cahoon,
D.Belorgey,
N.Srividya,
H.Rubin,
and
J.G.Bieth
(2002).
Comparative trajectories of active and S195A inactive trypsin upon binding to serpins.
|
| |
J Biol Chem,
277,
38901-38914.
|
 |
|
|
|
|
 |
R.B.Turner,
L.Liu,
I.Y.Sazonova,
and
G.L.Reed
(2002).
Structural elements that govern the substrate specificity of the clot-dissolving enzyme plasmin.
|
| |
J Biol Chem,
277,
33068-33074.
|
 |
|
|
|
|
 |
R.M.Hill,
L.C.Coates,
P.K.Parmar,
E.Mezey,
J.F.Pearson,
and
N.P.Birch
(2002).
Expression and functional characterization of the serine protease inhibitor neuroserpin in endocrine cells.
|
| |
Ann N Y Acad Sci,
971,
406-415.
|
 |
|
|
|
|
 |
S.Braud,
B.F.Le Bonniec,
C.Bon,
and
A.Wisner
(2002).
The stratagem utilized by the plasminogen activator from the snake Trimeresurus stejnegeri to escape serpins.
|
| |
Biochemistry,
41,
8478-8484.
|
 |
|
|
|
|
 |
S.Janciauskiene,
R.Dominaitiene,
N.H.Sternby,
E.Piitulainen,
and
S.Eriksson
(2002).
Detection of circulating and endothelial cell polymers of Z and wild type alpha 1-antitrypsin by a monoclonal antibody.
|
| |
J Biol Chem,
277,
26540-26546.
|
 |
|
|
|
|
 |
S.Schedin-Weiss,
U.R.Desai,
S.C.Bock,
P.G.Gettins,
S.T.Olson,
and
I.Björk
(2002).
Importance of lysine 125 for heparin binding and activation of antithrombin.
|
| |
Biochemistry,
41,
4779-4788.
|
 |
|
|
|
|
 |
T.Wind,
M.Hansen,
J.K.Jensen,
and
P.A.Andreasen
(2002).
The molecular basis for anti-proteolytic and non-proteolytic functions of plasminogen activator inhibitor type-1: roles of the reactive centre loop, the shutter region, the flexible joint region and the small serpin fragment.
|
| |
Biol Chem,
383,
21-36.
|
 |
|
|
|
|
 |
W.W.Lathem,
T.E.Grys,
S.E.Witowski,
A.G.Torres,
J.B.Kaper,
P.I.Tarr,
and
R.A.Welch
(2002).
StcE, a metalloprotease secreted by Escherichia coli O157:H7, specifically cleaves C1 esterase inhibitor.
|
| |
Mol Microbiol,
45,
277-288.
|
 |
|
|
|
|
 |
Y.M.van der Geld,
A.T.Tool,
J.Videler,
M.de Haas,
J.W.Tervaert,
C.A.Stegeman,
P.C.Limburg,
C.G.Kallenberg,
and
D.Roos
(2002).
Interference of PR3-ANCA with the enzymatic activity of PR3: differences in patients during active disease or remission of Wegener's granulomatosis.
|
| |
Clin Exp Immunol,
129,
562-570.
|
 |
|
|
|
|
 |
C.Eigenbrot,
D.Kirchhofer,
M.S.Dennis,
L.Santell,
R.A.Lazarus,
J.Stamos,
and
M.H.Ultsch
(2001).
The factor VII zymogen structure reveals reregistration of beta strands during activation.
|
| |
Structure,
9,
627-636.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.H.Bird,
E.J.Blink,
C.E.Hirst,
M.S.Buzza,
P.M.Steele,
J.Sun,
D.A.Jans,
and
P.I.Bird
(2001).
Nucleocytoplasmic distribution of the ovalbumin serpin PI-9 requires a nonconventional nuclear import pathway and the export factor Crm1.
|
| |
Mol Cell Biol,
21,
5396-5407.
|
 |
|
|
|
|
 |
C.Lee,
J.S.Maeng,
J.P.Kocher,
B.Lee,
and
M.H.Yu
(2001).
Cavities of alpha(1)-antitrypsin that play structural and functional roles.
|
| |
Protein Sci,
10,
1446-1453.
|
 |
|
|
|
|
 |
D.N.Saunders,
L.Jankova,
S.J.Harrop,
P.M.Curmi,
A.R.Gould,
M.Ranson,
and
M.S.Baker
(2001).
Interaction between the P14 residue and strand 2 of beta-sheet B is critical for reactive center loop insertion in plasminogen activator inhibitor-2.
|
| |
J Biol Chem,
276,
43383-43389.
|
 |
|
|
|
|
 |
E.K.Dufour,
J.B.Denault,
L.Bissonnette,
P.C.Hopkins,
P.Lavigne,
and
R.Leduc
(2001).
The contribution of arginine residues within the P6-P1 region of alpha 1-antitrypsin to its reaction with furin.
|
| |
J Biol Chem,
276,
38971-38979.
|
 |
|
|
|
|
 |
H.H.Petersen,
M.Hansen,
S.L.Schousboe,
and
P.A.Andreasen
(2001).
Localization of epitopes for monoclonal antibodies to urokinase-type plasminogen activator: relationship between epitope localization and effects of antibodies on molecular interactions of the enzyme.
|
| |
Eur J Biochem,
268,
4430-4439.
|
 |
|
|
|
|
 |
J.Chai,
Q.Wu,
E.Shiozaki,
S.M.Srinivasula,
E.S.Alnemri,
and
Y.Shi
(2001).
Crystal structure of a procaspase-7 zymogen: mechanisms of activation and substrate binding.
|
| |
Cell,
107,
399-407.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
L.Jankova,
S.J.Harrop,
D.N.Saunders,
J.L.Andrews,
K.C.Bertram,
A.R.Gould,
M.S.Baker,
and
P.M.Curmi
(2001).
Crystal structure of the complex of plasminogen activator inhibitor 2 with a peptide mimicking the reactive center loop.
|
| |
J Biol Chem,
276,
43374-43382.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Hansen,
M.N.Busse,
and
P.A.Andreasen
(2001).
Importance of the amino-acid composition of the shutter region of plasminogen activator inhibitor-1 for its transitions to latent and substrate forms.
|
| |
Eur J Biochem,
268,
6274-6283.
|
 |
|
|
|
|
 |
P.B.Armstrong
(2001).
The contribution of proteinase inhibitors to immune defense.
|
| |
Trends Immunol,
22,
47-52.
|
 |
|
|
|
|
 |
P.Krüger,
S.Verheyden,
P.J.Declerck,
and
Y.Engelborghs
(2001).
Extending the capabilities of targeted molecular dynamics: simulation of a large conformational transition in plasminogen activator inhibitor 1.
|
| |
Protein Sci,
10,
798-808.
|
 |
|
|
|
|
 |
S.J.Riedl,
M.Renatus,
R.Schwarzenbacher,
Q.Zhou,
C.Sun,
S.W.Fesik,
R.C.Liddington,
and
G.S.Salvesen
(2001).
Structural basis for the inhibition of caspase-3 by XIAP.
|
| |
Cell,
104,
791-800.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.J.Riedl,
M.Renatus,
S.J.Snipas,
and
G.S.Salvesen
(2001).
Mechanism-based inactivation of caspases by the apoptotic suppressor p35.
|
| |
Biochemistry,
40,
13274-13280.
|
 |
|
|
|
|
 |
S.Janciauskiene
(2001).
Conformational properties of serine proteinase inhibitors (serpins) confer multiple pathophysiological roles.
|
| |
Biochim Biophys Acta,
1535,
221-235.
|
 |
|
|
|
|
 |
S.P.Bottomley,
I.D.Lawrenson,
D.Tew,
W.Dai,
J.C.Whisstock,
and
R.N.Pike
(2001).
The role of strand 1 of the C beta-sheet in the structure and function of alpha(1)-antitrypsin.
|
| |
Protein Sci,
10,
2518-2524.
|
 |
|
|
|
|
 |
S.Ye,
A.L.Cech,
R.Belmares,
R.C.Bergstrom,
Y.Tong,
D.R.Corey,
M.R.Kanost,
and
E.J.Goldsmith
(2001).
The structure of a Michaelis serpin-protease complex.
|
| |
Nat Struct Biol,
8,
979-983.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.Wind,
M.A.Jensen,
and
P.A.Andreasen
(2001).
Epitope mapping for four monoclonal antibodies against human plasminogen activator inhibitor type-1: implications for antibody-mediated PAI-1-neutralization and vitronectin-binding.
|
| |
Eur J Biochem,
268,
1095-1106.
|
 |
|
|
|
|
 |
V.Arocas,
S.C.Bock,
S.Raja,
S.T.Olson,
and
I.Bjork
(2001).
Lysine 114 of antithrombin is of crucial importance for the affinity and kinetics of heparin pentasaccharide binding.
|
| |
J Biol Chem,
276,
43809-43817.
|
 |
|
|
|
|
 |
X.Zang,
and
R.M.Maizels
(2001).
Serine proteinase inhibitors from nematodes and the arms race between host and pathogen.
|
| |
Trends Biochem Sci,
26,
191-197.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |
|