 |
PDBsum entry 1eqf
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Transcription
|
PDB id
|
|
|
|
1eqf
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class 1:
|
 |
E.C.2.3.1.48
- histone acetyltransferase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
L-lysyl-[protein] + acetyl-CoA = N6-acetyl-L-lysyl-[protein] + CoA + H+
|
 |
 |
 |
 |
 |
L-lysyl-[protein]
|
+
|
acetyl-CoA
|
=
|
N(6)-acetyl-L-lysyl-[protein]
|
+
|
CoA
|
+
|
H(+)
|
|
 |
 |
 |
 |
 |
 |
 |
 |
Enzyme class 2:
|
 |
E.C.2.7.11.1
- non-specific serine/threonine protein kinase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
|
1.
|
L-seryl-[protein] + ATP = O-phospho-L-seryl-[protein] + ADP + H+
|
|
2.
|
L-threonyl-[protein] + ATP = O-phospho-L-threonyl-[protein] + ADP + H+
|
|
 |
 |
 |
 |
 |
L-seryl-[protein]
|
+
|
ATP
|
=
|
O-phospho-L-seryl-[protein]
|
+
|
ADP
|
+
|
H(+)
|
|
 |
 |
 |
 |
 |
L-threonyl-[protein]
|
+
|
ATP
|
=
|
O-phospho-L-threonyl-[protein]
|
+
|
ADP
|
+
|
H(+)
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Note, where more than one E.C. class is given (as above), each may
correspond to a different protein domain or, in the case of polyprotein
precursors, to a different mature protein.
|
|
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
DOI no:
|
Science
288:1422-1425
(2000)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structure and function of a human TAFII250 double bromodomain module.
|
|
R.H.Jacobson,
A.G.Ladurner,
D.S.King,
R.Tjian.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
TFIID is a large multiprotein complex that initiates assembly of the
transcription machinery. It is unclear how TFIID recognizes promoters in vivo
when templates are nucleosome-bound. Here, it is shown that TAFII250, the
largest subunit of TFIID, contains two tandem bromodomain modules that bind
selectively to multiply acetylated histone H4 peptides. The 2.1 angstrom crystal
structure of the double bromodomain reveals two side-by-side, four-helix bundles
with a highly polarized surface charge distribution. Each bundle contains an
Nepsilon-acetyllysine binding pocket at its center, which results in a structure
ideally suited for recognition of diacetylated histone H4 tails. Thus, TFIID may
be targeted to specific chromatin-bound promoters and may play a role in
chromatin recognition.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 3.
Fig. 3. Electrostatic charge distribution and binding pockets.
Delphi electrostatic potential calculated and mapped onto the
Connelly solvent accessible surface using InsightII calculated
with coordinates corresponding to the core domain (residues 1379
to 1625). Simulated ionic strength was set to 0.145 M with a
bulk solvent dielectric constant of 80. The first seven
NH[2]-terminal residues from a symmetry-equivalent molecule are
shown as a green stick model. The first three residues (1359 to
1361) are visible binding into the putative acetyllysine
recognition pocket of the first domain. (A) Orientation of the
hTAF[II]250-DBD is the same as that of Fig. 2. Numerous
clustered lysine and arginine residues result in an extended
basic surface. (B) Reverse side of the double bromodomain
relative to (A) displaying the acidic stripe present running
across the top of the molecule. (C) Putative binding surface of
the double bromodomain viewed from the bottom surface of (A).
Two deep pits (labeled) at the center of each four-helix bundle
are readily apparent and are separated by about 25 Å.
|
 |
Figure 4.
Fig. 4. Simplified model for assembly of transcription
complexes on chromatin-bound templates. First, recruitment of a
HAT-containing coactivator complex via interactions with an
upstream DNA binding protein occurs. After recruitment, the
coactivator HAT activity might acetylate the NH[2]-terminal
histone tails (light blue tails) of nearby nucleosomes (upper).
Acetylated histone tails positioned at an appropriate distance
from the start site of a gene might then help to recruit TFIID
by interactions with the TAF[II]250 bromodomains. Nonspecific
interactions between the TAF[II]250 bromodomains and the
promoter DNA as well as other TAF-DNA interactions could further
increase affinity of TFIID for the core promoter. The
bromodomain-mediated increase in affinity for the acetylated
histones near the core promoter would provide a linkage between
histone acetylation and transcriptional activation by enhanced
preinitiation complex formation. Such a model would not preclude
other activation pathways.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from the AAAs:
Science
(2000,
288,
1422-1425)
copyright 2000.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
A.C.Belkina,
and
G.V.Denis
(2012).
BET domain co-regulators in obesity, inflammation and cancer.
|
| |
Nat Rev Cancer,
12,
465-477.
|
 |
|
|
|
|
 |
C.A.Musselman,
M.E.Lalonde,
J.Côté,
and
T.G.Kutateladze
(2012).
Perceiving the epigenetic landscape through histone readers.
|
| |
Nat Struct Mol Biol,
19,
1218-1227.
|
 |
|
|
|
|
 |
C.H.Arrowsmith,
C.Bountra,
P.V.Fish,
K.Lee,
and
M.Schapira
(2012).
Epigenetic protein families: a new frontier for drug discovery.
|
| |
Nat Rev Drug Discov,
11,
384-400.
|
 |
|
|
|
|
 |
B.J.Venters,
S.Wachi,
T.N.Mavrich,
B.E.Andersen,
P.Jena,
A.J.Sinnamon,
P.Jain,
N.S.Rolleri,
C.Jiang,
C.Hemeryck-Walsh,
and
B.F.Pugh
(2011).
A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces.
|
| |
Mol Cell,
41,
480-492.
|
 |
|
|
|
|
 |
F.D.Piaz,
A.Vassallo,
O.C.Rubio,
S.Castellano,
G.Sbardella,
and
N.De Tommasi
(2011).
Chemical biology of Histone acetyltransferase natural compounds modulators.
|
| |
Mol Divers,
15,
401-416.
|
 |
|
|
|
|
 |
G.Papai,
P.A.Weil,
and
P.Schultz
(2011).
New insights into the function of transcription factor TFIID from recent structural studies.
|
| |
Curr Opin Genet Dev,
21,
219-224.
|
 |
|
|
|
|
 |
K.E.Gardner,
C.D.Allis,
and
B.D.Strahl
(2011).
OPERating ON Chromatin, a Colorful Language where Context Matters.
|
| |
J Mol Biol,
409,
36-46.
|
 |
|
|
|
|
 |
K.E.Gardner,
L.Zhou,
M.A.Parra,
X.Chen,
and
B.D.Strahl
(2011).
Identification of lysine 37 of histone H2B as a novel site of methylation.
|
| |
PLoS One,
6,
e16244.
|
 |
|
|
|
|
 |
M.Yun,
J.Wu,
J.L.Workman,
and
B.Li
(2011).
Readers of histone modifications.
|
| |
Cell Res,
21,
564-578.
|
 |
|
|
|
|
 |
P.Voigt,
and
D.Reinberg
(2011).
Histone tails: ideal motifs for probing epigenetics through chemical biology approaches.
|
| |
Chembiochem,
12,
236-252.
|
 |
|
|
|
|
 |
C.A.Airoldi,
F.D.Rovere,
G.Falasca,
G.Marino,
M.Kooiker,
M.M.Altamura,
S.Citterio,
and
M.M.Kater
(2010).
The Arabidopsis BET bromodomain factor GTE4 is involved in maintenance of the mitotic cell cycle during plant development.
|
| |
Plant Physiol,
152,
1320-1334.
|
 |
|
|
|
|
 |
C.Mao,
C.R.Brown,
E.Falkovskaia,
S.Dong,
E.Hrabeta-Robinson,
L.Wenger,
and
H.Boeger
(2010).
Quantitative analysis of the transcription control mechanism.
|
| |
Mol Syst Biol,
6,
431.
|
 |
|
|
|
|
 |
G.V.Denis
(2010).
Bromodomain coactivators in cancer, obesity, type 2 diabetes, and inflammation.
|
| |
Discov Med,
10,
489-499.
|
 |
|
|
|
|
 |
J.A.Goodrich,
and
R.Tjian
(2010).
Unexpected roles for core promoter recognition factors in cell-type-specific transcription and gene regulation.
|
| |
Nat Rev Genet,
11,
549-558.
|
 |
|
|
|
|
 |
J.Luo,
X.Xu,
H.Hall,
E.M.Hyland,
J.D.Boeke,
T.Hazbun,
and
M.H.Kuo
(2010).
Histone h3 exerts a key function in mitotic checkpoint control.
|
| |
Mol Cell Biol,
30,
537-549.
|
 |
|
|
|
|
 |
K.L.Yap,
and
M.M.Zhou
(2010).
Keeping it in the family: diverse histone recognition by conserved structural folds.
|
| |
Crit Rev Biochem Mol Biol,
45,
488-505.
|
 |
|
|
|
|
 |
L.Zeng,
Q.Zhang,
S.Li,
A.N.Plotnikov,
M.J.Walsh,
and
M.M.Zhou
(2010).
Mechanism and regulation of acetylated histone binding by the tandem PHD finger of DPF3b.
|
| |
Nature,
466,
258-262.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
O.M.Dovey,
C.T.Foster,
and
S.M.Cowley
(2010).
Histone deacetylase 1 (HDAC1), but not HDAC2, controls embryonic stem cell differentiation.
|
| |
Proc Natl Acad Sci U S A,
107,
8242-8247.
|
 |
|
|
|
|
 |
R.A.Varier,
N.S.Outchkourov,
P.de Graaf,
F.M.van Schaik,
H.J.Ensing,
F.Wang,
J.M.Higgins,
G.J.Kops,
and
H.T.Timmers
(2010).
A phospho/methyl switch at histone H3 regulates TFIID association with mitotic chromosomes.
|
| |
EMBO J,
29,
3967-3978.
|
 |
|
|
|
|
 |
S.D.McCullough,
and
P.A.Grant
(2010).
Histone acetylation, acetyltransferases, and ataxia-alteration of histone acetylation and chromatin dynamics is implicated in the pathogenesis of polyglutamine-expansion disorders.
|
| |
Adv Protein Chem Struct Biol,
79,
165-203.
|
 |
|
|
|
|
 |
S.G.Pattenden,
M.M.Gogol,
and
J.L.Workman
(2010).
Features of cryptic promoters and their varied reliance on bromodomain-containing factors.
|
| |
PLoS One,
5,
e12927.
|
 |
|
|
|
|
 |
T.K.Barth,
and
A.Imhof
(2010).
Fast signals and slow marks: the dynamics of histone modifications.
|
| |
Trends Biochem Sci,
35,
618-626.
|
 |
|
|
|
|
 |
T.Umehara,
Y.Nakamura,
M.K.Jang,
K.Nakano,
A.Tanaka,
K.Ozato,
B.Padmanabhan,
and
S.Yokoyama
(2010).
Structural basis for acetylated histone H4 recognition by the human BRD2 bromodomain.
|
| |
J Biol Chem,
285,
7610-7618.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
U.Ohler,
and
D.A.Wassarman
(2010).
Promoting developmental transcription.
|
| |
Development,
137,
15-26.
|
 |
|
|
|
|
 |
W.W.Tsai,
Z.Wang,
T.T.Yiu,
K.C.Akdemir,
W.Xia,
S.Winter,
C.Y.Tsai,
X.Shi,
D.Schwarzer,
W.Plunkett,
B.Aronow,
O.Gozani,
W.Fischle,
M.C.Hung,
D.J.Patel,
and
M.C.Barton
(2010).
TRIM24 links a non-canonical histone signature to breast cancer.
|
| |
Nature,
468,
927-932.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
X.Li,
X.Hu,
B.Patel,
Z.Zhou,
S.Liang,
R.Ybarra,
Y.Qiu,
G.Felsenfeld,
J.Bungert,
and
S.Huang
(2010).
H4R3 methylation facilitates beta-globin transcription by regulating histone acetyltransferase binding and H3 acetylation.
|
| |
Blood,
115,
2028-2037.
|
 |
|
|
|
|
 |
Y.Akai,
N.Adachi,
Y.Hayashi,
M.Eitoku,
N.Sano,
R.Natsume,
N.Kudo,
M.Tanokura,
T.Senda,
and
M.Horikoshi
(2010).
Structure of the histone chaperone CIA/ASF1-double bromodomain complex linking histone modifications and site-specific histone eviction.
|
| |
Proc Natl Acad Sci U S A,
107,
8153-8158.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Gyuris,
D.J.Donovan,
K.A.Seymour,
L.A.Lovasco,
N.R.Smilowitz,
A.L.Halperin,
J.E.Klysik,
and
R.N.Freiman
(2009).
The chromatin-targeting protein Brd2 is required for neural tube closure and embryogenesis.
|
| |
Biochim Biophys Acta,
1789,
413-421.
|
 |
|
|
|
|
 |
B.Huang,
X.D.Yang,
M.M.Zhou,
K.Ozato,
and
L.F.Chen
(2009).
Brd4 coactivates transcriptional activation of NF-kappaB via specific binding to acetylated RelA.
|
| |
Mol Cell Biol,
29,
1375-1387.
|
 |
|
|
|
|
 |
C.Jiang,
and
B.F.Pugh
(2009).
Nucleosome positioning and gene regulation: advances through genomics.
|
| |
Nat Rev Genet,
10,
161-172.
|
 |
|
|
|
|
 |
C.M.Chiang
(2009).
Brd4 engagement from chromatin targeting to transcriptional regulation: selective contact with acetylated histone H3 and H4.
|
| |
F1000 Biol Rep,
1,
0.
|
 |
|
|
|
|
 |
C.Zang,
D.E.Schones,
C.Zeng,
K.Cui,
K.Zhao,
and
W.Peng
(2009).
A clustering approach for identification of enriched domains from histone modification ChIP-Seq data.
|
| |
Bioinformatics,
25,
1952-1958.
|
 |
|
|
|
|
 |
E.Cler,
G.Papai,
P.Schultz,
and
I.Davidson
(2009).
Recent advances in understanding the structure and function of general transcription factor TFIID.
|
| |
Cell Mol Life Sci,
66,
2123-2134.
|
 |
|
|
|
|
 |
F.Vollmuth,
W.Blankenfeldt,
and
M.Geyer
(2009).
Structures of the dual bromodomains of the P-TEFb-activating protein Brd4 at atomic resolution.
|
| |
J Biol Chem,
284,
36547-36556.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.Neumann,
S.M.Hancock,
R.Buning,
A.Routh,
L.Chapman,
J.Somers,
T.Owen-Hughes,
J.van Noort,
D.Rhodes,
and
J.W.Chin
(2009).
A method for genetically installing site-specific acetylation in recombinant histones defines the effects of H3 K56 acetylation.
|
| |
Mol Cell,
36,
153-163.
|
 |
|
|
|
|
 |
J.K.Choi,
and
L.J.Howe
(2009).
Histone acetylation: truth of consequences?
|
| |
Biochem Cell Biol,
87,
139-150.
|
 |
|
|
|
|
 |
J.Morinière,
S.Rousseaux,
U.Steuerwald,
M.Soler-López,
S.Curtet,
A.L.Vitte,
J.Govin,
J.Gaucher,
K.Sadoul,
D.J.Hart,
J.Krijgsveld,
S.Khochbin,
C.W.Müller,
and
C.Petosa
(2009).
Cooperative binding of two acetylation marks on a histone tail by a single bromodomain.
|
| |
Nature,
461,
664-668.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.H.Kuo,
X.J.Xu,
H.A.Bolck,
and
D.Guo
(2009).
Functional connection between histone acetyltransferase Gcn5p and methyltransferase Hmt1p.
|
| |
Biochim Biophys Acta,
1789,
395-402.
|
 |
|
|
|
|
 |
M.Thompson
(2009).
Polybromo-1: the chromatin targeting subunit of the PBAF complex.
|
| |
Biochimie,
91,
309-319.
|
 |
|
|
|
|
 |
N.Dani,
A.Stilla,
A.Marchegiani,
A.Tamburro,
S.Till,
A.G.Ladurner,
D.Corda,
and
M.Di Girolamo
(2009).
Combining affinity purification by ADP-ribose-binding macro domains with mass spectrometry to define the mammalian ADP-ribosyl proteome.
|
| |
Proc Natl Acad Sci U S A,
106,
4243-4248.
|
 |
|
|
|
|
 |
N.J.Fuda,
M.B.Ardehali,
and
J.T.Lis
(2009).
Defining mechanisms that regulate RNA polymerase II transcription in vivo.
|
| |
Nature,
461,
186-192.
|
 |
|
|
|
|
 |
P.V.Peña,
C.A.Musselman,
A.J.Kuo,
O.Gozani,
and
T.G.Kutateladze
(2009).
NMR assignments and histone specificity of the ING2 PHD finger.
|
| |
Magn Reson Chem,
47,
352-358.
|
 |
|
|
|
|
 |
R.Sanchez,
and
M.M.Zhou
(2009).
The role of human bromodomains in chromatin biology and gene transcription.
|
| |
Curr Opin Drug Discov Devel,
12,
659-665.
|
 |
|
|
|
|
 |
R.T.Koerber,
H.S.Rhee,
C.Jiang,
and
B.F.Pugh
(2009).
Interaction of transcriptional regulators with specific nucleosomes across the Saccharomyces genome.
|
| |
Mol Cell,
35,
889-902.
|
 |
|
|
|
|
 |
S.Chakravarty,
L.Zeng,
and
M.M.Zhou
(2009).
Structure and site-specific recognition of histone H3 by the PHD finger of human autoimmune regulator.
|
| |
Structure,
17,
670-679.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.M.Fuchs,
R.N.Laribee,
and
B.D.Strahl
(2009).
Protein modifications in transcription elongation.
|
| |
Biochim Biophys Acta,
1789,
26-36.
|
 |
|
|
|
|
 |
W.Renthal,
and
E.J.Nestler
(2009).
Histone acetylation in drug addiction.
|
| |
Semin Cell Dev Biol,
20,
387-394.
|
 |
|
|
|
|
 |
B.L.Florence,
and
D.V.Faller
(2008).
Drosophila female sterile (1) homeotic is a multifunctional transcriptional regulator that is modulated by Ras signaling.
|
| |
Dev Dyn,
237,
554-564.
|
 |
|
|
|
|
 |
C.Buerki,
K.M.Rothgiesser,
T.Valovka,
H.R.Owen,
H.Rehrauer,
M.Fey,
W.S.Lane,
and
M.O.Hottiger
(2008).
Functional relevance of novel p300-mediated lysine 314 and 315 acetylation of RelA/p65.
|
| |
Nucleic Acids Res,
36,
1665-1680.
|
 |
|
|
|
|
 |
C.Kupitz,
R.Chandrasekaran,
and
M.Thompson
(2008).
Kinetic analysis of acetylation-dependent Pb1 bromodomain-histone interactions.
|
| |
Biophys Chem,
136,
7.
|
 |
|
|
|
|
 |
D.L.Philipps,
K.Wigglesworth,
S.A.Hartford,
F.Sun,
S.Pattabiraman,
K.Schimenti,
M.Handel,
J.J.Eppig,
and
J.C.Schimenti
(2008).
The dual bromodomain and WD repeat-containing mouse protein BRWD1 is required for normal spermiogenesis and the oocyte-embryo transition.
|
| |
Dev Biol,
317,
72-82.
|
 |
|
|
|
|
 |
G.Koutroubas,
M.Merika,
and
D.Thanos
(2008).
Bypassing the requirements for epigenetic modifications in gene transcription by increasing enhancer strength.
|
| |
Mol Cell Biol,
28,
926-938.
|
 |
|
|
|
|
 |
G.LeRoy,
B.Rickards,
and
S.J.Flint
(2008).
The double bromodomain proteins Brd2 and Brd3 couple histone acetylation to transcription.
|
| |
Mol Cell,
30,
51-60.
|
 |
|
|
|
|
 |
L.R.Thomas,
H.Miyashita,
R.M.Cobb,
S.Pierce,
M.Tachibana,
E.Hobeika,
M.Reth,
Y.Shinkai,
and
E.M.Oltz
(2008).
Functional analysis of histone methyltransferase g9a in B and T lymphocytes.
|
| |
J Immunol,
181,
485-493.
|
 |
|
|
|
|
 |
L.Zeng,
K.L.Yap,
A.V.Ivanov,
X.Wang,
S.Mujtaba,
O.Plotnikova,
F.J.Rauscher,
and
M.M.Zhou
(2008).
Structural insights into human KAP1 PHD finger-bromodomain and its role in gene silencing.
|
| |
Nat Struct Mol Biol,
15,
626-633.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
L.Zeng,
Q.Zhang,
G.Gerona-Navarro,
N.Moshkina,
and
M.M.Zhou
(2008).
Structural basis of site-specific histone recognition by the bromodomains of human coactivators PCAF and CBP/p300.
|
| |
Structure,
16,
643-652.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Thompson,
and
R.Chandrasekaran
(2008).
Thermodynamic analysis of acetylation-dependent Pb1 bromodomain-histone H3 interactions.
|
| |
Anal Biochem,
374,
304-312.
|
 |
|
|
|
|
 |
P.Akan,
and
P.Deloukas
(2008).
DNA sequence and structural properties as predictors of human and mouse promoters.
|
| |
Gene,
410,
165-176.
|
 |
|
|
|
|
 |
R.J.Sims,
and
D.Reinberg
(2008).
Is there a code embedded in proteins that is based on post-translational modifications?
|
| |
Nat Rev Mol Cell Biol,
9,
815-820.
|
 |
|
|
|
|
 |
S.Awad,
and
A.H.Hassan
(2008).
The Swi2/Snf2 bromodomain is important for the full binding and remodeling activity of the SWI/SNF complex on H3- and H4-acetylated nucleosomes.
|
| |
Ann N Y Acad Sci,
1138,
366-375.
|
 |
|
|
|
|
 |
S.Misri,
S.Pandita,
R.Kumar,
and
T.K.Pandita
(2008).
Telomeres, histone code, and DNA damage response.
|
| |
Cytogenet Genome Res,
122,
297-307.
|
 |
|
|
|
|
 |
S.Padilla-Parra,
N.Audugé,
M.Coppey-Moisan,
and
M.Tramier
(2008).
Quantitative FRET analysis by fast acquisition time domain FLIM at high spatial resolution in living cells.
|
| |
Biophys J,
95,
2976-2988.
|
 |
|
|
|
|
 |
S.Till,
K.Diamantara,
and
A.G.Ladurner
(2008).
PARP: a transferase by any other name.
|
| |
Nat Struct Mol Biol,
15,
1243-1244.
|
 |
|
|
|
|
 |
T.Hou,
S.Ray,
C.Lee,
and
A.R.Brasier
(2008).
The STAT3 NH2-terminal domain stabilizes enhanceosome assembly by interacting with the p300 bromodomain.
|
| |
J Biol Chem,
283,
30725-30734.
|
 |
|
|
|
|
 |
T.Stuwe,
M.Hothorn,
E.Lejeune,
V.Rybin,
M.Bortfeld,
K.Scheffzek,
and
A.G.Ladurner
(2008).
The FACT Spt16 "peptidase" domain is a histone H3-H4 binding module.
|
| |
Proc Natl Acad Sci U S A,
105,
8884-8889.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.Suganuma,
J.L.Gutiérrez,
B.Li,
L.Florens,
S.K.Swanson,
M.P.Washburn,
S.M.Abmayr,
and
J.L.Workman
(2008).
ATAC is a double histone acetyltransferase complex that stimulates nucleosome sliding.
|
| |
Nat Struct Mol Biol,
15,
364-372.
|
 |
|
|
|
|
 |
A.Cvekl,
and
M.K.Duncan
(2007).
Genetic and epigenetic mechanisms of gene regulation during lens development.
|
| |
Prog Retin Eye Res,
26,
555-597.
|
 |
|
|
|
|
 |
A.G.Li,
L.G.Piluso,
X.Cai,
B.J.Gadd,
A.G.Ladurner,
and
X.Liu
(2007).
An acetylation switch in p53 mediates holo-TFIID recruitment.
|
| |
Mol Cell,
28,
408-421.
|
 |
|
|
|
|
 |
A.J.Ruthenburg,
H.Li,
D.J.Patel,
and
C.D.Allis
(2007).
Multivalent engagement of chromatin modifications by linked binding modules.
|
| |
Nat Rev Mol Cell Biol,
8,
983-994.
|
 |
|
|
|
|
 |
B.Grondin,
M.Lefrancois,
M.Tremblay,
M.Saint-Denis,
A.Haman,
K.Waga,
A.Bédard,
D.G.Tenen,
and
T.Hoang
(2007).
c-Jun homodimers can function as a context-specific coactivator.
|
| |
Mol Cell Biol,
27,
2919-2933.
|
 |
|
|
|
|
 |
D.M.Heery,
and
P.M.Fischer
(2007).
Pharmacological targeting of lysine acetyltransferases in human disease: a progress report.
|
| |
Drug Discov Today,
12,
88-99.
|
 |
|
|
|
|
 |
F.Escaffit,
O.Vaute,
M.Chevillard-Briet,
B.Segui,
Y.Takami,
T.Nakayama,
and
D.Trouche
(2007).
Cleavage and cytoplasmic relocalization of histone deacetylase 3 are important for apoptosis progression.
|
| |
Mol Cell Biol,
27,
554-567.
|
 |
|
|
|
|
 |
G.Kustatscher,
and
A.G.Ladurner
(2007).
Modular paths to 'decoding' and 'wiping' histone lysine methylation.
|
| |
Curr Opin Chem Biol,
11,
628-635.
|
 |
|
|
|
|
 |
H.Ferreira,
A.Flaus,
and
T.Owen-Hughes
(2007).
Histone modifications influence the action of Snf2 family remodelling enzymes by different mechanisms.
|
| |
J Mol Biol,
374,
563-579.
|
 |
|
|
|
|
 |
H.Ferreira,
J.Somers,
R.Webster,
A.Flaus,
and
T.Owen-Hughes
(2007).
Histone tails and the H3 alphaN helix regulate nucleosome mobility and stability.
|
| |
Mol Cell Biol,
27,
4037-4048.
|
 |
|
|
|
|
 |
H.Huang,
J.Zhang,
W.Shen,
X.Wang,
J.Wu,
J.Wu,
and
Y.Shi
(2007).
Solution structure of the second bromodomain of Brd2 and its specific interaction with acetylated histone tails.
|
| |
BMC Struct Biol,
7,
57.
|
 |
|
|
|
|
 |
H.Rong,
Y.Li,
X.Shi,
X.Zhang,
Y.Gao,
H.Dai,
M.Teng,
L.Niu,
Q.Liu,
and
Q.Hao
(2007).
Structure of human upstream binding factor HMG box 5 and site for binding of the cell-cycle regulatory factor TAF1.
|
| |
Acta Crystallogr D Biol Crystallogr,
63,
730-737.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
I.B.Dodd,
M.A.Micheelsen,
K.Sneppen,
and
G.Thon
(2007).
Theoretical analysis of epigenetic cell memory by nucleosome modification.
|
| |
Cell,
129,
813-822.
|
 |
|
|
|
|
 |
J.Fu,
H.G.Yoon,
J.Qin,
and
J.Wong
(2007).
Regulation of P-TEFb elongation complex activity by CDK9 acetylation.
|
| |
Mol Cell Biol,
27,
4641-4651.
|
 |
|
|
|
|
 |
J.Komura,
H.Ikehata,
and
T.Ono
(2007).
Chromatin fine structure of the c-MYC insulator element/DNase I-hypersensitive site I is not preserved during mitosis.
|
| |
Proc Natl Acad Sci U S A,
104,
15741-15746.
|
 |
|
|
|
|
 |
K.K.Lee,
and
J.L.Workman
(2007).
Histone acetyltransferase complexes: one size doesn't fit all.
|
| |
Nat Rev Mol Cell Biol,
8,
284-295.
|
 |
|
|
|
|
 |
M.D.Shahbazian,
and
M.Grunstein
(2007).
Functions of site-specific histone acetylation and deacetylation.
|
| |
Annu Rev Biochem,
76,
75.
|
 |
|
|
|
|
 |
M.Durant,
and
B.F.Pugh
(2007).
NuA4-directed chromatin transactions throughout the Saccharomyces cerevisiae genome.
|
| |
Mol Cell Biol,
27,
5327-5335.
|
 |
|
|
|
|
 |
M.Lohrum,
H.G.Stunnenberg,
and
C.Logie
(2007).
The new frontier in cancer research: deciphering cancer epigenetics.
|
| |
Int J Biochem Cell Biol,
39,
1450-1461.
|
 |
|
|
|
|
 |
M.Singh,
G.M.Popowicz,
M.Krajewski,
and
T.A.Holak
(2007).
Structural ramification for acetyl-lysine recognition by the bromodomain of human BRG1 protein, a central ATPase of the SWI/SNF remodeling complex.
|
| |
Chembiochem,
8,
1308-1316.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Vermeulen,
K.W.Mulder,
S.Denissov,
W.W.Pijnappel,
F.M.van Schaik,
R.A.Varier,
M.P.Baltissen,
H.G.Stunnenberg,
M.Mann,
and
H.T.Timmers
(2007).
Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4.
|
| |
Cell,
131,
58-69.
|
 |
|
|
|
|
 |
N.Jamonnak,
D.G.Fatkins,
L.Wei,
and
W.Zheng
(2007).
N(epsilon)-methanesulfonyl-lysine as a non-hydrolyzable functional surrogate for N(epsilon)-acetyl-lysine.
|
| |
Org Biomol Chem,
5,
892-896.
|
 |
|
|
|
|
 |
P.Stavropoulos,
and
A.Hoelz
(2007).
Lysine-specific demethylase 1 as a potential therapeutic target.
|
| |
Expert Opin Ther Targets,
11,
809-820.
|
 |
|
|
|
|
 |
R.K.Dunn,
and
R.E.Kingston
(2007).
Gene regulation in the postgenomic era: technology takes the wheel.
|
| |
Mol Cell,
28,
708-714.
|
 |
|
|
|
|
 |
S.Bhattacharya,
S.Takada,
and
R.H.Jacobson
(2007).
Structural analysis and dimerization potential of the human TAF5 subunit of TFIID.
|
| |
Proc Natl Acad Sci U S A,
104,
1189-1194.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.D.Taverna,
H.Li,
A.J.Ruthenburg,
C.D.Allis,
and
D.J.Patel
(2007).
How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers.
|
| |
Nat Struct Mol Biol,
14,
1025-1040.
|
 |
|
|
|
|
 |
S.I.Kim,
and
E.H.Bresnick
(2007).
Transcriptional control of erythropoiesis: emerging mechanisms and principles.
|
| |
Oncogene,
26,
6777-6794.
|
 |
|
|
|
|
 |
S.Lall
(2007).
Primers on chromatin.
|
| |
Nat Struct Mol Biol,
14,
1110-1115.
|
 |
|
|
|
|
 |
S.Mujtaba,
L.Zeng,
and
M.M.Zhou
(2007).
Structure and acetyl-lysine recognition of the bromodomain.
|
| |
Oncogene,
26,
5521-5527.
|
 |
|
|
|
|
 |
S.Ramón-Maiques,
A.J.Kuo,
D.Carney,
A.G.Matthews,
M.A.Oettinger,
O.Gozani,
and
W.Yang
(2007).
The plant homeodomain finger of RAG2 recognizes histone H3 methylated at both lysine-4 and arginine-2.
|
| |
Proc Natl Acad Sci U S A,
104,
18993-18998.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Rea,
G.Xouri,
and
A.Akhtar
(2007).
Males absent on the first (MOF): from flies to humans.
|
| |
Oncogene,
26,
5385-5394.
|
 |
|
|
|
|
 |
V.K.Gangaraju,
and
B.Bartholomew
(2007).
Mechanisms of ATP dependent chromatin remodeling.
|
| |
Mutat Res,
618,
3.
|
 |
|
|
|
|
 |
X.Wang,
D.M.Truckses,
S.Takada,
T.Matsumura,
N.Tanese,
and
R.H.Jacobson
(2007).
Conserved region I of human coactivator TAF4 binds to a short hydrophobic motif present in transcriptional regulators.
|
| |
Proc Natl Acad Sci U S A,
104,
7839-7844.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Y.L.Chang,
B.King,
S.C.Lin,
J.A.Kennison,
and
D.H.Huang
(2007).
A double-bromodomain protein, FSH-S, activates the homeotic gene ultrabithorax through a critical promoter-proximal region.
|
| |
Mol Cell Biol,
27,
5486-5498.
|
 |
|
|
|
|
 |
Y.Oh,
and
L.W.Fung
(2007).
Brain proteins interacting with the tetramerization region of non-erythroid alpha spectrin.
|
| |
Cell Mol Biol Lett,
12,
604-620.
|
 |
|
|
|
|
 |
A.G.Ladurner
(2006).
Rheostat control of gene expression by metabolites.
|
| |
Mol Cell,
24,
1.
|
 |
|
|
|
|
 |
B.T.Seet,
I.Dikic,
M.M.Zhou,
and
T.Pawson
(2006).
Reading protein modifications with interaction domains.
|
| |
Nat Rev Mol Cell Biol,
7,
473-483.
|
 |
|
|
|
|
 |
C.B.Millar,
F.Xu,
K.Zhang,
and
M.Grunstein
(2006).
Acetylation of H2AZ Lys 14 is associated with genome-wide gene activity in yeast.
|
| |
Genes Dev,
20,
711-722.
|
 |
|
|
|
|
 |
C.B.Millar,
and
M.Grunstein
(2006).
Genome-wide patterns of histone modifications in yeast.
|
| |
Nat Rev Mol Cell Biol,
7,
657-666.
|
 |
|
|
|
|
 |
C.Peng,
J.Zhou,
H.Y.Liu,
M.Zhou,
L.L.Wang,
Q.H.Zhang,
Y.X.Yang,
W.Xiong,
S.R.Shen,
X.L.Li,
and
G.Y.Li
(2006).
The transcriptional regulation role of BRD7 by binding to acetylated histone through bromodomain.
|
| |
J Cell Biochem,
97,
882-892.
|
 |
|
|
|
|
 |
F.Pizzitutti,
A.Giansanti,
P.Ballario,
P.Ornaghi,
P.Torreri,
G.Ciccotti,
and
P.Filetici
(2006).
The role of loop ZA and Pro371 in the function of yeast Gcn5p bromodomain revealed through molecular dynamics and experiment.
|
| |
J Mol Recognit,
19,
1-9.
|
 |
|
|
|
|
 |
G.P.Vicent,
C.Ballaré,
R.Zaurin,
P.Saragüeta,
and
M.Beato
(2006).
Chromatin remodeling and control of cell proliferation by progestins via cross talk of progesterone receptor with the estrogen receptors and kinase signaling pathways.
|
| |
Ann N Y Acad Sci,
1089,
59-72.
|
 |
|
|
|
|
 |
J.Perry
(2006).
The Epc-N domain: a predicted protein-protein interaction domain found in select chromatin associated proteins.
|
| |
BMC Genomics,
7,
6.
|
 |
|
|
|
|
 |
J.S.Fillingham,
J.Garg,
N.Tsao,
N.Vythilingum,
T.Nishikawa,
and
R.E.Pearlman
(2006).
Molecular genetic analysis of an SNF2/brahma-related gene in Tetrahymena thermophila suggests roles in growth and nuclear development.
|
| |
Eukaryot Cell,
5,
1347-1359.
|
 |
|
|
|
|
 |
M.Chandy,
J.L.Gutiérrez,
P.Prochasson,
and
J.L.Workman
(2006).
SWI/SNF displaces SAGA-acetylated nucleosomes.
|
| |
Eukaryot Cell,
5,
1738-1747.
|
 |
|
|
|
|
 |
M.Durant,
and
B.F.Pugh
(2006).
Genome-wide relationships between TAF1 and histone acetyltransferases in Saccharomyces cerevisiae.
|
| |
Mol Cell Biol,
26,
2791-2802.
|
 |
|
|
|
|
 |
M.Singh,
L.D'Silva,
and
T.A.Holak
(2006).
DNA-binding properties of the recombinant high-mobility-group-like AT-hook-containing region from human BRG1 protein.
|
| |
Biol Chem,
387,
1469-1478.
|
 |
|
|
|
|
 |
M.Yoshino,
T.Mizutani,
K.Yamada,
T.Yazawa,
H.Ogata-Kawata,
T.Sekiguchi,
T.Kajitani,
and
K.Miyamoto
(2006).
Co-activator p120 is increased by gonadotropins in the rat ovary and enhances progesterone receptor activity.
|
| |
Reprod Biol Endocrinol,
4,
50.
|
 |
|
|
|
|
 |
P.Grob,
M.J.Cruse,
C.Inouye,
M.Peris,
P.A.Penczek,
R.Tjian,
and
E.Nogales
(2006).
Cryo-electron microscopy studies of human TFIID: conformational breathing in the integration of gene regulatory cues.
|
| |
Structure,
14,
511-520.
|
 |
|
|
|
|
 |
P.V.Peña,
F.Davrazou,
X.Shi,
K.L.Walter,
V.V.Verkhusha,
O.Gozani,
R.Zhao,
and
T.G.Kutateladze
(2006).
Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2.
|
| |
Nature,
442,
100-103.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
P.Zhang,
J.Zhao,
B.Wang,
J.Du,
Y.Lu,
J.Chen,
and
J.Ding
(2006).
The MRG domain of human MRG15 uses a shallow hydrophobic pocket to interact with the N-terminal region of PAM14.
|
| |
Protein Sci,
15,
2423-2434.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.J.Bultman,
T.C.Gebuhr,
H.Pan,
P.Svoboda,
R.M.Schultz,
and
T.Magnuson
(2006).
Maternal BRG1 regulates zygotic genome activation in the mouse.
|
| |
Genes Dev,
20,
1744-1754.
|
 |
|
|
|
|
 |
S.P.Sripathy,
J.Stevens,
and
D.C.Schultz
(2006).
The KAP1 corepressor functions to coordinate the assembly of de novo HP1-demarcated microenvironments of heterochromatin required for KRAB zinc finger protein-mediated transcriptional repression.
|
| |
Mol Cell Biol,
26,
8623-8638.
|
 |
|
|
|
|
 |
S.Y.Wu,
A.Y.Lee,
S.Y.Hou,
J.K.Kemper,
H.Erdjument-Bromage,
P.Tempst,
and
C.M.Chiang
(2006).
Brd4 links chromatin targeting to HPV transcriptional silencing.
|
| |
Genes Dev,
20,
2383-2396.
|
 |
|
|
|
|
 |
T.Jenuwein
(2006).
The epigenetic magic of histone lysine methylation.
|
| |
FEBS J,
273,
3121-3135.
|
 |
|
|
|
|
 |
Y.Su,
C.S.Kwon,
S.Bezhani,
B.Huvermann,
C.Chen,
A.Peragine,
J.F.Kennedy,
and
D.Wagner
(2006).
The N-terminal ATPase AT-hook-containing region of the Arabidopsis chromatin-remodeling protein SPLAYED is sufficient for biological activity.
|
| |
Plant J,
46,
685-699.
|
 |
|
|
|
|
 |
Y.Zhang
(2006).
It takes a PHD to interpret histone methylation.
|
| |
Nat Struct Mol Biol,
13,
572-574.
|
 |
|
|
|
|
 |
C.A.Berkes,
and
S.J.Tapscott
(2005).
MyoD and the transcriptional control of myogenesis.
|
| |
Semin Cell Dev Biol,
16,
585-595.
|
 |
|
|
|
|
 |
C.Carré,
D.Szymczak,
J.Pidoux,
and
C.Antoniewski
(2005).
The histone H3 acetylase dGcn5 is a key player in Drosophila melanogaster metamorphosis.
|
| |
Mol Cell Biol,
25,
8228-8238.
|
 |
|
|
|
|
 |
C.Martin,
and
Y.Zhang
(2005).
The diverse functions of histone lysine methylation.
|
| |
Nat Rev Mol Cell Biol,
6,
838-849.
|
 |
|
|
|
|
 |
D.H.Lee,
N.Gershenzon,
M.Gupta,
I.P.Ioshikhes,
D.Reinberg,
and
B.A.Lewis
(2005).
Functional characterization of core promoter elements: the downstream core element is recognized by TAF1.
|
| |
Mol Cell Biol,
25,
9674-9686.
|
 |
|
|
|
|
 |
E.Lejeune,
and
A.G.Ladurner
(2005).
Hitting transcription in all the right places.
|
| |
Nat Struct Mol Biol,
12,
390-392.
|
 |
|
|
|
|
 |
G.I.Karras,
G.Kustatscher,
H.R.Buhecha,
M.D.Allen,
C.Pugieux,
F.Sait,
M.Bycroft,
and
A.G.Ladurner
(2005).
The macro domain is an ADP-ribose binding module.
|
| |
EMBO J,
24,
1911-1920.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.G.Yoon,
Y.Choi,
P.A.Cole,
and
J.Wong
(2005).
Reading and function of a histone code involved in targeting corepressor complexes for repression.
|
| |
Mol Cell Biol,
25,
324-335.
|
 |
|
|
|
|
 |
H.Qiu,
C.Hu,
F.Zhang,
G.J.Hwang,
M.J.Swanson,
C.Boonchird,
and
A.G.Hinnebusch
(2005).
Interdependent recruitment of SAGA and Srb mediator by transcriptional activator Gcn4p.
|
| |
Mol Cell Biol,
25,
3461-3474.
|
 |
|
|
|
|
 |
J.F.Flanagan,
L.Z.Mi,
M.Chruszcz,
M.Cymborowski,
K.L.Clines,
Y.Kim,
W.Minor,
F.Rastinejad,
and
S.Khorasanizadeh
(2005).
Double chromodomains cooperate to recognize the methylated histone H3 tail.
|
| |
Nature,
438,
1181-1185.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.H.Kim,
E.J.Cho,
S.T.Kim,
and
H.D.Youn
(2005).
CtBP represses p300-mediated transcriptional activation by direct association with its bromodomain.
|
| |
Nat Struct Mol Biol,
12,
423-428.
|
 |
|
|
|
|
 |
L.Chen,
and
H.Zhao
(2005).
Gene expression analysis reveals that histone deacetylation sites may serve as partitions of chromatin gene expression domains.
|
| |
BMC Genomics,
6,
44.
|
 |
|
|
|
|
 |
M.Biel,
V.Wascholowski,
and
A.Giannis
(2005).
Epigenetics--an epicenter of gene regulation: histones and histone-modifying enzymes.
|
| |
Angew Chem Int Ed Engl,
44,
3186-3216.
|
 |
|
|
|
|
 |
M.K.Jang,
K.Mochizuki,
M.Zhou,
H.S.Jeong,
J.N.Brady,
and
K.Ozato
(2005).
The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription.
|
| |
Mol Cell,
19,
523-534.
|
 |
|
|
|
|
 |
N.Jambunathan,
A.W.Martinez,
E.C.Robert,
N.B.Agochukwu,
M.E.Ibos,
S.L.Dugas,
and
D.Donze
(2005).
Multiple bromodomain genes are involved in restricting the spread of heterochromatic silencing at the Saccharomyces cerevisiae HMR-tRNA boundary.
|
| |
Genetics,
171,
913-922.
|
 |
|
|
|
|
 |
N.Macdonald,
J.P.Welburn,
M.E.Noble,
A.Nguyen,
M.B.Yaffe,
D.Clynes,
J.G.Moggs,
G.Orphanides,
S.Thomson,
J.W.Edmunds,
A.L.Clayton,
J.A.Endicott,
and
L.C.Mahadevan
(2005).
Molecular basis for the recognition of phosphorylated and phosphoacetylated histone h3 by 14-3-3.
|
| |
Mol Cell,
20,
199-211.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
N.Nameki,
N.Tochio,
S.Koshiba,
M.Inoue,
T.Yabuki,
M.Aoki,
E.Seki,
T.Matsuda,
Y.Fujikura,
M.Saito,
M.Ikari,
M.Watanabe,
T.Terada,
M.Shirouzu,
M.Yoshida,
H.Hirota,
A.Tanaka,
Y.Hayashizaki,
P.Güntert,
T.Kigawa,
and
S.Yokoyama
(2005).
Solution structure of the PWWP domain of the hepatoma-derived growth factor family.
|
| |
Protein Sci,
14,
756-764.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.Fujiki,
M.S.Kim,
Y.Sasaki,
K.Yoshimura,
H.Kitagawa,
and
S.Kato
(2005).
Ligand-induced transrepression by VDR through association of WSTF with acetylated histones.
|
| |
EMBO J,
24,
3881-3894.
|
 |
|
|
|
|
 |
R.Margueron,
P.Trojer,
and
D.Reinberg
(2005).
The key to development: interpreting the histone code?
|
| |
Curr Opin Genet Dev,
15,
163-176.
|
 |
|
|
|
|
 |
S.Huang,
M.Litt,
and
G.Felsenfeld
(2005).
Methylation of histone H4 by arginine methyltransferase PRMT1 is essential in vivo for many subsequent histone modifications.
|
| |
Genes Dev,
19,
1885-1893.
|
 |
|
|
|
|
 |
T.Wako,
Y.Murakami,
and
K.Fukui
(2005).
Comprehensive analysis of dynamics of histone H4 acetylation in mitotic barley cells.
|
| |
Genes Genet Syst,
80,
269-276.
|
 |
|
|
|
|
 |
T.Y.Roh,
S.Cuddapah,
and
K.Zhao
(2005).
Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping.
|
| |
Genes Dev,
19,
542-552.
|
 |
|
|
|
|
 |
X.de la Cruz,
S.Lois,
S.Sánchez-Molina,
and
M.A.Martínez-Balbás
(2005).
Do protein motifs read the histone code?
|
| |
Bioessays,
27,
164-175.
|
 |
|
|
|
|
 |
Y.Liu,
X.Xu,
S.Singh-Rodriguez,
Y.Zhao,
and
M.H.Kuo
(2005).
Histone H3 Ser10 phosphorylation-independent function of Snf1 and Reg1 proteins rescues a gcn5- mutant in HIS3 expression.
|
| |
Mol Cell Biol,
25,
10566-10579.
|
 |
|
|
|
|
 |
A.D.Basehoar,
S.J.Zanton,
and
B.F.Pugh
(2004).
Identification and distinct regulation of yeast TATA box-containing genes.
|
| |
Cell,
116,
699-709.
|
 |
|
|
|
|
 |
A.E.Ehrenhofer-Murray
(2004).
Chromatin dynamics at DNA replication, transcription and repair.
|
| |
Eur J Biochem,
271,
2335-2349.
|
 |
|
|
|
|
 |
A.Eberharter,
I.Vetter,
R.Ferreira,
and
P.B.Becker
(2004).
ACF1 improves the effectiveness of nucleosome mobilization by ISWI through PHD-histone contacts.
|
| |
EMBO J,
23,
4029-4039.
|
 |
|
|
|
|
 |
A.Farina,
M.Hattori,
J.Qin,
Y.Nakatani,
N.Minato,
and
K.Ozato
(2004).
Bromodomain protein Brd4 binds to GTPase-activating SPA-1, modulating its activity and subcellular localization.
|
| |
Mol Cell Biol,
24,
9059-9069.
|
 |
|
|
|
|
 |
A.Henderson,
A.Holloway,
R.Reeves,
and
D.J.Tremethick
(2004).
Recruitment of SWI/SNF to the human immunodeficiency virus type 1 promoter.
|
| |
Mol Cell Biol,
24,
389-397.
|
 |
|
|
|
|
 |
A.Loyola,
and
G.Almouzni
(2004).
Bromodomains in living cells participate in deciphering the histone code.
|
| |
Trends Cell Biol,
14,
279-281.
|
 |
|
|
|
|
 |
B.Y.Hamaoka,
C.E.Dann,
B.V.Geisbrecht,
and
D.J.Leahy
(2004).
Crystal structure of Caenorhabditis elegans HER-1 and characterization of the interaction between HER-1 and TRA-2A.
|
| |
Proc Natl Acad Sci U S A,
101,
11673-11678.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.B.Millar,
S.K.Kurdistani,
and
M.Grunstein
(2004).
Acetylation of yeast histone H4 lysine 16: a switch for protein interactions in heterochromatin and euchromatin.
|
| |
Cold Spring Harb Symp Quant Biol,
69,
193-200.
|
 |
|
|
|
|
 |
C.Martinez-Campa,
P.Politis,
J.L.Moreau,
N.Kent,
J.Goodall,
J.Mellor,
and
C.R.Goding
(2004).
Precise nucleosome positioning and the TATA box dictate requirements for the histone H4 tail and the bromodomain factor Bdf1.
|
| |
Mol Cell,
15,
69-81.
|
 |
|
|
|
|
 |
G.Charier,
J.Couprie,
B.Alpha-Bazin,
V.Meyer,
E.Quéméneur,
R.Guérois,
I.Callebaut,
B.Gilquin,
and
S.Zinn-Justin
(2004).
The Tudor tandem of 53BP1: a new structural motif involved in DNA and RG-rich peptide binding.
|
| |
Structure,
12,
1551-1562.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Koyama,
T.A.Nagao,
T.Inai,
K.Miyahara,
Y.Hayasida,
K.Shirahige,
and
E.Tsuchiya
(2004).
RSC Nucleosome-remodeling complex plays prominent roles in transcriptional regulation throughout budding yeast gametogenesis.
|
| |
Biosci Biotechnol Biochem,
68,
909-919.
|
 |
|
|
|
|
 |
J.Holton,
and
T.Alber
(2004).
Automated protein crystal structure determination using ELVES.
|
| |
Proc Natl Acad Sci U S A,
101,
1537-1542.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.Ishihara,
J.Hong,
O.Zee,
and
K.Ohuchi
(2004).
Possible mechanism of action of the histone deacetylase inhibitors for the induction of differentiation of HL-60 clone 15 cells into eosinophils.
|
| |
Br J Pharmacol,
142,
1020-1030.
|
 |
|
|
|
|
 |
K.L.Huisinga,
and
B.F.Pugh
(2004).
A genome-wide housekeeping role for TFIID and a highly regulated stress-related role for SAGA in Saccharomyces cerevisiae.
|
| |
Mol Cell,
13,
573-585.
|
 |
|
|
|
|
 |
L.A.Boyer,
R.R.Latek,
and
C.L.Peterson
(2004).
The SANT domain: a unique histone-tail-binding module?
|
| |
Nat Rev Mol Cell Biol,
5,
158-163.
|
 |
|
|
|
|
 |
L.Mohrmann,
K.Langenberg,
J.Krijgsveld,
A.J.Kal,
A.J.Heck,
and
C.P.Verrijzer
(2004).
Differential targeting of two distinct SWI/SNF-related Drosophila chromatin-remodeling complexes.
|
| |
Mol Cell Biol,
24,
3077-3088.
|
 |
|
|
|
|
 |
M.Kasten,
H.Szerlong,
H.Erdjument-Bromage,
P.Tempst,
M.Werner,
and
B.R.Cairns
(2004).
Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14.
|
| |
EMBO J,
23,
1348-1359.
|
 |
|
|
|
|
 |
S.Ahmed,
C.Palermo,
S.Wan,
and
N.C.Walworth
(2004).
A novel protein with similarities to Rb binding protein 2 compensates for loss of Chk1 function and affects histone modification in fission yeast.
|
| |
Mol Cell Biol,
24,
3660-3669.
|
 |
|
|
|
|
 |
S.J.Zanton,
and
B.F.Pugh
(2004).
Changes in genomewide occupancy of core transcriptional regulators during heat stress.
|
| |
Proc Natl Acad Sci U S A,
101,
16843-16848.
|
 |
|
|
|
|
 |
S.Mujtaba,
Y.He,
L.Zeng,
S.Yan,
O.Plotnikova,
Sachchidanand,
R.Sanchez,
N.J.Zeleznik-Le,
Z.Ronai,
and
M.M.Zhou
(2004).
Structural mechanism of the bromodomain of the coactivator CBP in p53 transcriptional activation.
|
| |
Mol Cell,
13,
251-263.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
X.J.Yang
(2004).
The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases.
|
| |
Nucleic Acids Res,
32,
959-976.
|
 |
|
|
|
|
 |
X.J.Yang
(2004).
Lysine acetylation and the bromodomain: a new partnership for signaling.
|
| |
Bioessays,
26,
1076-1087.
|
 |
|
|
|
|
 |
Y.J.Li,
X.H.Fu,
D.P.Liu,
and
C.C.Liang
(2004).
Opening the chromatin for transcription.
|
| |
Int J Biochem Cell Biol,
36,
1411-1423.
|
 |
|
|
|
|
 |
Z.Wang,
W.Zhai,
J.A.Richardson,
E.N.Olson,
J.J.Meneses,
M.T.Firpo,
C.Kang,
W.C.Skarnes,
and
R.Tjian
(2004).
Polybromo protein BAF180 functions in mammalian cardiac chamber maturation.
|
| |
Genes Dev,
18,
3106-3116.
|
 |
|
|
|
|
 |
A.Dey,
F.Chitsaz,
A.Abbasi,
T.Misteli,
and
K.Ozato
(2003).
The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis.
|
| |
Proc Natl Acad Sci U S A,
100,
8758-8763.
|
 |
|
|
|
|
 |
A.G.Ladurner,
C.Inouye,
R.Jain,
and
R.Tjian
(2003).
Bromodomains mediate an acetyl-histone encoded antisilencing function at heterochromatin boundaries.
|
| |
Mol Cell,
11,
365-376.
|
 |
|
|
|
|
 |
A.Pintar,
O.Carugo,
and
S.Pongor
(2003).
Atom depth as a descriptor of the protein interior.
|
| |
Biophys J,
84,
2553-2561.
|
 |
|
|
|
|
 |
C.Pivot-Pajot,
C.Caron,
J.Govin,
A.Vion,
S.Rousseaux,
and
S.Khochbin
(2003).
Acetylation-dependent chromatin reorganization by BRDT, a testis-specific bromodomain-containing protein.
|
| |
Mol Cell Biol,
23,
5354-5365.
|
 |
|
|
|
|
 |
H.Santos-Rosa,
E.Valls,
T.Kouzarides,
and
M.Martínez-Balbás
(2003).
Mechanisms of P/CAF auto-acetylation.
|
| |
Nucleic Acids Res,
31,
4285-4292.
|
 |
|
|
|
|
 |
J.A.Martens,
and
F.Winston
(2003).
Recent advances in understanding chromatin remodeling by Swi/Snf complexes.
|
| |
Curr Opin Genet Dev,
13,
136-142.
|
 |
|
|
|
|
 |
J.Yu,
Y.Li,
T.Ishizuka,
M.G.Guenther,
and
M.A.Lazar
(2003).
A SANT motif in the SMRT corepressor interprets the histone code and promotes histone deacetylation.
|
| |
EMBO J,
22,
3403-3410.
|
 |
|
|
|
|
 |
K.D.Johnson,
J.A.Grass,
C.Park,
H.Im,
K.Choi,
and
E.H.Bresnick
(2003).
Highly restricted localization of RNA polymerase II within a locus control region of a tissue-specific chromatin domain.
|
| |
Mol Cell Biol,
23,
6484-6493.
|
 |
|
|
|
|
 |
M.Fu,
M.Rao,
C.Wang,
T.Sakamaki,
J.Wang,
D.Di Vizio,
X.Zhang,
C.Albanese,
S.Balk,
C.Chang,
S.Fan,
E.Rosen,
J.J.Palvimo,
O.A.Jänne,
S.Muratoglu,
M.L.Avantaggiati,
and
R.G.Pestell
(2003).
Acetylation of androgen receptor enhances coactivator binding and promotes prostate cancer cell growth.
|
| |
Mol Cell Biol,
23,
8563-8575.
|
 |
|
|
|
|
 |
M.Labrador,
and
V.G.Corces
(2003).
Phosphorylation of histone H3 during transcriptional activation depends on promoter structure.
|
| |
Genes Dev,
17,
43-48.
|
 |
|
|
|
|
 |
O.Matangkasombut,
and
S.Buratowski
(2003).
Different sensitivities of bromodomain factors 1 and 2 to histone H4 acetylation.
|
| |
Mol Cell,
11,
353-363.
|
 |
|
|
|
|
 |
P.Prochasson,
K.E.Neely,
A.H.Hassan,
B.Li,
and
J.L.Workman
(2003).
Targeting activity is required for SWI/SNF function in vivo and is accomplished through two partially redundant activator-interaction domains.
|
| |
Mol Cell,
12,
983-990.
|
 |
|
|
|
|
 |
Q.Ren,
and
M.A.Gorovsky
(2003).
The nonessential H2A N-terminal tail can function as an essential charge patch on the H2A.Z variant N-terminal tail.
|
| |
Mol Cell Biol,
23,
2778-2789.
|
 |
|
|
|
|
 |
S.Barbaric,
H.Reinke,
and
W.Hörz
(2003).
Multiple mechanistically distinct functions of SAGA at the PHO5 promoter.
|
| |
Mol Cell Biol,
23,
3468-3476.
|
 |
|
|
|
|
 |
S.K.Kurdistani,
and
M.Grunstein
(2003).
Histone acetylation and deacetylation in yeast.
|
| |
Nat Rev Mol Cell Biol,
4,
276-284.
|
 |
|
|
|
|
 |
W.Feng,
Y.Shi,
M.Li,
and
M.Zhang
(2003).
Tandem PDZ repeats in glutamate receptor-interacting proteins have a novel mode of PDZ domain-mediated target binding.
|
| |
Nat Struct Biol,
10,
972-978.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
W.L.Cheung,
K.Ajiro,
K.Samejima,
M.Kloc,
P.Cheung,
C.A.Mizzen,
A.Beeser,
L.D.Etkin,
J.Chernoff,
W.C.Earnshaw,
and
C.D.Allis
(2003).
Apoptotic phosphorylation of histone H2B is mediated by mammalian sterile twenty kinase.
|
| |
Cell,
113,
507-517.
|
 |
|
|
|
|
 |
Z.Deng,
C.J.Chen,
M.Chamberlin,
F.Lu,
G.A.Blobel,
D.Speicher,
L.A.Cirillo,
K.S.Zaret,
and
P.M.Lieberman
(2003).
The CBP bromodomain and nucleosome targeting are required for Zta-directed nucleosome acetylation and transcription activation.
|
| |
Mol Cell Biol,
23,
2633-2644.
|
 |
|
|
|
|
 |
A.Dorr,
V.Kiermer,
A.Pedal,
H.R.Rackwitz,
P.Henklein,
U.Schubert,
M.M.Zhou,
E.Verdin,
and
M.Ott
(2002).
Transcriptional synergy between Tat and PCAF is dependent on the binding of acetylated Tat to the PCAF bromodomain.
|
| |
EMBO J,
21,
2715-2723.
|
 |
|
|
|
|
 |
A.Eberharter,
and
P.B.Becker
(2002).
Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics.
|
| |
EMBO Rep,
3,
224-229.
|
 |
|
|
|
|
 |
A.H.Hassan,
P.Prochasson,
K.E.Neely,
S.C.Galasinski,
M.Chandy,
M.J.Carrozza,
and
J.L.Workman
(2002).
Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes.
|
| |
Cell,
111,
369-379.
|
 |
|
|
|
|
 |
A.K.Ingram,
and
D.Horn
(2002).
Histone deacetylases in Trypanosoma brucei: two are essential and another is required for normal cell cycle progression.
|
| |
Mol Microbiol,
45,
89-97.
|
 |
|
|
|
|
 |
B.Coffee,
F.Zhang,
S.Ceman,
S.T.Warren,
and
D.Reines
(2002).
Histone modifications depict an aberrantly heterochromatinized FMR1 gene in fragile x syndrome.
|
| |
Am J Hum Genet,
71,
923-932.
|
 |
|
|
|
|
 |
C.L.Zhang,
T.A.McKinsey,
and
E.N.Olson
(2002).
Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation.
|
| |
Mol Cell Biol,
22,
7302-7312.
|
 |
|
|
|
|
 |
C.M.Kiekhaefer,
J.A.Grass,
K.D.Johnson,
M.E.Boyer,
and
E.H.Bresnick
(2002).
Hematopoietic-specific activators establish an overlapping pattern of histone acetylation and methylation within a mammalian chromatin domain.
|
| |
Proc Natl Acad Sci U S A,
99,
14309-14314.
|
 |
|
|
|
|
 |
C.R.Clapier,
K.P.Nightingale,
and
P.B.Becker
(2002).
A critical epitope for substrate recognition by the nucleosome remodeling ATPase ISWI.
|
| |
Nucleic Acids Res,
30,
649-655.
|
 |
|
|
|
|
 |
D.Chen,
C.S.Hinkley,
R.W.Henry,
and
S.Huang
(2002).
TBP dynamics in living human cells: constitutive association of TBP with mitotic chromosomes.
|
| |
Mol Biol Cell,
13,
276-284.
|
 |
|
|
|
|
 |
D.Sharma,
and
J.D.Fondell
(2002).
Ordered recruitment of histone acetyltransferases and the TRAP/Mediator complex to thyroid hormone-responsive promoters in vivo.
|
| |
Proc Natl Acad Sci U S A,
99,
7934-7939.
|
 |
|
|
|
|
 |
D.V.Fyodorov,
and
J.T.Kadonaga
(2002).
Binding of Acf1 to DNA involves a WAC motif and is important for ACF-mediated chromatin assembly.
|
| |
Mol Cell Biol,
22,
6344-6353.
|
 |
|
|
|
|
 |
E.Kalkhoven,
H.Teunissen,
A.Houweling,
C.P.Verrijzer,
and
A.Zantema
(2002).
The PHD type zinc finger is an integral part of the CBP acetyltransferase domain.
|
| |
Mol Cell Biol,
22,
1961-1970.
|
 |
|
|
|
|
 |
G.Legube,
L.K.Linares,
C.Lemercier,
M.Scheffner,
S.Khochbin,
and
D.Trouche
(2002).
Tip60 is targeted to proteasome-mediated degradation by Mdm2 and accumulates after UV irradiation.
|
| |
EMBO J,
21,
1704-1712.
|
 |
|
|
|
|
 |
H.H.Ng,
Q.Feng,
H.Wang,
H.Erdjument-Bromage,
P.Tempst,
Y.Zhang,
and
K.Struhl
(2002).
Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association.
|
| |
Genes Dev,
16,
1518-1527.
|
 |
|
|
|
|
 |
H.T.Spotswood,
and
B.M.Turner
(2002).
An increasingly complex code.
|
| |
J Clin Invest,
110,
577-582.
|
 |
|
|
|
|
 |
J.A.Armstrong,
O.Papoulas,
G.Daubresse,
A.S.Sperling,
J.T.Lis,
M.P.Scott,
and
J.W.Tamkun
(2002).
The Drosophila BRM complex facilitates global transcription by RNA polymerase II.
|
| |
EMBO J,
21,
5245-5254.
|
 |
|
|
|
|
 |
J.H.Yeh,
S.Spicuglia,
S.Kumar,
A.Sanchez-Sevilla,
P.Ferrier,
and
J.Imbert
(2002).
Control of IL-2Ralpha gene expression: structural changes within the proximal enhancer/core promoter during T-cell development.
|
| |
Nucleic Acids Res,
30,
1944-1951.
|
 |
|
|
|
|
 |
K.Georgopoulos
(2002).
Haematopoietic cell-fate decisions, chromatin regulation and ikaros.
|
| |
Nat Rev Immunol,
2,
162-174.
|
 |
|
|
|
|
 |
L.Aravind,
and
L.M.Iyer
(2002).
The SWIRM domain: a conserved module found in chromosomal proteins points to novel chromatin-modifying activities.
|
| |
Genome Biol,
3,
RESEARCH0039.
|
 |
|
|
|
|
 |
L.K.Jones,
and
V.Saha
(2002).
Chromatin modification, leukaemia and implications for therapy.
|
| |
Br J Haematol,
118,
714-727.
|
 |
|
|
|
|
 |
L.S.Martel,
H.J.Brown,
and
A.J.Berk
(2002).
Evidence that TAF-TATA box-binding protein interactions are required for activated transcription in mammalian cells.
|
| |
Mol Cell Biol,
22,
2788-2798.
|
 |
|
|
|
|
 |
M.F.Vassallo,
and
N.Tanese
(2002).
Isoform-specific interaction of HP1 with human TAFII130.
|
| |
Proc Natl Acad Sci U S A,
99,
5919-5924.
|
 |
|
|
|
|
 |
M.Featherstone
(2002).
Coactivators in transcription initiation: here are your orders.
|
| |
Curr Opin Genet Dev,
12,
149-155.
|
 |
|
|
|
|
 |
M.Fu,
C.Wang,
J.Wang,
B.T.Zafonte,
M.P.Lisanti,
and
R.G.Pestell
(2002).
Acetylation in hormone signaling and the cell cycle.
|
| |
Cytokine Growth Factor Rev,
13,
259-276.
|
 |
|
|
|
|
 |
M.Fu,
C.Wang,
J.Wang,
X.Zhang,
T.Sakamaki,
Y.G.Yeung,
C.Chang,
T.Hopp,
S.A.Fuqua,
E.Jaffray,
R.T.Hay,
J.J.Palvimo,
O.A.Jänne,
and
R.G.Pestell
(2002).
Androgen receptor acetylation governs trans activation and MEKK1-induced apoptosis without affecting in vitro sumoylation and trans-repression function.
|
| |
Mol Cell Biol,
22,
3373-3388.
|
 |
|
|
|
|
 |
P.Ernst,
J.Wang,
and
S.J.Korsmeyer
(2002).
The role of MLL in hematopoiesis and leukemia.
|
| |
Curr Opin Hematol,
9,
282-287.
|
 |
|
|
|
|
 |
P.Hatzis,
and
I.Talianidis
(2002).
Dynamics of enhancer-promoter communication during differentiation-induced gene activation.
|
| |
Mol Cell,
10,
1467-1477.
|
 |
|
|
|
|
 |
S.L.Berger
(2002).
Histone modifications in transcriptional regulation.
|
| |
Curr Opin Genet Dev,
12,
142-148.
|
 |
|
|
|
|
 |
S.L.Schreiber,
and
B.E.Bernstein
(2002).
Signaling network model of chromatin.
|
| |
Cell,
111,
771-778.
|
 |
|
|
|
|
 |
S.Mujtaba,
Y.He,
L.Zeng,
A.Farooq,
J.E.Carlson,
M.Ott,
E.Verdin,
and
M.M.Zhou
(2002).
Structural basis of lysine-acetylated HIV-1 Tat recognition by PCAF bromodomain.
|
| |
Mol Cell,
9,
575-586.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.T.Smale,
and
A.G.Fisher
(2002).
Chromatin structure and gene regulation in the immune system.
|
| |
Annu Rev Immunol,
20,
427-462.
|
 |
|
|
|
|
 |
T.Agalioti,
G.Chen,
and
D.Thanos
(2002).
Deciphering the transcriptional histone acetylation code for a human gene.
|
| |
Cell,
111,
381-392.
|
 |
|
|
|
|
 |
T.Maruyama,
A.Farina,
A.Dey,
J.Cheong,
V.P.Bermudez,
T.Tamura,
S.Sciortino,
J.Shuman,
J.Hurwitz,
and
K.Ozato
(2002).
A Mammalian bromodomain protein, brd4, interacts with replication factor C and inhibits progression to S phase.
|
| |
Mol Cell Biol,
22,
6509-6520.
|
 |
|
|
|
|
 |
T.Nakamura,
T.Mori,
S.Tada,
W.Krajewski,
T.Rozovskaia,
R.Wassell,
G.Dubois,
A.Mazo,
C.M.Croce,
and
E.Canaani
(2002).
ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation.
|
| |
Mol Cell,
10,
1119-1128.
|
 |
|
|
|
|
 |
T.Suganuma,
M.Kawabata,
T.Ohshima,
and
M.A.Ikeda
(2002).
Growth suppression of human carcinoma cells by reintroduction of the p300 coactivator.
|
| |
Proc Natl Acad Sci U S A,
99,
13073-13078.
|
 |
|
|
|
|
 |
T.Tsukiyama
(2002).
The in vivo functions of ATP-dependent chromatin-remodelling factors.
|
| |
Nat Rev Mol Cell Biol,
3,
422-429.
|
 |
|
|
|
|
 |
W.An,
V.B.Palhan,
M.A.Karymov,
S.H.Leuba,
and
R.G.Roeder
(2002).
Selective requirements for histone H3 and H4 N termini in p300-dependent transcriptional activation from chromatin.
|
| |
Mol Cell,
9,
811-821.
|
 |
|
|
|
|
 |
Y.Dou,
and
M.A.Gorovsky
(2002).
Regulation of transcription by H1 phosphorylation in Tetrahymena is position independent and requires clustered sites.
|
| |
Proc Natl Acad Sci U S A,
99,
6142-6146.
|
 |
|
|
|
|
 |
Y.H.Lee,
S.S.Koh,
X.Zhang,
X.Cheng,
and
M.R.Stallcup
(2002).
Synergy among nuclear receptor coactivators: selective requirement for protein methyltransferase and acetyltransferase activities.
|
| |
Mol Cell Biol,
22,
3621-3632.
|
 |
|
|
|
|
 |
Y.Nakatani
(2002).
HIV-1 transcription: activation mediated by acetylation of Tat.
|
| |
Structure,
10,
443-444.
|
 |
|
|
|
|
 |
A.Eberharter,
S.Ferrari,
G.Längst,
T.Straub,
A.Imhof,
P.Varga-Weisz,
M.Wilm,
and
P.B.Becker
(2001).
Acf1, the largest subunit of CHRAC, regulates ISWI-induced nucleosome remodelling.
|
| |
EMBO J,
20,
3781-3788.
|
 |
|
|
|
|
 |
A.H.Hassan,
K.E.Neely,
and
J.L.Workman
(2001).
Histone acetyltransferase complexes stabilize swi/snf binding to promoter nucleosomes.
|
| |
Cell,
104,
817-827.
|
 |
|
|
|
|
 |
A.M.Näär,
B.D.Lemon,
and
R.Tjian
(2001).
Transcriptional coactivator complexes.
|
| |
Annu Rev Biochem,
70,
475-501.
|
 |
|
|
|
|
 |
A.Reymond,
G.Meroni,
A.Fantozzi,
G.Merla,
S.Cairo,
L.Luzi,
D.Riganelli,
E.Zanaria,
S.Messali,
S.Cainarca,
A.Guffanti,
S.Minucci,
P.G.Pelicci,
and
A.Ballabio
(2001).
The tripartite motif family identifies cell compartments.
|
| |
EMBO J,
20,
2140-2151.
|
 |
|
|
|
|
 |
B.Lemon,
C.Inouye,
D.S.King,
and
R.Tjian
(2001).
Selectivity of chromatin-remodelling cofactors for ligand-activated transcription.
|
| |
Nature,
414,
924-928.
|
 |
|
|
|
|
 |
C.W.Müller
(2001).
Transcription factors: global and detailed views.
|
| |
Curr Opin Struct Biol,
11,
26-32.
|
 |
|
|
|
|
 |
D.C.Schultz,
J.R.Friedman,
and
F.J.Rauscher
(2001).
Targeting histone deacetylase complexes via KRAB-zinc finger proteins: the PHD and bromodomains of KAP-1 form a cooperative unit that recruits a novel isoform of the Mi-2alpha subunit of NuRD.
|
| |
Genes Dev,
15,
428-443.
|
 |
|
|
|
|
 |
E.C.Forsberg,
and
E.H.Bresnick
(2001).
Histone acetylation beyond promoters: long-range acetylation patterns in the chromatin world.
|
| |
Bioessays,
23,
820-830.
|
 |
|
|
|
|
 |
E.T.Manning,
T.Ikehara,
T.Ito,
J.T.Kadonaga,
and
W.L.Kraus
(2001).
p300 forms a stable, template-committed complex with chromatin: role for the bromodomain.
|
| |
Mol Cell Biol,
21,
3876-3887.
|
 |
|
|
|
|
 |
G.Csankovszki,
A.Nagy,
and
R.Jaenisch
(2001).
Synergism of Xist RNA, DNA methylation, and histone hypoacetylation in maintaining X chromosome inactivation.
|
| |
J Cell Biol,
153,
773-784.
|
 |
|
|
|
|
 |
I.Hirschler-Laszkiewicz,
A.Cavanaugh,
Q.Hu,
J.Catania,
M.L.Avantaggiati,
and
L.I.Rothblum
(2001).
The role of acetylation in rDNA transcription.
|
| |
Nucleic Acids Res,
29,
4114-4124.
|
 |
|
|
|
|
 |
J.C.Rice,
and
C.D.Allis
(2001).
Histone methylation versus histone acetylation: new insights into epigenetic regulation.
|
| |
Curr Opin Cell Biol,
13,
263-273.
|
 |
|
|
|
|
 |
J.H.Waterborg
(2001).
Dynamics of histone acetylation in Saccharomyces cerevisiae.
|
| |
Biochemistry,
40,
2599-2605.
|
 |
|
|
|
|
 |
K.D.Johnson,
H.M.Christensen,
B.Zhao,
and
E.H.Bresnick
(2001).
Distinct mechanisms control RNA polymerase II recruitment to a tissue-specific locus control region and a downstream promoter.
|
| |
Mol Cell,
8,
465-471.
|
 |
|
|
|
|
 |
K.R.Katsani,
J.J.Arredondo,
A.J.Kal,
and
C.P.Verrijzer
(2001).
A homeotic mutation in the trithorax SET domain impedes histone binding.
|
| |
Genes Dev,
15,
2197-2202.
|
 |
|
|
|
|
 |
L.O.Baumbusch,
T.Thorstensen,
V.Krauss,
A.Fischer,
K.Naumann,
R.Assalkhou,
I.Schulz,
G.Reuter,
and
R.B.Aalen
(2001).
The Arabidopsis thaliana genome contains at least 29 active genes encoding SET domain proteins that can be assigned to four evolutionarily conserved classes.
|
| |
Nucleic Acids Res,
29,
4319-4333.
|
 |
|
|
|
|
 |
L.Vandel,
and
D.Trouche
(2001).
Physical association between the histone acetyl transferase CBP and a histone methyl transferase.
|
| |
EMBO Rep,
2,
21-26.
|
 |
|
|
|
|
 |
M.Bouchard,
S.Giannakopoulos,
E.H.Wang,
N.Tanese,
and
R.J.Schneider
(2001).
Hepatitis B virus HBx protein activation of cyclin A-cyclin-dependent kinase 2 complexes and G1 transit via a Src kinase pathway.
|
| |
J Virol,
75,
4247-4257.
|
 |
|
|
|
|
 |
N.Suka,
Y.Suka,
A.A.Carmen,
J.Wu,
and
M.Grunstein
(2001).
Highly specific antibodies determine histone acetylation site usage in yeast heterochromatin and euchromatin.
|
| |
Mol Cell,
8,
473-479.
|
 |
|
|
|
|
 |
P.A.Grant
(2001).
A tale of histone modifications.
|
| |
Genome Biol,
2,
REVIEWS0003.
|
 |
|
|
|
|
 |
P.D.Gregory
(2001).
Transcription and chromatin converge: lessons from yeast genetics.
|
| |
Curr Opin Genet Dev,
11,
142-147.
|
 |
|
|
|
|
 |
P.Meyer
(2001).
Chromatin remodelling.
|
| |
Curr Opin Plant Biol,
4,
457-462.
|
 |
|
|
|
|
 |
P.S.Moore,
and
Y.Chang
(2001).
Molecular virology of Kaposi's sarcoma-associated herpesvirus.
|
| |
Philos Trans R Soc Lond B Biol Sci,
356,
499-516.
|
 |
|
|
|
|
 |
R.J.Durso,
A.K.Fisher,
T.J.Albright-Frey,
and
J.C.Reese
(2001).
Analysis of TAF90 mutants displaying allele-specific and broad defects in transcription.
|
| |
Mol Cell Biol,
21,
7331-7344.
|
 |
|
|
|
|
 |
R.Marmorstein,
and
S.Y.Roth
(2001).
Histone acetyltransferases: function, structure, and catalysis.
|
| |
Curr Opin Genet Dev,
11,
155-161.
|
 |
|
|
|
|
 |
S.A.Jacobs,
S.D.Taverna,
Y.Zhang,
S.D.Briggs,
J.Li,
J.C.Eissenberg,
C.D.Allis,
and
S.Khorasanizadeh
(2001).
Specificity of the HP1 chromo domain for the methylated N-terminus of histone H3.
|
| |
EMBO J,
20,
5232-5241.
|
 |
|
|
|
|
 |
S.Y.Roth,
J.M.Denu,
and
C.D.Allis
(2001).
Histone acetyltransferases.
|
| |
Annu Rev Biochem,
70,
81.
|
 |
|
|
|
|
 |
T.Jäkel,
E.Wallstein,
F.Müncheberg,
C.Archer-Baumann,
B.Weingarten,
D.Kliemt,
and
U.Mackenstedt
(2001).
Binding of a monoclonal antibody to sporozoites of Sarcocystis singaporensis enhances escape from the parasitophorous vacuole, which is necessary for intracellular development.
|
| |
Infect Immun,
69,
6475-6482.
|
 |
|
|
|
|
 |
Y.G.Gangloff,
C.Romier,
S.Thuault,
S.Werten,
and
I.Davidson
(2001).
The histone fold is a key structural motif of transcription factor TFIID.
|
| |
Trends Biochem Sci,
26,
250-257.
|
 |
|
|
|
|
 |
Y.G.Gangloff,
J.C.Pointud,
S.Thuault,
L.Carré,
C.Romier,
S.Muratoglu,
M.Brand,
L.Tora,
J.L.Couderc,
and
I.Davidson
(2001).
The TFIID components human TAF(II)140 and Drosophila BIP2 (TAF(II)155) are novel metazoan homologues of yeast TAF(II)47 containing a histone fold and a PHD finger.
|
| |
Mol Cell Biol,
21,
5109-5121.
|
 |
|
|
|
|
 |
Y.Nakatani
(2001).
Histone acetylases--versatile players.
|
| |
Genes Cells,
6,
79-86.
|
 |
|
|
|
|
 |
D.J.Owen,
P.Ornaghi,
J.C.Yang,
N.Lowe,
P.R.Evans,
P.Ballario,
D.Neuhaus,
P.Filetici,
and
A.A.Travers
(2000).
The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p.
|
| |
EMBO J,
19,
6141-6149.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
F.J.Dilworth,
C.Fromental-Ramain,
K.Yamamoto,
and
P.Chambon
(2000).
ATP-driven chromatin remodeling activity and histone acetyltransferases act sequentially during transactivation by RAR/RXR In vitro.
|
| |
Mol Cell,
6,
1049-1058.
|
 |
|
|
|
|
 |
K.Brubaker,
S.M.Cowley,
K.Huang,
L.Loo,
G.S.Yochum,
D.E.Ayer,
R.N.Eisenman,
and
I.Radhakrishnan
(2000).
Solution structure of the interacting domains of the Mad-Sin3 complex: implications for recruitment of a chromatin-modifying complex.
|
| |
Cell,
103,
655-665.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.Phillips
(2000).
HATs on tails.
|
| |
Trends Biochem Sci,
25,
427-428.
|
 |
|
|
|
|
 |
P.Cheung,
C.D.Allis,
and
P.Sassone-Corsi
(2000).
Signaling to chromatin through histone modifications.
|
| |
Cell,
103,
263-271.
|
 |
|
|
|
|
 |
S.J.Nowak,
and
V.G.Corces
(2000).
Phosphorylation of histone H3 correlates with transcriptionally active loci.
|
| |
Genes Dev,
14,
3003-3013.
|
 |
|
|
|
|
 |
T.Agalioti,
S.Lomvardas,
B.Parekh,
J.Yie,
T.Maniatis,
and
D.Thanos
(2000).
Ordered recruitment of chromatin modifying and general transcription factors to the IFN-beta promoter.
|
| |
Cell,
103,
667-678.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |