|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
Chains A, C:
E.C.2.7.10.2
- non-specific protein-tyrosine kinase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
L-tyrosyl-[protein] + ATP = O-phospho-L-tyrosyl-[protein] + ADP + H+
|
 |
 |
 |
 |
 |
L-tyrosyl-[protein]
|
+
|
ATP
|
=
|
O-phospho-L-tyrosyl-[protein]
|
+
|
ADP
|
+
|
H(+)
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
DOI no:
|
Cell
85:931-942
(1996)
|
|
PubMed id:
|
|
|
|
|
| |
|
Crystal structure of the conserved core of HIV-1 Nef complexed with a Src family SH3 domain.
|
|
C.H.Lee,
K.Saksela,
U.A.Mirza,
B.T.Chait,
J.Kuriyan.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The crystal structure of the conserved core of HIV-1 Nef has been determined in
complex with the SH3 domain of a mutant Fyn tyrosine kinase (a single amino acid
substitution, Arg-96 to isoleucine), to which Nef binds tightly. The conserved
PxxP sequence motif of Nef, known to be important for optimal viral replication,
is part of a polyproline type II helix that engages the SH3 domain in a manner
resembling closely the interaction of isolated peptides with SH3 domains. The
Nef-SH3 structure also reveals how high affinity and specificity in the SH3
interaction is achieved by the presentation of the PxxP motif within the context
of the folded structure of Nef.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 2.
Figure 2. Structure of Nef–SH3 Complex(A and B) Stereo
diagrams of the polypeptide backbones of Nef[core] and Fyn(R96I)
SH3. The N-terminal helical layer of Nef[core] (residues
71–120), which forms the SH3 interaction surface, is colored
yellow. The rest of Nef[core] (residues 121–203) is colored
green. The disordered loop (residues 149–178) between βC and
βD is indicated as a dotted line. The Fyn(R96I) SH3 domain is
in blue. Also shown are the side chains of the conserved
tryptophan of SH3 (residue 119, in red), the
specificity-conferring isoleucine of SH3 (residue 96, in red),
and the two prolines that define the PxxP motif of Nef (residues
72 and 75, in yellow). The views in (A) and (B) are
approximately orthogonal. The figure was prepared using
MOLSCRIPT ([23]) and Raster3D ( [1]).(C) The molecular surface
of Nef[core], with Fyn(R96I) SH3. The local electrostatic
potential of Nef[core] was calculated in the absence of the SH3
domain using GRASP ([27]). The molecular surface is colored
according to the local electrostatic potential, with colors
ranging from dark blue (most positive region) to deep red (most
negative) through white (neutral). The SH3 domain is shown as a
blue tube. The side chains of Trp-119 and Ile-96 of SH3 are
shown in yellow. Trp-113 and Phe-90 of Nef separate the binding
pocket for Ile-96 of SH3 from the hydrophobic crevice that is
available for potential interaction with other molecules.
Arg-106 of Nef, located at the lower left edge of the crevice,
is implicated in the association of Nef with a Ser kinase
activity ( [33]).
|
 |
Figure 5.
Figure 5. Tertiary Interactions between Nef[core] and
Fyn(R96I) SH3 Domain(A) Molecular surface of Nef, showing the
binding site for the isoleucine side chain of the SH3 domain.(B)
Comparison of the interactions in the two complexes in the
crystal. The polypeptide backbones of Nef and the SH3 domain
are shown as green and blue tubes, respectively. Side chains of
Nef are shown in pink and in yellow (displayed under their
respective molecular surfaces). SH3 side chains are shown in
red. Hydrogen bonding interactions are shown as dashed lines.
Hydrogen bonds to backbone positions are indicated by the
placement of white circles along the backbone ribbon. For
clarity, the side chain of Ile-96 is not shown, and instead the
Cα position of this residue is indicated with a red circle. The
structure on the left is the complex that is the focus of the
major part of the discussion in the text. The structure on the
right is that of the second independent complex in the crystal.
Note the slight change in the relative orientation of the Nef
and SH3 components of the complex (see text). The side chain of
Asp-86 forms a hydrogen bond with Thr-97 in the RT loop of the
second complex. For clarity, this interaction is not shown.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Cell Press:
Cell
(1996,
85,
931-942)
copyright 1996.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
X.Jia,
R.Singh,
S.Homann,
H.Yang,
J.Guatelli,
and
Y.Xiong
(2012).
Structural basis of evasion of cellular adaptive immunity by HIV-1 Nef.
|
| |
Nat Struct Mol Biol,
19,
701-706.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Jung,
I.J.Byeon,
J.Ahn,
and
A.M.Gronenborn
(2011).
Structure, dynamics, and Hck interaction of full-length HIV-1 Nef.
|
| |
Proteins,
79,
1609-1622.
|
 |
|
|
|
|
 |
J.L.Foster,
S.J.Denial,
B.R.Temple,
and
J.V.Garcia
(2011).
Mechanisms of HIV-1 Nef Function and Intracellular Signaling.
|
| |
J Neuroimmune Pharmacol,
6,
230-246.
|
 |
|
|
|
|
 |
P.L.Kastritis,
I.H.Moal,
H.Hwang,
Z.Weng,
P.A.Bates,
A.M.Bonvin,
and
J.Janin
(2011).
A structure-based benchmark for protein-protein binding affinity.
|
| |
Protein Sci,
20,
482-491.
|
 |
|
|
|
|
 |
C.S.Adamson,
and
E.O.Freed
(2010).
Novel approaches to inhibiting HIV-1 replication.
|
| |
Antiviral Res,
85,
119-141.
|
 |
|
|
|
|
 |
W.M.Kim,
A.B.Sigalov,
and
L.J.Stern
(2010).
Pseudo-merohedral twinning and noncrystallographic symmetry in orthorhombic crystals of SIVmac239 Nef core domain bound to different-length TCRzeta fragments.
|
| |
Acta Crystallogr D Biol Crystallogr,
66,
163-175.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Y.J.Jin,
X.Zhang,
C.Y.Cai,
and
S.J.Burakoff
(2010).
Alkylating HIV-1 Nef - a potential way of HIV intervention.
|
| |
AIDS Res Ther,
7,
26.
|
 |
|
|
|
|
 |
Y.T.Kwak,
A.Raney,
L.S.Kuo,
S.J.Denial,
B.R.Temple,
J.V.Garcia,
and
J.L.Foster
(2010).
Self-association of the Lentivirus protein, Nef.
|
| |
Retrovirology,
7,
77.
|
 |
|
|
|
|
 |
C.B.McDonald,
K.L.Seldeen,
B.J.Deegan,
and
A.Farooq
(2009).
SH3 domains of Grb2 adaptor bind to PXpsiPXR motifs within the Sos1 nucleotide exchange factor in a discriminate manner.
|
| |
Biochemistry,
48,
4074-4085.
|
 |
|
|
|
|
 |
E.J.Stollar,
B.Garcia,
P.A.Chong,
A.Rath,
H.Lin,
J.D.Forman-Kay,
and
A.R.Davidson
(2009).
Structural, functional, and bioinformatic studies demonstrate the crucial role of an extended peptide binding site for the SH3 domain of yeast Abp1p.
|
| |
J Biol Chem,
284,
26918-26927.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
E.Olivetta,
C.Mallozzi,
V.Ruggieri,
D.Pietraforte,
M.Federico,
and
M.Sanchez
(2009).
HIV-1 Nef induces p47(phox) phosphorylation leading to a rapid superoxide anion release from the U937 human monoblastic cell line.
|
| |
J Cell Biochem,
106,
812-822.
|
 |
|
|
|
|
 |
E.S.Bolstad,
and
A.C.Anderson
(2009).
In pursuit of virtual lead optimization: pruning ensembles of receptor structures for increased efficiency and accuracy during docking.
|
| |
Proteins,
75,
62-74.
|
 |
|
|
|
|
 |
J.A.Poe,
and
T.E.Smithgall
(2009).
HIV-1 Nef dimerization is required for Nef-mediated receptor downregulation and viral replication.
|
| |
J Mol Biol,
394,
329-342.
|
 |
|
|
|
|
 |
J.H.Bae,
E.D.Lew,
S.Yuzawa,
F.Tomé,
I.Lax,
and
J.Schlessinger
(2009).
The selectivity of receptor tyrosine kinase signaling is controlled by a secondary SH2 domain binding site.
|
| |
Cell,
138,
514-524.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.M.Wojciak,
M.A.Martinez-Yamout,
H.J.Dyson,
and
P.E.Wright
(2009).
Structural basis for recruitment of CBP/p300 coactivators by STAT1 and STAT2 transactivation domains.
|
| |
EMBO J,
28,
948-958.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
O.O.Yang
(2009).
Candidate vaccine sequences to represent intra- and inter-clade HIV-1 variation.
|
| |
PLoS One,
4,
e7388.
|
 |
|
|
|
|
 |
C.C.Lin,
Y.S.Huoh,
K.R.Schmitz,
L.E.Jensen,
and
K.M.Ferguson
(2008).
Pellino proteins contain a cryptic FHA domain that mediates interaction with phosphorylated IRAK1.
|
| |
Structure,
16,
1806-1816.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.M.Noviello,
S.Benichou,
and
J.C.Guatelli
(2008).
Cooperative binding of the class I major histocompatibility complex cytoplasmic domain and human immunodeficiency virus type 1 Nef to the endosomal AP-1 complex via its mu subunit.
|
| |
J Virol,
82,
1249-1258.
|
 |
|
|
|
|
 |
M.Qi,
and
C.Aiken
(2008).
Nef enhances HIV-1 infectivity via association with the virus assembly complex.
|
| |
Virology,
373,
287-297.
|
 |
|
|
|
|
 |
O.W.Lindwasser,
W.J.Smith,
R.Chaudhuri,
P.Yang,
J.H.Hurley,
and
J.S.Bonifacino
(2008).
A diacidic motif in human immunodeficiency virus type 1 Nef is a novel determinant of binding to AP-2.
|
| |
J Virol,
82,
1166-1174.
|
 |
|
|
|
|
 |
T.C.Lu,
J.C.He,
Z.H.Wang,
X.Feng,
T.Fukumi-Tominaga,
N.Chen,
J.Xu,
R.Iyengar,
and
P.E.Klotman
(2008).
HIV-1 Nef disrupts the podocyte actin cytoskeleton by interacting with diaphanous interacting protein.
|
| |
J Biol Chem,
283,
8173-8182.
|
 |
|
|
|
|
 |
Y.C.Li,
and
Z.H.Zeng
(2008).
Interfacial atom pair analysis.
|
| |
Biochemistry (Mosc),
73,
231-233.
|
 |
|
|
|
|
 |
G.Mangino,
Z.A.Percario,
G.Fiorucci,
G.Vaccari,
S.Manrique,
G.Romeo,
M.Federico,
M.Geyer,
and
E.Affabris
(2007).
In vitro treatment of human monocytes/macrophages with myristoylated recombinant Nef of human immunodeficiency virus type 1 leads to the activation of mitogen-activated protein kinases, IkappaB kinases, and interferon regulatory factor 3 and to the release of beta interferon.
|
| |
J Virol,
81,
2777-2791.
|
 |
|
|
|
|
 |
K.Agopian,
B.L.Wei,
J.V.Garcia,
and
D.Gabuzda
(2007).
CD4 and MHC-I downregulation are conserved in primary HIV-1 Nef alleles from brain and lymphoid tissues, but Pak2 activation is highly variable.
|
| |
Virology,
358,
119-135.
|
 |
|
|
|
|
 |
R.P.Trible,
L.Emert-Sedlak,
T.E.Wales,
V.Ayyavoo,
J.R.Engen,
and
T.E.Smithgall
(2007).
Allosteric loss-of-function mutations in HIV-1 Nef from a long-term non-progressor.
|
| |
J Mol Biol,
374,
121-129.
|
 |
|
|
|
|
 |
S.Betzi,
A.Restouin,
S.Opi,
S.T.Arold,
I.Parrot,
F.Guerlesquin,
X.Morelli,
and
Y.Collette
(2007).
Protein protein interaction inhibition (2P2I) combining high throughput and virtual screening: Application to the HIV-1 Nef protein.
|
| |
Proc Natl Acad Sci U S A,
104,
19256-19261.
|
 |
|
|
|
|
 |
S.Bharti,
H.Inoue,
K.Bharti,
D.S.Hirsch,
Z.Nie,
H.Y.Yoon,
V.Artym,
K.M.Yamada,
S.C.Mueller,
V.A.Barr,
and
P.A.Randazzo
(2007).
Src-dependent phosphorylation of ASAP1 regulates podosomes.
|
| |
Mol Cell Biol,
27,
8271-8283.
|
 |
|
|
|
|
 |
T.Ishida,
and
K.Kinoshita
(2007).
PrDOS: prediction of disordered protein regions from amino acid sequence.
|
| |
Nucleic Acids Res,
35,
W460-W464.
|
 |
|
|
|
|
 |
T.Stangler,
T.Tran,
S.Hoffmann,
H.Schmidt,
E.Jonas,
and
D.Willbold
(2007).
Competitive displacement of full-length HIV-1 Nef from the Hck SH3 domain by a high-affinity artificial peptide.
|
| |
Biol Chem,
388,
611-615.
|
 |
|
|
|
|
 |
A.Crotti,
F.Neri,
D.Corti,
S.Ghezzi,
S.Heltai,
A.Baur,
G.Poli,
E.Santagostino,
and
E.Vicenzi
(2006).
Nef alleles from human immunodeficiency virus type 1-infected long-term-nonprogressor hemophiliacs with or without late disease progression are defective in enhancing virus replication and CD4 down-regulation.
|
| |
J Virol,
80,
10663-10674.
|
 |
|
|
|
|
 |
J.F.Roeth,
and
K.L.Collins
(2006).
Human immunodeficiency virus type 1 Nef: adapting to intracellular trafficking pathways.
|
| |
Microbiol Mol Biol Rev,
70,
548-563.
|
 |
|
|
|
|
 |
K.Agopian,
B.L.Wei,
J.V.Garcia,
and
D.Gabuzda
(2006).
A hydrophobic binding surface on the human immunodeficiency virus type 1 Nef core is critical for association with p21-activated kinase 2.
|
| |
J Virol,
80,
3050-3061.
|
 |
|
|
|
|
 |
P.Vincent,
E.Priceputu,
D.Kay,
K.Saksela,
P.Jolicoeur,
and
Z.Hanna
(2006).
Activation of p21-activated kinase 2 and its association with Nef are conserved in murine cells but are not sufficient to induce an AIDS-like disease in CD4C/HIV transgenic mice.
|
| |
J Biol Chem,
281,
6940-6954.
|
 |
|
|
|
|
 |
R.P.Trible,
L.Emert-Sedlak,
and
T.E.Smithgall
(2006).
HIV-1 Nef selectively activates Src family kinases Hck, Lyn, and c-Src through direct SH3 domain interaction.
|
| |
J Biol Chem,
281,
27029-27038.
|
 |
|
|
|
|
 |
S.Kärkkäinen,
M.Hiipakka,
J.H.Wang,
I.Kleino,
M.Vähä-Jaakkola,
G.H.Renkema,
M.Liss,
R.Wagner,
and
K.Saksela
(2006).
Identification of preferred protein interactions by phage-display of the human Src homology-3 proteome.
|
| |
EMBO Rep,
7,
186-191.
|
 |
|
|
|
|
 |
S.N.Shah,
C.J.He,
and
P.Klotman
(2006).
Update on HIV-associated nephropathy.
|
| |
Curr Opin Nephrol Hypertens,
15,
450-455.
|
 |
|
|
|
|
 |
Y.P.Chong,
A.S.Chan,
K.C.Chan,
N.A.Williamson,
E.C.Lerner,
T.E.Smithgall,
J.D.Bjorge,
D.J.Fujita,
A.W.Purcell,
G.Scholz,
T.D.Mulhern,
and
H.C.Cheng
(2006).
C-terminal Src kinase-homologous kinase (CHK), a unique inhibitor inactivating multiple active conformations of Src family tyrosine kinases.
|
| |
J Biol Chem,
281,
32988-32999.
|
 |
|
|
|
|
 |
C.A.Dennis,
A.Baron,
J.G.Grossmann,
S.Mazaleyrat,
M.Harris,
and
J.Jaeger
(2005).
Co-translational myristoylation alters the quaternary structure of HIV-1 Nef in solution.
|
| |
Proteins,
60,
658-669.
|
 |
|
|
|
|
 |
D.La Mendola,
R.P.Bonomo,
G.Impellizzeri,
G.Maccarrone,
G.Pappalardo,
A.Pietropaolo,
E.Rizzarelli,
and
V.Zito
(2005).
Copper(II) complexes with chicken prion repeats: influence of proline and tyrosine residues on the coordination features.
|
| |
J Biol Inorg Chem,
10,
463-475.
|
 |
|
|
|
|
 |
E.C.Lerner,
R.P.Trible,
A.P.Schiavone,
J.M.Hochrein,
J.R.Engen,
and
T.E.Smithgall
(2005).
Activation of the Src family kinase Hck without SH3-linker release.
|
| |
J Biol Chem,
280,
40832-40837.
|
 |
|
|
|
|
 |
E.Solomaha,
F.L.Szeto,
M.A.Yousef,
and
H.C.Palfrey
(2005).
Kinetics of Src homology 3 domain association with the proline-rich domain of dynamins: specificity, occlusion, and the effects of phosphorylation.
|
| |
J Biol Chem,
280,
23147-23156.
|
 |
|
|
|
|
 |
F.Bauer,
K.Schweimer,
H.Meiselbach,
S.Hoffmann,
P.Rösch,
and
H.Sticht
(2005).
Structural characterization of Lyn-SH3 domain in complex with a herpesviral protein reveals an extended recognition motif that enhances binding affinity.
|
| |
Protein Sci,
14,
2487-2498.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.C.Ferreon,
A.C.Ferreon,
K.Li,
and
S.M.Lemon
(2005).
Molecular determinants of TRIF proteolysis mediated by the hepatitis C virus NS3/4A protease.
|
| |
J Biol Chem,
280,
20483-20492.
|
 |
|
|
|
|
 |
M.Matsubara,
T.Jing,
K.Kawamura,
N.Shimojo,
K.Titani,
K.Hashimoto,
and
N.Hayashi
(2005).
Myristoyl moiety of HIV Nef is involved in regulation of the interaction with calmodulin in vivo.
|
| |
Protein Sci,
14,
494-503.
|
 |
|
|
|
|
 |
X.Gao,
K.Bain,
J.B.Bonanno,
M.Buchanan,
D.Henderson,
D.Lorimer,
C.Marsh,
J.A.Reynes,
J.M.Sauder,
K.Schwinn,
C.Thai,
and
S.K.Burley
(2005).
High-throughput limited proteolysis/mass spectrometry for protein domain elucidation.
|
| |
J Struct Funct Genomics,
6,
129-134.
|
 |
|
|
|
|
 |
A.Ciuffi,
M.Munoz,
G.Bleiber,
M.Favre,
F.Stutz,
A.Telenti,
and
P.R.Meylan
(2004).
Interactions of processed Nef (58-206) with virion proteins of HIV type 1.
|
| |
AIDS Res Hum Retroviruses,
20,
399-407.
|
 |
|
|
|
|
 |
F.Kirchhoff,
M.Schindler,
N.Bailer,
G.H.Renkema,
K.Saksela,
V.Knoop,
M.C.Müller-Trutwin,
M.L.Santiago,
F.Bibollet-Ruche,
M.T.Dittmar,
J.L.Heeney,
B.H.Hahn,
and
J.Münch
(2004).
Nef proteins from simian immunodeficiency virus-infected chimpanzees interact with p21-activated kinase 2 and modulate cell surface expression of various human receptors.
|
| |
J Virol,
78,
6864-6874.
|
 |
|
|
|
|
 |
H.J.Choi,
and
T.E.Smithgall
(2004).
HIV-1 Nef promotes survival of TF-1 macrophages by inducing Bcl-XL expression in an extracellular signal-regulated kinase-dependent manner.
|
| |
J Biol Chem,
279,
51688-51696.
|
 |
|
|
|
|
 |
J.C.He,
M.Husain,
M.Sunamoto,
V.D.D'Agati,
M.E.Klotman,
R.Iyengar,
and
P.E.Klotman
(2004).
Nef stimulates proliferation of glomerular podocytes through activation of Src-dependent Stat3 and MAPK1,2 pathways.
|
| |
J Clin Invest,
114,
643-651.
|
 |
|
|
|
|
 |
J.E.Larsen,
R.H.Massol,
T.J.Nieland,
and
T.Kirchhausen
(2004).
HIV Nef-mediated major histocompatibility complex class I down-modulation is independent of Arf6 activity.
|
| |
Mol Biol Cell,
15,
323-331.
|
 |
|
|
|
|
 |
S.Liu,
C.Zhang,
H.Zhou,
and
Y.Zhou
(2004).
A physical reference state unifies the structure-derived potential of mean force for protein folding and binding.
|
| |
Proteins,
56,
93.
|
 |
|
|
|
|
 |
A.L.Greenway,
G.Holloway,
D.A.McPhee,
P.Ellis,
A.Cornall,
and
M.Lidman
(2003).
HIV-1 Nef control of cell signalling molecules: multiple strategies to promote virus replication.
|
| |
J Biosci,
28,
323-335.
|
 |
|
|
|
|
 |
K.Janvier,
Y.Kato,
M.Boehm,
J.R.Rose,
J.A.Martina,
B.Y.Kim,
S.Venkatesan,
and
J.S.Bonifacino
(2003).
Recognition of dileucine-based sorting signals from HIV-1 Nef and LIMP-II by the AP-1 gamma-sigma1 and AP-3 delta-sigma3 hemicomplexes.
|
| |
J Cell Biol,
163,
1281-1290.
|
 |
|
|
|
|
 |
N.Casartelli,
G.Di Matteo,
M.Potestà,
P.Rossi,
and
M.Doria
(2003).
CD4 and major histocompatibility complex class I downregulation by the human immunodeficiency virus type 1 nef protein in pediatric AIDS progression.
|
| |
J Virol,
77,
11536-11545.
|
 |
|
|
|
|
 |
Q.Liu,
D.Berry,
P.Nash,
T.Pawson,
C.J.McGlade,
and
S.S.Li
(2003).
Structural basis for specific binding of the Gads SH3 domain to an RxxK motif-containing SLP-76 peptide: a novel mode of peptide recognition.
|
| |
Mol Cell,
11,
471-481.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.Hahn,
R.Ramakrishnan,
and
N.Ahmad
(2003).
Evaluation of genetic diversity of human immunodeficiency virus type 1 NEF gene associated with vertical transmission.
|
| |
J Biomed Sci,
10,
436-450.
|
 |
|
|
|
|
 |
T.Yamada,
N.Kaji,
T.Odawara,
J.Chiba,
A.Iwamoto,
and
Y.Kitamura
(2003).
Proline 78 is crucial for human immunodeficiency virus type 1 Nef to down-regulate class I human leukocyte antigen.
|
| |
J Virol,
77,
1589-1594.
|
 |
|
|
|
|
 |
C.A.Lundquist,
M.Tobiume,
J.Zhou,
D.Unutmaz,
and
C.Aiken
(2002).
Nef-mediated downregulation of CD4 enhances human immunodeficiency virus type 1 replication in primary T lymphocytes.
|
| |
J Virol,
76,
4625-4633.
|
 |
|
|
|
|
 |
D.Messmer,
J.Bromberg,
G.Devgan,
J.M.Jacqué,
A.Granelli-Piperno,
and
M.Pope
(2002).
Human immunodeficiency virus type 1 Nef mediates activation of STAT3 in immature dendritic cells.
|
| |
AIDS Res Hum Retroviruses,
18,
1043-1050.
|
 |
|
|
|
|
 |
K.Kami,
R.Takeya,
H.Sumimoto,
and
D.Kohda
(2002).
Diverse recognition of non-PxxP peptide ligands by the SH3 domains from p67(phox), Grb2 and Pex13p.
|
| |
EMBO J,
21,
4268-4276.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.Schweimer,
S.Hoffmann,
F.Bauer,
U.Friedrich,
C.Kardinal,
S.M.Feller,
B.Biesinger,
and
H.Sticht
(2002).
Structural investigation of the binding of a herpesviral protein to the SH3 domain of tyrosine kinase Lck.
|
| |
Biochemistry,
41,
5120-5130.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
L.W.Donaldson,
G.Gish,
T.Pawson,
L.E.Kay,
and
J.D.Forman-Kay
(2002).
Structure of a regulatory complex involving the Abl SH3 domain, the Crk SH2 domain, and a Crk-derived phosphopeptide.
|
| |
Proc Natl Acad Sci U S A,
99,
14053-14058.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Geyer,
O.T.Fackler,
and
B.M.Peterlin
(2002).
Subunit H of the V-ATPase involved in endocytosis shows homology to beta-adaptins.
|
| |
Mol Biol Cell,
13,
2045-2056.
|
 |
|
|
|
|
 |
M.Williams,
J.F.Roeth,
M.R.Kasper,
R.I.Fleis,
C.G.Przybycin,
and
K.L.Collins
(2002).
Direct binding of human immunodeficiency virus type 1 Nef to the major histocompatibility complex class I (MHC-I) cytoplasmic tail disrupts MHC-I trafficking.
|
| |
J Virol,
76,
12173-12184.
|
 |
|
|
|
|
 |
R.J.Mallis,
K.N.Brazin,
D.B.Fulton,
and
A.H.Andreotti
(2002).
Structural characterization of a proline-driven conformational switch within the Itk SH2 domain.
|
| |
Nat Struct Biol,
9,
900-905.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Y.Ito,
H.Kawakatsu,
T.Takeda,
N.Tani,
N.Kawaguchi,
S.Noguchi,
T.Sakai,
and
N.Matsuura
(2002).
Activation of c-Src is inversely correlated with biological aggressiveness of breast carcinoma.
|
| |
Breast Cancer Res Treat,
76,
261-267.
|
 |
|
|
|
|
 |
A.H.Chang,
M.V.O'Shaughnessy,
and
F.R.Jirik
(2001).
Hck SH3 domain-dependent abrogation of Nef-induced class 1 MHC down-regulation.
|
| |
Eur J Immunol,
31,
2382-2387.
|
 |
|
|
|
|
 |
A.Manninen,
P.Huotari,
M.Hiipakka,
G.H.Renkema,
and
K.Saksela
(2001).
Activation of NFAT-dependent gene expression by Nef: conservation among divergent Nef alleles, dependence on SH3 binding and membrane association, and cooperation with protein kinase C-theta.
|
| |
J Virol,
75,
3034-3037.
|
 |
|
|
|
|
 |
A.Preusser,
L.Briese,
A.S.Baur,
and
D.Willbold
(2001).
Direct in vitro binding of full-length human immunodeficiency virus type 1 Nef protein to CD4 cytoplasmic domain.
|
| |
J Virol,
75,
3960-3964.
|
 |
|
|
|
|
 |
B.E.Gewurz,
R.Gaudet,
D.Tortorella,
E.W.Wang,
and
H.L.Ploegh
(2001).
Virus subversion of immunity: a structural perspective.
|
| |
Curr Opin Immunol,
13,
442-450.
|
 |
|
|
|
|
 |
D.Kennedy,
J.French,
E.Guitard,
K.Ru,
B.Tocque,
and
J.Mattick
(2001).
Characterization of G3BPs: tissue specific expression, chromosomal localisation and rasGAP(120) binding studies.
|
| |
J Cell Biochem,
84,
173-187.
|
 |
|
|
|
|
 |
E.Khatissian,
V.Monceaux,
M.C.Cumont,
M.P.Kieny,
A.M.Aubertin,
and
B.Hurtrel
(2001).
Persistence of pathogenic challenge virus in macaques protected by simian immunodeficiency virus SIVmacDeltanef.
|
| |
J Virol,
75,
1507-1515.
|
 |
|
|
|
|
 |
K.Kedzierska,
J.Mak,
A.Jaworowski,
A.Greenway,
A.Violo,
H.T.Chan,
J.Hocking,
D.Purcell,
J.S.Sullivan,
J.Mills,
and
S.Crowe
(2001).
nef-deleted HIV-1 inhibits phagocytosis by monocyte-derived macrophages in vitro but not by peripheral blood monocytes in vivo.
|
| |
AIDS,
15,
945-955.
|
 |
|
|
|
|
 |
M.Geyer,
O.T.Fackler,
and
B.M.Peterlin
(2001).
Structure--function relationships in HIV-1 Nef.
|
| |
EMBO Rep,
2,
580-585.
|
 |
|
|
|
|
 |
M.Nishida,
K.Nagata,
Y.Hachimori,
M.Horiuchi,
K.Ogura,
V.Mandiyan,
J.Schlessinger,
and
F.Inagaki
(2001).
Novel recognition mode between Vav and Grb2 SH3 domains.
|
| |
EMBO J,
20,
2995-3007.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
O.Schueler-Furman,
Y.Altuvia,
and
H.Margalit
(2001).
Examination of possible structural constraints of MHC-binding peptides by assessment of their native structure within their source proteins.
|
| |
Proteins,
45,
47-54.
|
 |
|
|
|
|
 |
O.T.Fackler,
D.Wolf,
H.O.Weber,
B.Laffert,
P.D'Aloja,
B.Schuler-Thurner,
R.Geffin,
K.Saksela,
M.Geyer,
B.M.Peterlin,
G.Schuler,
and
A.S.Baur
(2001).
A natural variability in the proline-rich motif of Nef modulates HIV-1 replication in primary T cells.
|
| |
Curr Biol,
11,
1294-1299.
|
 |
|
|
|
|
 |
R.Ghose,
A.Shekhtman,
M.J.Goger,
H.Ji,
and
D.Cowburn
(2001).
A novel, specific interaction involving the Csk SH3 domain and its natural ligand.
|
| |
Nat Struct Biol,
8,
998.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.H.Coleman,
J.R.Day,
and
J.C.Guatelli
(2001).
The HIV-1 Nef protein as a target for antiretroviral therapy.
|
| |
Expert Opin Ther Targets,
5,
1.
|
 |
|
|
|
|
 |
S.L.Cohen,
and
B.T.Chait
(2001).
Mass spectrometry as a tool for protein crystallography.
|
| |
Annu Rev Biophys Biomol Struct,
30,
67-85.
|
 |
|
|
|
|
 |
S.T.Arold,
and
A.S.Baur
(2001).
Dynamic Nef and Nef dynamics: how structure could explain the complex activities of this small HIV protein.
|
| |
Trends Biochem Sci,
26,
356-363.
|
 |
|
|
|
|
 |
D.E.Wakeham,
J.A.Ybe,
F.M.Brodsky,
and
P.K.Hwang
(2000).
Molecular structures of proteins involved in vesicle coat formation.
|
| |
Traffic,
1,
393-398.
|
 |
|
|
|
|
 |
G.Bottger,
P.Barnett,
A.T.Klein,
A.Kragt,
H.F.Tabak,
and
B.Distel
(2000).
Saccharomyces cerevisiae PTS1 receptor Pex5p interacts with the SH3 domain of the peroxisomal membrane protein Pex13p in an unconventional, non-PXXP-related manner.
|
| |
Mol Biol Cell,
11,
3963-3976.
|
 |
|
|
|
|
 |
H.Kang,
C.Freund,
J.S.Duke-Cohan,
A.Musacchio,
G.Wagner,
and
C.E.Rudd
(2000).
SH3 domain recognition of a proline-independent tyrosine-based RKxxYxxY motif in immune cell adaptor SKAP55.
|
| |
EMBO J,
19,
2889-2899.
|
 |
|
|
|
|
 |
J.A.Bousquet,
C.Garbay,
B.P.Roques,
and
Y.Mély
(2000).
Circular dichroic investigation of the native and non-native conformational states of the growth factor receptor-binding protein 2 N-terminal src homology domain 3: effect of binding to a proline-rich peptide from guanine nucleotide exchange factor.
|
| |
Biochemistry,
39,
7722-7735.
|
 |
|
|
|
|
 |
J.E.Ladbury,
and
S.Arold
(2000).
Searching for specificity in SH domains.
|
| |
Chem Biol,
7,
R3-R8.
|
 |
|
|
|
|
 |
J.K.Wang,
E.Kiyokawa,
E.Verdin,
and
D.Trono
(2000).
The Nef protein of HIV-1 associates with rafts and primes T cells for activation.
|
| |
Proc Natl Acad Sci U S A,
97,
394-399.
|
 |
|
|
|
|
 |
L.Erdtmann,
K.Janvier,
G.Raposo,
H.M.Craig,
P.Benaroch,
C.Berlioz-Torrent,
J.C.Guatelli,
R.Benarous,
and
S.Benichou
(2000).
Two independent regions of HIV-1 Nef are required for connection with the endocytic pathway through binding to the mu 1 chain of AP1 complex.
|
| |
Traffic,
1,
871-883.
|
 |
|
|
|
|
 |
L.X.Liu,
N.Heveker,
O.T.Fackler,
S.Arold,
S.Le Gall,
K.Janvier,
B.M.Peterlin,
C.Dumas,
O.Schwartz,
S.Benichou,
and
R.Benarous
(2000).
Mutation of a conserved residue (D123) required for oligomerization of human immunodeficiency virus type 1 Nef protein abolishes interaction with human thioesterase and results in impairment of Nef biological functions.
|
| |
J Virol,
74,
5310-5319.
|
 |
|
|
|
|
 |
O.T.Fackler,
X.Lu,
J.A.Frost,
M.Geyer,
B.Jiang,
W.Luo,
A.Abo,
A.S.Alberts,
and
B.M.Peterlin
(2000).
p21-activated kinase 1 plays a critical role in cellular activation by Nef.
|
| |
Mol Cell Biol,
20,
2619-2627.
|
 |
|
|
|
|
 |
P.Barnett,
G.Bottger,
A.T.Klein,
H.F.Tabak,
and
B.Distel
(2000).
The peroxisomal membrane protein Pex13p shows a novel mode of SH3 interaction.
|
| |
EMBO J,
19,
6382-6391.
|
 |
|
|
|
|
 |
R.Geffin,
D.Wolf,
R.Müller,
M.D.Hill,
E.Stellwag,
M.Freitag,
G.Sass,
G.B.Scott,
and
A.S.Baur
(2000).
Functional and structural defects in HIV type 1 nef genes derived from pediatric long-term survivors.
|
| |
AIDS Res Hum Retroviruses,
16,
1855-1868.
|
 |
|
|
|
|
 |
R.Kleene,
B.Classen,
J.Zdzieblo,
and
M.Schrader
(2000).
SH3 binding sites of ZG29p mediate an interaction with amylase and are involved in condensation-sorting in the exocrine rat pancreas.
|
| |
Biochemistry,
39,
9893-9900.
|
 |
|
|
|
|
 |
S.Arold,
F.Hoh,
S.Domergue,
C.Birck,
M.A.Delsuc,
M.Jullien,
and
C.Dumas
(2000).
Characterization and molecular basis of the oligomeric structure of HIV-1 nef protein.
|
| |
Protein Sci,
9,
1137-1148.
|
 |
|
|
|
|
 |
S.Carl,
A.J.Iafrate,
S.M.Lang,
N.Stolte,
C.Stahl-Hennig,
K.Mätz-Rensing,
D.Fuchs,
J.Skowronski,
and
F.Kirchhoff
(2000).
Simian immunodeficiency virus containing mutations in N-terminal tyrosine residues and in the PxxP motif in Nef replicates efficiently in rhesus macaques.
|
| |
J Virol,
74,
4155-4164.
|
 |
|
|
|
|
 |
S.D.Briggs,
E.C.Lerner,
and
T.E.Smithgall
(2000).
Affinity of Src family kinase SH3 domains for HIV Nef in vitro does not predict kinase activation by Nef in vivo.
|
| |
Biochemistry,
39,
489-495.
|
 |
|
|
|
|
 |
S.M.Larson,
and
A.R.Davidson
(2000).
The identification of conserved interactions within the SH3 domain by alignment of sequences and structures.
|
| |
Protein Sci,
9,
2170-2180.
|
 |
|
|
|
|
 |
T.Swigut,
A.J.Iafrate,
J.Muench,
F.Kirchhoff,
and
J.Skowronski
(2000).
Simian and human immunodeficiency virus Nef proteins use different surfaces to downregulate class I major histocompatibility complex antigen expression.
|
| |
J Virol,
74,
5691-5701.
|
 |
|
|
|
|
 |
Y.Collette,
S.Arold,
C.Picard,
K.Janvier,
S.Benichou,
R.Benarous,
D.Olive,
and
C.Dumas
(2000).
HIV-2 and SIV nef proteins target different Src family SH3 domains than does HIV-1 Nef because of a triple amino acid substitution.
|
| |
J Biol Chem,
275,
4171-4176.
|
 |
|
|
|
|
 |
Z.S.Zhao,
E.Manser,
and
L.Lim
(2000).
Interaction between PAK and nck: a template for Nck targets and role of PAK autophosphorylation.
|
| |
Mol Cell Biol,
20,
3906-3917.
|
 |
|
|
|
|
 |
A.L.Greenway,
H.Dutartre,
K.Allen,
D.A.McPhee,
D.Olive,
and
Y.Collette
(1999).
Simian immunodeficiency virus and human immunodeficiency virus type 1 nef proteins show distinct patterns and mechanisms of Src kinase activation.
|
| |
J Virol,
73,
6152-6158.
|
 |
|
|
|
|
 |
A.Plemenitas,
X.Lu,
M.Geyer,
P.Veranic,
M.N.Simon,
and
B.M.Peterlin
(1999).
Activation of Ste20 by Nef from human immunodeficiency virus induces cytoskeletal rearrangements and downstream effector functions in Saccharomyces cerevisiae.
|
| |
Virology,
258,
271-281.
|
 |
|
|
|
|
 |
F.H.Chen,
M.Ukhanova,
D.Thomas,
G.Afshar,
S.Tanda,
B.A.Battelle,
and
R.Payne
(1999).
Molecular cloning of a putative cyclic nucleotide-gated ion channel cDNA from Limulus polyphemus.
|
| |
J Neurochem,
72,
461-471.
|
 |
|
|
|
|
 |
F.Kirchhoff,
J.Münch,
S.Carl,
N.Stolte,
K.Mätz-Rensing,
D.Fuchs,
P.T.Haaft,
J.L.Heeney,
T.Swigut,
J.Skowronski,
and
C.Stahl-Hennig
(1999).
The human immunodeficiency virus type 1 nef gene can to a large extent replace simian immunodeficiency virus nef in vivo.
|
| |
J Virol,
73,
8371-8383.
|
 |
|
|
|
|
 |
F.Kirchhoff,
P.J.Easterbrook,
N.Douglas,
M.Troop,
T.C.Greenough,
J.Weber,
S.Carl,
J.L.Sullivan,
and
R.S.Daniels
(1999).
Sequence variations in human immunodeficiency virus type 1 Nef are associated with different stages of disease.
|
| |
J Virol,
73,
5497-5508.
|
 |
|
|
|
|
 |
G.Cestra,
L.Castagnoli,
L.Dente,
O.Minenkova,
A.Petrelli,
N.Migone,
U.Hoffmüller,
J.Schneider-Mergener,
and
G.Cesareni
(1999).
The SH3 domains of endophilin and amphiphysin bind to the proline-rich region of synaptojanin 1 at distinct sites that display an unconventional binding specificity.
|
| |
J Biol Chem,
274,
32001-32007.
|
 |
|
|
|
|
 |
L.Alexander,
Z.Du,
A.Y.Howe,
S.Czajak,
and
R.C.Desrosiers
(1999).
Induction of AIDS in rhesus monkeys by a recombinant simian immunodeficiency virus expressing nef of human immunodeficiency virus type 1.
|
| |
J Virol,
73,
5814-5825.
|
 |
|
|
|
|
 |
M.Foti,
L.Cartier,
V.Piguet,
D.P.Lew,
J.L.Carpentier,
D.Trono,
and
K.H.Krause
(1999).
The HIV Nef protein alters Ca(2+) signaling in myelomonocytic cells through SH3-mediated protein-protein interactions.
|
| |
J Biol Chem,
274,
34765-34772.
|
 |
|
|
|
|
 |
M.Lock,
M.E.Greenberg,
A.J.Iafrate,
T.Swigut,
J.Muench,
F.Kirchhoff,
N.Shohdy,
and
J.Skowronski
(1999).
Two elements target SIV Nef to the AP-2 clathrin adaptor complex, but only one is required for the induction of CD4 endocytosis.
|
| |
EMBO J,
18,
2722-2733.
|
 |
|
|
|
|
 |
N.Narayana,
T.C.Diller,
K.Koide,
M.E.Bunnage,
K.C.Nicolaou,
L.L.Brunton,
N.H.Xuong,
L.F.Ten Eyck,
and
S.S.Taylor
(1999).
Crystal structure of the potent natural product inhibitor balanol in complex with the catalytic subunit of cAMP-dependent protein kinase.
|
| |
Biochemistry,
38,
2367-2376.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
O.T.Fackler,
W.Luo,
M.Geyer,
A.S.Alberts,
and
B.M.Peterlin
(1999).
Activation of Vav by Nef induces cytoskeletal rearrangements and downstream effector functions.
|
| |
Mol Cell,
3,
729-739.
|
 |
|
|
|
|
 |
R.N.Harty,
J.Paragas,
M.Sudol,
and
P.Palese
(1999).
A proline-rich motif within the matrix protein of vesicular stomatitis virus and rabies virus interacts with WW domains of cellular proteins: implications for viral budding.
|
| |
J Virol,
73,
2921-2929.
|
 |
|
|
|
|
 |
T.Kirchhausen
(1999).
Adaptors for clathrin-mediated traffic.
|
| |
Annu Rev Cell Dev Biol,
15,
705-732.
|
 |
|
|
|
|
 |
T.Yamada,
and
A.Iwamoto
(1999).
Expression of a novel Nef epitope on the surface of HIV type 1-infected cells.
|
| |
AIDS Res Hum Retroviruses,
15,
1001-1009.
|
 |
|
|
|
|
 |
V.Piguet,
and
D.Trono
(1999).
The Nef protein of primate lentiviruses.
|
| |
Rev Med Virol,
9,
111-120.
|
 |
|
|
|
|
 |
V.Piguet,
F.Gu,
M.Foti,
N.Demaurex,
J.Gruenberg,
J.L.Carpentier,
and
D.Trono
(1999).
Nef-induced CD4 degradation: a diacidic-based motif in Nef functions as a lysosomal targeting signal through the binding of beta-COP in endosomes.
|
| |
Cell,
97,
63-73.
|
 |
|
|
|
|
 |
A.D.Frankel,
and
J.A.Young
(1998).
HIV-1: fifteen proteins and an RNA.
|
| |
Annu Rev Biochem,
67,
1.
|
 |
|
|
|
|
 |
D.R.Hodge,
K.J.Dunn,
G.K.Pei,
M.K.Chakrabarty,
G.Heidecker,
J.A.Lautenberger,
and
K.P.Samuel
(1998).
Binding of c-Raf1 kinase to a conserved acidic sequence within the carboxyl-terminal region of the HIV-1 Nef protein.
|
| |
J Biol Chem,
273,
15727-15733.
|
 |
|
|
|
|
 |
F.Li,
B.A.Puffer,
and
R.C.Montelaro
(1998).
The S2 gene of equine infectious anemia virus is dispensable for viral replication in vitro.
|
| |
J Virol,
72,
8344-8348.
|
 |
|
|
|
|
 |
H.M.Craig,
M.W.Pandori,
and
J.C.Guatelli
(1998).
Interaction of HIV-1 Nef with the cellular dileucine-based sorting pathway is required for CD4 down-regulation and optimal viral infectivity.
|
| |
Proc Natl Acad Sci U S A,
95,
11229-11234.
|
 |
|
|
|
|
 |
I.H.Khan,
E.T.Sawai,
E.Antonio,
C.J.Weber,
C.P.Mandell,
P.Montbriand,
and
P.A.Luciw
(1998).
Role of the SH3-ligand domain of simian immunodeficiency virus Nef in interaction with Nef-associated kinase and simian AIDS in rhesus macaques.
|
| |
J Virol,
72,
5820-5830.
|
 |
|
|
|
|
 |
J.Collet,
C.A.Spike,
E.A.Lundquist,
J.E.Shaw,
and
R.K.Herman
(1998).
Analysis of osm-6, a gene that affects sensory cilium structure and sensory neuron function in Caenorhabditis elegans.
|
| |
Genetics,
148,
187-200.
|
 |
|
|
|
|
 |
M.E.Greenberg,
A.J.Iafrate,
and
J.Skowronski
(1998).
The SH3 domain-binding surface and an acidic motif in HIV-1 Nef regulate trafficking of class I MHC complexes.
|
| |
EMBO J,
17,
2777-2789.
|
 |
|
|
|
|
 |
M.Greenberg,
L.DeTulleo,
I.Rapoport,
J.Skowronski,
and
T.Kirchhausen
(1998).
A dileucine motif in HIV-1 Nef is essential for sorting into clathrin-coated pits and for downregulation of CD4.
|
| |
Curr Biol,
8,
1239-1242.
|
 |
|
|
|
|
 |
M.J.Mathiesen,
A.Holm,
M.Christiansen,
J.Blom,
K.Hansen,
S.Ostergaard,
and
M.Theisen
(1998).
The dominant epitope of Borrelia garinii outer surface protein C recognized by sera from patients with neuroborreliosis has a surface-exposed conserved structural motif.
|
| |
Infect Immun,
66,
4073-4079.
|
 |
|
|
|
|
 |
M.K.Yamanaka,
and
T.Yilma
(1998).
Altered plaque formation by recombinant vaccinia virus expressing simian immunodeficiency virus Nef.
|
| |
J Virol,
72,
5291-5295.
|
 |
|
|
|
|
 |
R.Wallis,
K.Y.Leung,
M.J.Osborne,
R.James,
G.R.Moore,
and
C.Kleanthous
(1998).
Specificity in protein-protein recognition: conserved Im9 residues are the major determinants of stability in the colicin E9 DNase-Im9 complex.
|
| |
Biochemistry,
37,
476-485.
|
 |
|
|
|
|
 |
R.Welker,
M.Harris,
B.Cardel,
and
H.G.Kräusslich
(1998).
Virion incorporation of human immunodeficiency virus type 1 Nef is mediated by a bipartite membrane-targeting signal: analysis of its role in enhancement of viral infectivity.
|
| |
J Virol,
72,
8833-8840.
|
 |
|
|
|
|
 |
S.Arold,
R.O'Brien,
P.Franken,
M.P.Strub,
F.Hoh,
C.Dumas,
and
J.E.Ladbury
(1998).
RT loop flexibility enhances the specificity of Src family SH3 domains for HIV-1 Nef.
|
| |
Biochemistry,
37,
14683-14691.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Le Gall,
L.Erdtmann,
S.Benichou,
C.Berlioz-Torrent,
L.Liu,
R.Benarous,
J.M.Heard,
and
O.Schwartz
(1998).
Nef interacts with the mu subunit of clathrin adaptor complexes and reveals a cryptic sorting signal in MHC I molecules.
|
| |
Immunity,
8,
483-495.
|
 |
|
|
|
|
 |
W.Zhang,
T.E.Smithgall,
and
W.H.Gmeiner
(1998).
Self-association and backbone dynamics of the hck SH2 domain in the free and phosphopeptide-complexed forms.
|
| |
Biochemistry,
37,
7119-7126.
|
 |
|
|
|
|
 |
A.J.Iafrate,
S.Bronson,
and
J.Skowronski
(1997).
Separable functions of Nef disrupt two aspects of T cell receptor machinery: CD4 expression and CD3 signaling.
|
| |
EMBO J,
16,
673-684.
|
 |
|
|
|
|
 |
A.S.Baur,
G.Sass,
B.Laffert,
D.Willbold,
C.Cheng-Mayer,
and
B.M.Peterlin
(1997).
The N-terminus of Nef from HIV-1/SIV associates with a protein complex containing Lck and a serine kinase.
|
| |
Immunity,
6,
283-291.
|
 |
|
|
|
|
 |
D.C.Dalgarno,
M.C.Botfield,
and
R.J.Rickles
(1997).
SH3 domains and drug design: ligands, structure, and biological function.
|
| |
Biopolymers,
43,
383-400.
|
 |
|
|
|
|
 |
D.Trono,
and
J.K.Wang
(1997).
Nef and PAK: virulence factor and cellular accomplice.
|
| |
Chem Biol,
4,
13-15.
|
 |
|
|
|
|
 |
E.Brigino,
S.Haraguchi,
A.Koutsonikolis,
G.J.Cianciolo,
U.Owens,
R.A.Good,
and
N.K.Day
(1997).
Interleukin 10 is induced by recombinant HIV-1 Nef protein involving the calcium/calmodulin-dependent phosphodiesterase signal transduction pathway.
|
| |
Proc Natl Acad Sci U S A,
94,
3178-3182.
|
 |
|
|
|
|
 |
E.M.Ruaro,
L.Collavin,
G.Del Sal,
R.Haffner,
M.Oren,
A.J.Levine,
and
C.Schneider
(1997).
A proline-rich motif in p53 is required for transactivation-independent growth arrest as induced by Gas1.
|
| |
Proc Natl Acad Sci U S A,
94,
4675-4680.
|
 |
|
|
|
|
 |
F.Sicheri,
and
J.Kuriyan
(1997).
Structures of Src-family tyrosine kinases.
|
| |
Curr Opin Struct Biol,
7,
777-785.
|
 |
|
|
|
|
 |
G.Superti-Furga,
and
S.Gonfloni
(1997).
A crystal milestone: the structure of regulated Src.
|
| |
Bioessays,
19,
447-450.
|
 |
|
|
|
|
 |
H.V.Patel,
S.R.Tzeng,
C.Y.Liao,
S.H.Chen,
and
J.W.Cheng
(1997).
SH3 domain of Bruton's tyrosine kinase can bind to proline-rich peptides of TH domain of the kinase and p120cbl.
|
| |
Proteins,
29,
545-552.
|
 |
|
|
|
|
 |
J.Kuriyan,
and
D.Cowburn
(1997).
Modular peptide recognition domains in eukaryotic signaling.
|
| |
Annu Rev Biophys Biomol Struct,
26,
259-288.
|
 |
|
|
|
|
 |
J.R.Engen,
T.E.Smithgall,
W.H.Gmeiner,
and
D.L.Smith
(1997).
Identification and localization of slow, natural, cooperative unfolding in the hematopoietic cell kinase SH3 domain by amide hydrogen exchange and mass spectrometry.
|
| |
Biochemistry,
36,
14384-14391.
|
 |
|
|
|
|
 |
K.J.Barnham,
S.A.Monks,
M.G.Hinds,
A.A.Azad,
and
R.S.Norton
(1997).
Solution structure of a polypeptide from the N terminus of the HIV protein Nef.
|
| |
Biochemistry,
36,
5970-5980.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
L.X.Liu,
F.Margottin,
S.Le Gall,
O.Schwartz,
L.Selig,
R.Benarous,
and
S.Benichou
(1997).
Binding of HIV-1 Nef to a novel thioesterase enzyme correlates with Nef-mediated CD4 down-regulation.
|
| |
J Biol Chem,
272,
13779-13785.
|
 |
|
|
|
|
 |
M.E.Greenberg,
S.Bronson,
M.Lock,
M.Neumann,
G.N.Pavlakis,
and
J.Skowronski
(1997).
Co-localization of HIV-1 Nef with the AP-2 adaptor protein complex correlates with Nef-induced CD4 down-regulation.
|
| |
EMBO J,
16,
6964-6976.
|
 |
|
|
|
|
 |
M.K.Safo,
W.Z.Yang,
L.Corselli,
S.E.Cramton,
H.S.Yuan,
and
R.C.Johnson
(1997).
The transactivation region of the fis protein that controls site-specific DNA inversion contains extended mobile beta-hairpin arms.
|
| |
EMBO J,
16,
6860-6873.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
P.Franken,
S.Arold,
A.Padilla,
M.Bodeus,
F.Hoh,
M.P.Strub,
M.Boyer,
M.Jullien,
R.Benarous,
and
C.Dumas
(1997).
HIV-1 Nef protein: purification, crystallizations, and preliminary X-ray diffraction studies.
|
| |
Protein Sci,
6,
2681-2683.
|
 |
|
|
|
|
 |
P.Xu,
K.I.Mitchelhill,
B.Kobe,
B.E.Kemp,
and
H.G.Zot
(1997).
The myosin-I-binding protein Acan125 binds the SH3 domain and belongs to the superfamily of leucine-rich repeat proteins.
|
| |
Proc Natl Acad Sci U S A,
94,
3685-3690.
|
 |
|
|
|
|
 |
R.H.Miller,
and
N.Sarver
(1997).
HIV accessory proteins as therapeutic targets.
|
| |
Nat Med,
3,
389-394.
|
 |
|
|
|
|
 |
S.Arold,
P.Franken,
M.P.Strub,
F.Hoh,
S.Benichou,
R.Benarous,
and
C.Dumas
(1997).
The crystal structure of HIV-1 Nef protein bound to the Fyn kinase SH3 domain suggests a role for this complex in altered T cell receptor signaling.
|
| |
Structure,
5,
1361-1372.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.D.Briggs,
M.Sharkey,
M.Stevenson,
and
T.E.Smithgall
(1997).
SH3-mediated Hck tyrosine kinase activation and fibroblast transformation by the Nef protein of HIV-1.
|
| |
J Biol Chem,
272,
17899-17902.
|
 |
|
|
|
|
 |
S.Grzesiek,
A.Bax,
J.S.Hu,
J.Kaufman,
I.Palmer,
S.J.Stahl,
N.Tjandra,
and
P.T.Wingfield
(1997).
Refined solution structure and backbone dynamics of HIV-1 Nef.
|
| |
Protein Sci,
6,
1248-1263.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.M.Lang,
A.J.Iafrate,
C.Stahl-Hennig,
E.M.Kuhn,
T.Nisslein,
F.J.Kaup,
M.Haupt,
G.Hunsmann,
J.Skowronski,
and
F.Kirchhoff
(1997).
Association of simian immunodeficiency virus Nef with cellular serine/threonine kinases is dispensable for the development of AIDS in rhesus macaques.
|
| |
Nat Med,
3,
860-865.
|
 |
|
|
|
|
 |
S.Negrete-Urtasun,
S.H.Denison,
and
H.N.Arst
(1997).
Characterization of the pH signal transduction pathway gene palA of Aspergillus nidulans and identification of possible homologs.
|
| |
J Bacteriol,
179,
1832-1835.
|
 |
|
|
|
|
 |
T.Balla,
G.J.Downing,
H.Jaffe,
S.Kim,
A.Zólyomi,
and
K.J.Catt
(1997).
Isolation and molecular cloning of wortmannin-sensitive bovine type III phosphatidylinositol 4-kinases.
|
| |
J Biol Chem,
272,
18358-18366.
|
 |
|
|
|
|
 |
T.Luo,
J.L.Foster,
and
J.V.Garcia
(1997).
Molecular Determinants of Nef Function.
|
| |
J Biomed Sci,
4,
132-138.
|
 |
|
|
|
|
 |
T.Luo,
R.A.Livingston,
and
J.V.Garcia
(1997).
Infectivity enhancement by human immunodeficiency virus type 1 Nef is independent of its association with a cellular serine/threonine kinase.
|
| |
J Virol,
71,
9524-9530.
|
 |
|
|
|
|
 |
V.Zacharova,
M.L.Becker,
V.Zachar,
P.Ebbesen,
and
A.S.Goustin
(1997).
DNA sequence analysis of the long terminal repeat of the C subtype of human immunodeficiency virus type 1 from Southern Africa reveals a dichotomy between B subtype and African subtypes on the basis of upstream NF-IL6 motif.
|
| |
AIDS Res Hum Retroviruses,
13,
719-724.
|
 |
|
|
|
|
 |
W.Luo,
and
B.M.Peterlin
(1997).
Activation of the T-cell receptor signaling pathway by Nef from an aggressive strain of simian immunodeficiency virus.
|
| |
J Virol,
71,
9531-9537.
|
 |
|
|
|
|
 |
X.N.Xu,
G.R.Screaton,
F.M.Gotch,
T.Dong,
R.Tan,
N.Almond,
B.Walker,
R.Stebbings,
K.Kent,
S.Nagata,
J.E.Stott,
and
A.J.McMichael
(1997).
Evasion of cytotoxic T lymphocyte (CTL) responses by nef-dependent induction of Fas ligand (CD95L) expression on simian immunodeficiency virus-infected cells.
|
| |
J Exp Med,
186,
7.
|
 |
|
|
|
|
 |
D.A.Renzoni,
D.J.Pugh,
G.Siligardi,
P.Das,
C.J.Morton,
C.Rossi,
M.D.Waterfield,
I.D.Campbell,
and
J.E.Ladbury
(1996).
Structural and thermodynamic characterization of the interaction of the SH3 domain from Fyn with the proline-rich binding site on the p85 subunit of PI3-kinase.
|
| |
Biochemistry,
35,
15646-15653.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
E.T.Sawai,
I.H.Khan,
P.M.Montbriand,
B.M.Peterlin,
C.Cheng-Mayer,
and
P.A.Luciw
(1996).
Activation of PAK by HIV and SIV Nef: importance for AIDS in rhesus macaques.
|
| |
Curr Biol,
6,
1519-1527.
|
 |
|
|
|
|
 |
J.R.Salkowitz,
B.K.Chakrabarti,
B.Yen-Lieberman,
C.Starkey,
T.Bendele,
and
H.W.Kestler
(1996).
The nef Gene of SIVmac239 Is Necessary for Efficient Growth in H9 Cells.
|
| |
J Biomed Sci,
3,
422-434.
|
 |
|
|
|
|
 |
J.Schorr,
R.Kellner,
O.Fackler,
J.Freund,
J.Konvalinka,
N.Kienzle,
H.G.Kräusslich,
N.Mueller-Lantzsch,
and
H.R.Kalbitzer
(1996).
Specific cleavage sites of Nef proteins from human immunodeficiency virus types 1 and 2 for the viral proteases.
|
| |
J Virol,
70,
9051-9054.
|
 |
|
|
|
|
 |
P.M.Finan,
C.J.Soames,
L.Wilson,
D.L.Nelson,
D.M.Stewart,
O.Truong,
J.J.Hsuan,
and
S.Kellie
(1996).
Identification of regions of the Wiskott-Aldrich syndrome protein responsible for association with selected Src homology 3 domains.
|
| |
J Biol Chem,
271,
26291-26295.
|
 |
|
|
|
|
 |
S.Feng,
T.M.Kapoor,
F.Shirai,
A.P.Combs,
and
S.L.Schreiber
(1996).
Molecular basis for the binding of SH3 ligands with non-peptide elements identified by combinatorial synthesis.
|
| |
Chem Biol,
3,
661-670.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.L.Cohen
(1996).
Domain elucidation by mass spectrometry.
|
| |
Structure,
4,
1013-1016.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |