|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
492 a.a.
|
 |
|
|
|
|
|
|
|
467 a.a.
|
 |
|
|
|
|
|
|
|
263 a.a.
|
 |
|
|
|
|
|
|
|
131 a.a.
|
 |
|
|
|
|
|
|
|
47 a.a.
|
 |
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Hydrolase
|
 |
|
Title:
|
 |
Bovine f1-atpase inhibited by dccd (dicyclohexylcarbodiimide)
|
|
Structure:
|
 |
Atp synthase alpha chain heart isoform. Chain: a, b, c. Synonym: bovine mitochondrial f1-atpase. Atp synthase beta chain. Chain: d, e, f. Synonym: bovine mitochondrial f1-atpase. Atp synthase gamma chain. Chain: g. Synonym: bovine mitochondrial f1-atpase.
|
|
Source:
|
 |
Bos taurus. Bovine. Organism_taxid: 9913. Organ: heart. Tissue: muscle. Organelle: mitochondrion. Organelle: mitochondrion
|
|
Biol. unit:
|
 |
Nonamer (from
)
|
|
Resolution:
|
 |
|
2.40Å
|
R-factor:
|
0.225
|
R-free:
|
0.281
|
|
|
Authors:
|
 |
C.Gibbons,M.G.Montgomery,A.G.W.Leslie,J.E.Walker
|
Key ref:
|
 |
C.Gibbons
et al.
(2000).
The structure of the central stalk in bovine F(1)-ATPase at 2.4 A resolution.
Nat Struct Biol,
7,
1055-1061.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
25-Aug-00
|
Release date:
|
03-Nov-00
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
P19483
(ATPA_BOVIN) -
ATP synthase subunit alpha, mitochondrial from Bos taurus
|
|
|
|
Seq: Struc:
|
 |
 |
 |
553 a.a.
492 a.a.*
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P00829
(ATPB_BOVIN) -
ATP synthase subunit beta, mitochondrial from Bos taurus
|
|
|
|
Seq: Struc:
|
 |
 |
 |
528 a.a.
467 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P05631
(ATPG_BOVIN) -
ATP synthase subunit gamma, mitochondrial from Bos taurus
|
|
|
|
Seq: Struc:
|
 |
 |
 |
298 a.a.
263 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
 |
|
|
 |
 |
 |
 |
Enzyme class 2:
|
 |
Chains A, B, C, G, H, I:
E.C.3.6.1.34
- Transferred entry: 7.1.2.2.
|
|
 |
 |
 |
 |
 |
Enzyme class 3:
|
 |
Chains D, E, F:
E.C.7.1.2.2
- H(+)-transporting two-sector ATPase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
ATP + H2O + 4 H+(in) = ADP + phosphate + 5 H+(out)
|
 |
 |
 |
 |
 |
ATP
Bound ligand (Het Group name = )
corresponds exactly
|
+
|
H2O
|
+
|
4
×
H(+)(in)
|
=
|
ADP
|
+
|
phosphate
|
+
|
5
×
H(+)(out)
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Note, where more than one E.C. class is given (as above), each may
correspond to a different protein domain or, in the case of polyprotein
precursors, to a different mature protein.
|
|
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
DOI no:
|
Nat Struct Biol
7:1055-1061
(2000)
|
|
PubMed id:
|
|
|
|
|
| |
|
The structure of the central stalk in bovine F(1)-ATPase at 2.4 A resolution.
|
|
C.Gibbons,
M.G.Montgomery,
A.G.Leslie,
J.E.Walker.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The central stalk in ATP synthase, made of gamma, delta and epsilon subunits in
the mitochondrial enzyme, is the key rotary element in the enzyme's catalytic
mechanism. The gamma subunit penetrates the catalytic (alpha beta)(3) domain and
protrudes beneath it, interacting with a ring of c subunits in the membrane that
drives rotation of the stalk during ATP synthesis. In other crystals of
F(1)-ATPase, the protrusion was disordered, but with crystals of F(1)-ATPase
inhibited with dicyclohexylcarbodiimide, the complete structure was revealed.
The delta and epsilon subunits interact with a Rossmann fold in the gamma
subunit, forming a foot. In ATP synthase, this foot interacts with the c-ring
and couples the transmembrane proton motive force to catalysis in the (alpha
beta)(3) domain.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 2.
Figure 2. The structure of the central stalk. The color code
for subunits is the same as in Fig. 1. The light blue regions
have been described in earlier structures and new regions of
structure in the subunit
are dark blue. a, Side-on stereo view of stalk subunits (same
view as in Fig. 1a). b, Stereo view of stalk subunits, rotated
90° with respect to ( a), viewed from the membrane.
|
 |
Figure 5.
Figure 5. Interaction of gamma
Arg 75 with residues in the and
subunits
to form part of the catalytic 'catch'. Distances are in
Å.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Macmillan Publishers Ltd:
Nat Struct Biol
(2000,
7,
1055-1061)
copyright 2000.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
G.Cingolani,
and
T.M.Duncan
(2011).
Structure of the ATP synthase catalytic complex (F(1)) from Escherichia coli in an autoinhibited conformation.
|
| |
Nat Struct Mol Biol,
18,
701-707.
|
 |
|
|
|
|
 |
J.Czub,
and
H.Grubmüller
(2011).
Torsional elasticity and energetics of F1-ATPase.
|
| |
Proc Natl Acad Sci U S A,
108,
7408-7413.
|
 |
|
|
|
|
 |
J.E.Alard,
S.Hillion,
L.Guillevin,
A.Saraux,
J.O.Pers,
P.Youinou,
and
C.Jamin
(2011).
Autoantibodies to endothelial cell surface ATP synthase, the endogenous receptor for hsp60, might play a pathogenic role in vasculatides.
|
| |
PLoS One,
6,
e14654.
|
 |
|
|
|
|
 |
K.Okazaki,
and
S.Takada
(2011).
Structural Comparison of F(1)-ATPase: Interplay among Enzyme Structures, Catalysis, and Rotations.
|
| |
Structure,
19,
588-598.
|
 |
|
|
|
|
 |
O.Danış,
S.Demir,
A.Günel,
R.G.Aker,
M.Gülçebi,
F.Onat,
and
A.Ogan
(2011).
Changes in intracellular protein expression in cortex, thalamus and hippocampus in a genetic rat model of absence epilepsy.
|
| |
Brain Res Bull,
84,
381-388.
|
 |
|
|
|
|
 |
T.Beke-Somfai,
P.Lincoln,
and
B.Nordén
(2011).
Double-lock ratchet mechanism revealing the role of alphaSER-344 in FoF1 ATP synthase.
|
| |
Proc Natl Acad Sci U S A,
108,
4828-4833.
|
 |
|
|
|
|
 |
T.Ibuki,
K.Imada,
T.Minamino,
T.Kato,
T.Miyata,
and
K.Namba
(2011).
Common architecture of the flagellar type III protein export apparatus and F- and V-type ATPases.
|
| |
Nat Struct Mol Biol,
18,
277-282.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
B.A.Feniouk,
Y.Kato-Yamada,
M.Yoshida,
and
T.Suzuki
(2010).
Conformational transitions of subunit epsilon in ATP synthase from thermophilic Bacillus PS3.
|
| |
Biophys J,
98,
434-442.
|
 |
|
|
|
|
 |
C.Hunke,
V.S.Tadwal,
M.S.Manimekalai,
M.Roessle,
and
G.Grüber
(2010).
The effect of NBD-Cl in nucleotide-binding of the major subunit alpha and B of the motor proteins F1FO ATP synthase and A1AO ATP synthase.
|
| |
J Bioenerg Biomembr,
42,
1.
|
 |
|
|
|
|
 |
D.Pogoryelov,
A.Krah,
J.D.Langer,
Ã.–.Yildiz,
J.D.Faraldo-Gómez,
and
T.Meier
(2010).
Microscopic rotary mechanism of ion translocation in the F(o) complex of ATP synthases.
|
| |
Nat Chem Biol,
6,
891-899.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.Yagi,
H.Konno,
T.Murakami-Fuse,
A.Isu,
T.Oroguchi,
H.Akutsu,
M.Ikeguchi,
and
T.Hisabori
(2010).
Structural and functional analysis of the intrinsic inhibitor subunit epsilon of F1-ATPase from photosynthetic organisms.
|
| |
Biochem J,
425,
85-94.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
I.N.Watt,
M.G.Montgomery,
M.J.Runswick,
A.G.Leslie,
and
J.E.Walker
(2010).
Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria.
|
| |
Proc Natl Acad Sci U S A,
107,
16823-16827.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.A.Mayr,
V.Havlícková,
F.Zimmermann,
I.Magler,
V.Kaplanová,
P.Jesina,
A.Pecinová,
H.Nusková,
J.Koch,
W.Sperl,
and
J.Houstek
(2010).
Mitochondrial ATP synthase deficiency due to a mutation in the ATP5E gene for the F1 epsilon subunit.
|
| |
Hum Mol Genet,
19,
3430-3439.
|
 |
|
|
|
|
 |
V.V.Bulygin,
and
Y.M.Milgrom
(2010).
Probes of inhibition of Escherichia coli F(1)-ATPase by 7-chloro-4-nitrobenz-2-oxa-1,3-diazole in the presence of MgADP and MgATP support a bi-site mechanism of ATP hydrolysis by the enzyme.
|
| |
Biochemistry (Mosc),
75,
327-335.
|
 |
|
|
|
|
 |
Y.Ito,
and
M.Ikeguchi
(2010).
Structural fluctuation and concerted motions in F(1)-ATPase: A molecular dynamics study.
|
| |
J Comput Chem,
31,
2175-2185.
|
 |
|
|
|
|
 |
Y.Kagawa
(2010).
ATP synthase: from single molecule to human bioenergetics.
|
| |
Proc Jpn Acad Ser B Phys Biol Sci,
86,
667-693.
|
 |
|
|
|
|
 |
Y.Pang,
H.Wang,
W.Q.Song,
and
Y.X.Zhu
(2010).
The cotton ATP synthase δ1 subunit is required to maintain a higher ATP/ADP ratio that facilitates rapid fibre cell elongation.
|
| |
Plant Biol (Stuttg),
12,
903-909.
|
 |
|
|
|
|
 |
Z.L.Hildenbrand,
S.K.Molugu,
D.Stock,
and
R.A.Bernal
(2010).
The C-H peripheral stalk base: a novel component in V1-ATPase assembly.
|
| |
PLoS One,
5,
e12588.
|
 |
|
|
|
|
 |
A.Y.Mulkidjanian,
M.Y.Galperin,
and
E.V.Koonin
(2009).
Co-evolution of primordial membranes and membrane proteins.
|
| |
Trends Biochem Sci,
34,
206-215.
|
 |
|
|
|
|
 |
D.Pogoryelov,
O.Yildiz,
J.D.Faraldo-Gómez,
and
T.Meier
(2009).
High-resolution structure of the rotor ring of a proton-dependent ATP synthase.
|
| |
Nat Struct Mol Biol,
16,
1068-1073.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.Spetzler,
R.Ishmukhametov,
T.Hornung,
L.J.Day,
J.Martin,
and
W.D.Frasch
(2009).
Single molecule measurements of F1-ATPase reveal an interdependence between the power stroke and the dwell duration.
|
| |
Biochemistry,
48,
7979-7985.
|
 |
|
|
|
|
 |
L.Bae,
and
S.B.Vik
(2009).
A more robust version of the Arginine 210-switched mutant in subunit a of the Escherichia coli ATP synthase.
|
| |
Biochim Biophys Acta,
1787,
1129-1134.
|
 |
|
|
|
|
 |
M.Rak,
X.Zeng,
J.J.Brière,
and
A.Tzagoloff
(2009).
Assembly of F0 in Saccharomyces cerevisiae.
|
| |
Biochim Biophys Acta,
1793,
108-116.
|
 |
|
|
|
|
 |
N.Mnatsakanyan,
A.M.Krishnakumar,
T.Suzuki,
and
J.Weber
(2009).
The Role of the {beta}DELSEED-loop of ATP Synthase.
|
| |
J Biol Chem,
284,
11336-11345.
|
 |
|
|
|
|
 |
N.Mnatsakanyan,
J.A.Hook,
L.Quisenberry,
and
J.Weber
(2009).
ATP synthase with its gamma subunit reduced to the N-terminal helix can still catalyze ATP synthesis.
|
| |
J Biol Chem,
284,
26519-26525.
|
 |
|
|
|
|
 |
N.Numoto,
Y.Hasegawa,
K.Takeda,
and
K.Miki
(2009).
Inter-subunit interaction and quaternary rearrangement defined by the central stalk of prokaryotic V1-ATPase.
|
| |
EMBO Rep,
10,
1228-1234.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.Iino,
R.Hasegawa,
K.V.Tabata,
and
H.Noji
(2009).
Mechanism of inhibition by C-terminal alpha-helices of the epsilon subunit of Escherichia coli FoF1-ATP synthase.
|
| |
J Biol Chem,
284,
17457-17464.
|
 |
|
|
|
|
 |
W.Zheng
(2009).
Normal-mode-based modeling of allosteric couplings that underlie cyclic conformational transition in F(1) ATPase.
|
| |
Proteins,
76,
747-762.
|
 |
|
|
|
|
 |
A.F.Lodeyro,
M.V.Castelli,
and
O.A.Roveri
(2008).
ATP hydrolysis-driven H(+) translocation is stimulated by sulfate, a strong inhibitor of mitochondrial ATP synthesis.
|
| |
J Bioenerg Biomembr,
40,
269-279.
|
 |
|
|
|
|
 |
A.Y.Mulkidjanian,
M.Y.Galperin,
K.S.Makarova,
Y.I.Wolf,
and
E.V.Koonin
(2008).
Evolutionary primacy of sodium bioenergetics.
|
| |
Biol Direct,
3,
13.
|
 |
|
|
|
|
 |
D.J.Cipriano,
and
S.D.Dunn
(2008).
Tethering polypeptides through bifunctional PEG cross-linking agents to probe protein function: application to ATP synthase.
|
| |
Proteins,
73,
458-467.
|
 |
|
|
|
|
 |
D.Okuno,
R.Fujisawa,
R.Iino,
Y.Hirono-Hara,
H.Imamura,
and
H.Noji
(2008).
Correlation between the conformational states of F1-ATPase as determined from its crystal structure and single-molecule rotation.
|
| |
Proc Natl Acad Sci U S A,
105,
20722-20727.
|
 |
|
|
|
|
 |
D.Pogoryelov,
Y.Nikolaev,
U.Schlattner,
K.Pervushin,
P.Dimroth,
and
T.Meier
(2008).
Probing the rotor subunit interface of the ATP synthase from Ilyobacter tartaricus.
|
| |
FEBS J,
275,
4850-4862.
|
 |
|
|
|
|
 |
G.I.Belogrudov
(2008).
The proximal N-terminal amino acid residues are required for the coupling activity of the bovine heart mitochondrial factor B.
|
| |
Arch Biochem Biophys,
473,
76-87.
|
 |
|
|
|
|
 |
H.Shen,
D.E.Walters,
and
D.M.Mueller
(2008).
Introduction of the chloroplast redox regulatory region in the yeast ATP synthase impairs cytochrome C oxidase.
|
| |
J Biol Chem,
283,
32937-32943.
|
 |
|
|
|
|
 |
H.Sielaff,
H.Rennekamp,
S.Engelbrecht,
and
W.Junge
(2008).
Functional halt positions of rotary FOF1-ATPase correlated with crystal structures.
|
| |
Biophys J,
95,
4979-4987.
|
 |
|
|
|
|
 |
J.A.Scanlon,
M.K.Al-Shawi,
and
R.K.Nakamoto
(2008).
A rotor-stator cross-link in the F1-ATPase blocks the rate-limiting step of rotational catalysis.
|
| |
J Biol Chem,
283,
26228-26240.
|
 |
|
|
|
|
 |
J.J.García-Trejo,
and
E.Morales-Ríos
(2008).
Regulation of the F(1)F (0)-ATP Synthase Rotary Nanomotor in its Monomeric-Bacterial and Dimeric-Mitochondrial Forms.
|
| |
J Biol Phys,
34,
197-212.
|
 |
|
|
|
|
 |
J.Pu,
and
M.Karplus
(2008).
How subunit coupling produces the gamma-subunit rotary motion in F1-ATPase.
|
| |
Proc Natl Acad Sci U S A,
105,
1192-1197.
|
 |
|
|
|
|
 |
M.D.Hossain,
S.Furuike,
Y.Maki,
K.Adachi,
T.Suzuki,
A.Kohori,
H.Itoh,
M.Yoshida,
and
K.Kinosita
(2008).
Neither helix in the coiled coil region of the axle of F1-ATPase plays a significant role in torque production.
|
| |
Biophys J,
95,
4837-4844.
|
 |
|
|
|
|
 |
M.Hüttemann,
I.Lee,
A.Pecinova,
P.Pecina,
K.Przyklenk,
and
J.W.Doan
(2008).
Regulation of oxidative phosphorylation, the mitochondrial membrane potential, and their role in human disease.
|
| |
J Bioenerg Biomembr,
40,
445-456.
|
 |
|
|
|
|
 |
R.K.Nakamoto,
J.A.Baylis Scanlon,
and
M.K.Al-Shawi
(2008).
The rotary mechanism of the ATP synthase.
|
| |
Arch Biochem Biophys,
476,
43-50.
|
 |
|
|
|
|
 |
S.Furuike,
M.D.Hossain,
Y.Maki,
K.Adachi,
T.Suzuki,
A.Kohori,
H.Itoh,
M.Yoshida,
and
K.Kinosita
(2008).
Axle-less F1-ATPase rotates in the correct direction.
|
| |
Science,
319,
955-958.
|
 |
|
|
|
|
 |
S.Gayen,
A.M.Balakrishna,
G.Biuković,
W.Yulei,
C.Hunke,
and
G.Grüber
(2008).
Identification of critical residues of subunit H in its interaction with subunit E of the A-ATP synthase from Methanocaldococcus jannaschii.
|
| |
FEBS J,
275,
1803-1812.
|
 |
|
|
|
|
 |
S.Hong,
and
P.L.Pedersen
(2008).
ATP synthase and the actions of inhibitors utilized to study its roles in human health, disease, and other scientific areas.
|
| |
Microbiol Mol Biol Rev,
72,
590.
|
 |
|
|
|
|
 |
T.Masaike,
F.Koyama-Horibe,
K.Oiwa,
M.Yoshida,
and
T.Nishizaka
(2008).
Cooperative three-step motions in catalytic subunits of F(1)-ATPase correlate with 80 degrees and 40 degrees substep rotations.
|
| |
Nat Struct Mol Biol,
15,
1326-1333.
|
 |
|
|
|
|
 |
A.Stocker,
S.Keis,
J.Vonck,
G.M.Cook,
and
P.Dimroth
(2007).
The structural basis for unidirectional rotation of thermoalkaliphilic F1-ATPase.
|
| |
Structure,
15,
904-914.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Y.Mulkidjanian,
K.S.Makarova,
M.Y.Galperin,
and
E.V.Koonin
(2007).
Inventing the dynamo machine: the evolution of the F-type and V-type ATPases.
|
| |
Nat Rev Microbiol,
5,
892-899.
|
 |
|
|
|
|
 |
B.A.Feniouk,
A.Rebecchi,
D.Giovannini,
S.Anefors,
A.Y.Mulkidjanian,
W.Junge,
P.Turina,
and
B.A.Melandri
(2007).
Met23Lys mutation in subunit gamma of F(O)F(1)-ATP synthase from Rhodobacter capsulatus impairs the activation of ATP hydrolysis by protonmotive force.
|
| |
Biochim Biophys Acta,
1767,
1319-1330.
|
 |
|
|
|
|
 |
G.Sawicki,
and
B.I.Jugdutt
(2007).
Valsartan reverses post-translational modifications of the delta-subunit of ATP synthase during in vivo canine reperfused myocardial infarction.
|
| |
Proteomics,
7,
2100-2110.
|
 |
|
|
|
|
 |
H.Yagi,
N.Kajiwara,
H.Tanaka,
T.Tsukihara,
Y.Kato-Yamada,
M.Yoshida,
and
H.Akutsu
(2007).
Structures of the thermophilic F1-ATPase epsilon subunit suggesting ATP-regulated arm motion of its C-terminal domain in F1.
|
| |
Proc Natl Acad Sci U S A,
104,
11233-11238.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.R.Gledhill,
M.G.Montgomery,
A.G.Leslie,
and
J.E.Walker
(2007).
Mechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenols.
|
| |
Proc Natl Acad Sci U S A,
104,
13632-13637.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.R.Gledhill,
M.G.Montgomery,
A.G.Leslie,
and
J.E.Walker
(2007).
How the regulatory protein, IF(1), inhibits F(1)-ATPase from bovine mitochondria.
|
| |
Proc Natl Acad Sci U S A,
104,
15671-15676.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Weber
(2007).
ATP synthase--the structure of the stator stalk.
|
| |
Trends Biochem Sci,
32,
53-56.
|
 |
|
|
|
|
 |
M.Hüttemann,
I.Lee,
L.Samavati,
H.Yu,
and
J.W.Doan
(2007).
Regulation of mitochondrial oxidative phosphorylation through cell signaling.
|
| |
Biochim Biophys Acta,
1773,
1701-1720.
|
 |
|
|
|
|
 |
M.W.Bowler,
M.G.Montgomery,
A.G.Leslie,
and
J.E.Walker
(2007).
Ground state structure of F1-ATPase from bovine heart mitochondria at 1.9 A resolution.
|
| |
J Biol Chem,
282,
14238-14242.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
N.Buzhynskyy,
P.Sens,
V.Prima,
J.N.Sturgis,
and
S.Scheuring
(2007).
Rows of ATP synthase dimers in native mitochondrial inner membranes.
|
| |
Biophys J,
93,
2870-2876.
|
 |
|
|
|
|
 |
R.Zarivach,
M.Vuckovic,
W.Deng,
B.B.Finlay,
and
N.C.Strynadka
(2007).
Structural analysis of a prototypical ATPase from the type III secretion system.
|
| |
Nat Struct Mol Biol,
14,
131-137.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Kato,
M.Yoshida,
and
Y.Kato-Yamada
(2007).
Role of the epsilon subunit of thermophilic F1-ATPase as a sensor for ATP.
|
| |
J Biol Chem,
282,
37618-37623.
|
 |
|
|
|
|
 |
Y.C.Chen,
Y.S.Lo,
W.C.Hsu,
and
J.M.Yang
(2007).
3D-partner: a web server to infer interacting partners and binding models.
|
| |
Nucleic Acids Res,
35,
W561-W567.
|
 |
|
|
|
|
 |
B.E.Schwem,
and
R.H.Fillingame
(2006).
Cross-linking between helices within subunit a of Escherichia coli ATP synthase defines the transmembrane packing of a four-helix bundle.
|
| |
J Biol Chem,
281,
37861-37867.
|
 |
|
|
|
|
 |
C.Chen,
A.K.Saxena,
W.N.Simcoke,
D.N.Garboczi,
P.L.Pedersen,
and
Y.H.Ko
(2006).
Mitochondrial ATP synthase. Crystal structure of the catalytic F1 unit in a vanadate-induced transition-like state and implications for mechanism.
|
| |
J Biol Chem,
281,
13777-13783.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.J.Cipriano,
and
S.D.Dunn
(2006).
The role of the epsilon subunit in the Escherichia coli ATP synthase. The C-terminal domain is required for efficient energy coupling.
|
| |
J Biol Chem,
281,
501-507.
|
 |
|
|
|
|
 |
F.Di Pancrazio,
E.Bisetto,
V.Alverdi,
I.Mavelli,
G.Esposito,
and
G.Lippe
(2006).
Differential steady-state tyrosine phosphorylation of two oligomeric forms of mitochondrial F0F1ATPsynthase: a structural proteomic analysis.
|
| |
Proteomics,
6,
921-926.
|
 |
|
|
|
|
 |
I.Schäfer,
M.Rössle,
G.Biuković,
V.Müller,
and
G.Grüber
(2006).
Structural and functional analysis of the coupling subunit F in solution and topological arrangement of the stalk domains of the methanogenic A1AO ATP synthase.
|
| |
J Bioenerg Biomembr,
38,
83-92.
|
 |
|
|
|
|
 |
J.A.Silvester,
V.K.Dickson,
M.J.Runswick,
A.G.Leslie,
and
J.E.Walker
(2006).
The expression, purification, crystallization and preliminary X-ray analysis of a subcomplex of the peripheral stalk of ATP synthase from bovine mitochondria.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
62,
530-533.
|
 |
|
|
|
|
 |
J.Weber
(2006).
ATP synthase: subunit-subunit interactions in the stator stalk.
|
| |
Biochim Biophys Acta,
1757,
1162-1170.
|
 |
|
|
|
|
 |
M.D.Hossain,
S.Furuike,
Y.Maki,
K.Adachi,
M.Y.Ali,
M.Huq,
H.Itoh,
M.Yoshida,
and
K.Kinosita
(2006).
The rotor tip inside a bearing of a thermophilic F1-ATPase is dispensable for torque generation.
|
| |
Biophys J,
90,
4195-4203.
|
 |
|
|
|
|
 |
M.W.Bowler,
M.G.Montgomery,
A.G.Leslie,
and
J.E.Walker
(2006).
Reproducible improvements in order and diffraction limit of crystals of bovine mitochondrial F(1)-ATPase by controlled dehydration.
|
| |
Acta Crystallogr D Biol Crystallogr,
62,
991-995.
|
 |
|
|
|
|
 |
M.W.Bowler,
M.G.Montgomery,
A.G.Leslie,
and
J.E.Walker
(2006).
How azide inhibits ATP hydrolysis by the F-ATPases.
|
| |
Proc Natl Acad Sci U S A,
103,
8646-8649.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Duvezin-Caubet,
M.Rak,
L.Lefebvre-Legendre,
E.Tetaud,
N.Bonnefoy,
and
J.P.di Rago
(2006).
A "petite obligate" mutant of Saccharomyces cerevisiae: functional mtDNA is lethal in cells lacking the delta subunit of mitochondrial F1-ATPase.
|
| |
J Biol Chem,
281,
16305-16313.
|
 |
|
|
|
|
 |
S.Keis,
A.Stocker,
P.Dimroth,
and
G.M.Cook
(2006).
Inhibition of ATP hydrolysis by thermoalkaliphilic F1Fo-ATP synthase is controlled by the C terminus of the epsilon subunit.
|
| |
J Bacteriol,
188,
3796-3804.
|
 |
|
|
|
|
 |
V.K.Dickson,
J.A.Silvester,
I.M.Fearnley,
A.G.Leslie,
and
J.E.Walker
(2006).
On the structure of the stator of the mitochondrial ATP synthase.
|
| |
EMBO J,
25,
2911-2918.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
V.Kabaleeswaran,
N.Puri,
J.E.Walker,
A.G.Leslie,
and
D.M.Mueller
(2006).
Novel features of the rotary catalytic mechanism revealed in the structure of yeast F1 ATPase.
|
| |
EMBO J,
25,
5433-5442.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.B.Weibel,
P.Garstecki,
D.Ryan,
W.R.DiLuzio,
M.Mayer,
J.E.Seto,
and
G.M.Whitesides
(2005).
Microoxen: microorganisms to move microscale loads.
|
| |
Proc Natl Acad Sci U S A,
102,
11963-11967.
|
 |
|
|
|
|
 |
D.M.Bustos,
and
J.Velours
(2005).
The modification of the conserved GXXXG motif of the membrane-spanning segment of subunit g destabilizes the supramolecular species of yeast ATP synthase.
|
| |
J Biol Chem,
280,
29004-29010.
|
 |
|
|
|
|
 |
G.M.Whitesides
(2005).
Nanoscience, nanotechnology, and chemistry.
|
| |
Small,
1,
172-179.
|
 |
|
|
|
|
 |
H.Makyio,
R.Iino,
C.Ikeda,
H.Imamura,
M.Tamakoshi,
M.Iwata,
D.Stock,
R.A.Bernal,
E.P.Carpenter,
M.Yoshida,
K.Yokoyama,
and
S.Iwata
(2005).
Structure of a central stalk subunit F of prokaryotic V-type ATPase/synthase from Thermus thermophilus.
|
| |
EMBO J,
24,
3974-3983.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Xing,
J.C.Liao,
and
G.Oster
(2005).
Making ATP.
|
| |
Proc Natl Acad Sci U S A,
102,
16539-16546.
|
 |
|
|
|
|
 |
K.Yokoyama,
and
H.Imamura
(2005).
Rotation, structure, and classification of prokaryotic V-ATPase.
|
| |
J Bioenerg Biomembr,
37,
405-410.
|
 |
|
|
|
|
 |
M.L.Richter,
H.S.Samra,
F.He,
A.J.Giessel,
and
K.K.Kuczera
(2005).
Coupling proton movement to ATP synthesis in the chloroplast ATP synthase.
|
| |
J Bioenerg Biomembr,
37,
467-473.
|
 |
|
|
|
|
 |
M.V.Petoukhov,
and
D.I.Svergun
(2005).
Global rigid body modeling of macromolecular complexes against small-angle scattering data.
|
| |
Biophys J,
89,
1237-1250.
|
 |
|
|
|
|
 |
N.Puri,
J.Lai-Zhang,
S.Meier,
and
D.M.Mueller
(2005).
Expression of bovine F1-ATPase with functional complementation in yeast Saccharomyces cerevisiae.
|
| |
J Biol Chem,
280,
22418-22424.
|
 |
|
|
|
|
 |
P.L.Pedersen
(2005).
Transport ATPases: structure, motors, mechanism and medicine: a brief overview.
|
| |
J Bioenerg Biomembr,
37,
349-357.
|
 |
|
|
|
|
 |
R.Iino,
T.Murakami,
S.Iizuka,
Y.Kato-Yamada,
T.Suzuki,
and
M.Yoshida
(2005).
Real-time monitoring of conformational dynamics of the epsilon subunit in F1-ATPase.
|
| |
J Biol Chem,
280,
40130-40134.
|
 |
|
|
|
|
 |
R.Iino,
Y.Rondelez,
M.Yoshida,
and
H.Noji
(2005).
Chemomechanical coupling in single-molecule F-type ATP synthase.
|
| |
J Bioenerg Biomembr,
37,
451-454.
|
 |
|
|
|
|
 |
Y.Hirono-Hara,
K.Ishizuka,
K.Kinosita,
M.Yoshida,
and
H.Noji
(2005).
Activation of pausing F1 motor by external force.
|
| |
Proc Natl Acad Sci U S A,
102,
4288-4293.
|
 |
|
|
|
|
 |
Y.Rondelez,
G.Tresset,
T.Nakashima,
Y.Kato-Yamada,
H.Fujita,
S.Takeuchi,
and
H.Noji
(2005).
Highly coupled ATP synthesis by F1-ATPase single molecules.
|
| |
Nature,
433,
773-777.
|
 |
|
|
|
|
 |
Z.L.Ni,
H.Dong,
and
J.M.Wei
(2005).
N-terminal deletion of the gamma subunit affects the stabilization and activity of chloroplast ATP synthase.
|
| |
FEBS J,
272,
1379-1385.
|
 |
|
|
|
|
 |
A.Aksimentiev,
I.A.Balabin,
R.H.Fillingame,
and
K.Schulten
(2004).
Insights into the molecular mechanism of rotation in the Fo sector of ATP synthase.
|
| |
Biophys J,
86,
1332-1344.
|
 |
|
|
|
|
 |
C.Chen,
Y.Ko,
M.Delannoy,
S.J.Ludtke,
W.Chiu,
and
P.L.Pedersen
(2004).
Mitochondrial ATP synthasome: three-dimensional structure by electron microscopy of the ATP synthase in complex formation with carriers for Pi and ADP/ATP.
|
| |
J Biol Chem,
279,
31761-31768.
|
 |
|
|
|
|
 |
G.Arselin,
J.Vaillier,
B.Salin,
J.Schaeffer,
M.F.Giraud,
A.Dautant,
D.Brèthes,
and
J.Velours
(2004).
The modulation in subunits e and g amounts of yeast ATP synthase modifies mitochondrial cristae morphology.
|
| |
J Biol Chem,
279,
40392-40399.
|
 |
|
|
|
|
 |
J.J.Wen,
and
N.Garg
(2004).
Oxidative modification of mitochondrial respiratory complexes in response to the stress of Trypanosoma cruzi infection.
|
| |
Free Radic Biol Med,
37,
2072-2081.
|
 |
|
|
|
|
 |
J.Weber,
A.Muharemagic,
S.Wilke-Mounts,
and
A.E.Senior
(2004).
Analysis of sequence determinants of F1Fo-ATP synthase in the N-terminal region of alpha subunit for binding of delta subunit.
|
| |
J Biol Chem,
279,
25673-25679.
|
 |
|
|
|
|
 |
J.Weber,
S.Wilke-Mounts,
S.Nadanaciva,
and
A.E.Senior
(2004).
Quantitative determination of direct binding of b subunit to F1 in Escherichia coli F1F0-ATP synthase.
|
| |
J Biol Chem,
279,
11253-11258.
|
 |
|
|
|
|
 |
K.Kinosita,
K.Adachi,
and
H.Itoh
(2004).
Rotation of F1-ATPase: how an ATP-driven molecular machine may work.
|
| |
Annu Rev Biophys Biomol Struct,
33,
245-268.
|
 |
|
|
|
|
 |
M.Dittrich,
S.Hayashi,
and
K.Schulten
(2004).
ATP hydrolysis in the betaTP and betaDP catalytic sites of F1-ATPase.
|
| |
Biophys J,
87,
2954-2967.
|
 |
|
|
|
|
 |
M.Karplus,
and
Y.Q.Gao
(2004).
Biomolecular motors: the F1-ATPase paradigm.
|
| |
Curr Opin Struct Biol,
14,
250-259.
|
 |
|
|
|
|
 |
N.Nelson,
and
A.Ben-Shem
(2004).
The complex architecture of oxygenic photosynthesis.
|
| |
Nat Rev Mol Cell Biol,
5,
971-982.
|
 |
|
|
|
|
 |
O.Drory,
F.Frolow,
and
N.Nelson
(2004).
Crystal structure of yeast V-ATPase subunit C reveals its stator function.
|
| |
EMBO Rep,
5,
1148-1152.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.Chen,
I.M.Fearnley,
D.N.Palmer,
and
J.E.Walker
(2004).
Lysine 43 is trimethylated in subunit C from bovine mitochondrial ATP synthase and in storage bodies associated with batten disease.
|
| |
J Biol Chem,
279,
21883-21887.
|
 |
|
|
|
|
 |
R.Kagawa,
M.G.Montgomery,
K.Braig,
A.G.Leslie,
and
J.E.Walker
(2004).
The structure of bovine F1-ATPase inhibited by ADP and beryllium fluoride.
|
| |
EMBO J,
23,
2734-2744.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
U.Coskun,
M.Radermacher,
V.Müller,
T.Ruiz,
and
G.Grüber
(2004).
Three-dimensional organization of the archaeal A1-ATPase from Methanosarcina mazei Gö1.
|
| |
J Biol Chem,
279,
22759-22764.
|
 |
|
|
|
|
 |
V.V.Bulygin,
T.M.Duncan,
and
R.L.Cross
(2004).
Rotor/Stator interactions of the epsilon subunit in Escherichia coli ATP synthase and implications for enzyme regulation.
|
| |
J Biol Chem,
279,
35616-35621.
|
 |
|
|
|
|
 |
Y.L.Chaban,
U.Coskun,
W.Keegstra,
G.T.Oostergetel,
E.J.Boekema,
and
G.Grüber
(2004).
Structural characterization of an ATPase active F1-/V1 -ATPase (alpha3beta3EG) hybrid complex.
|
| |
J Biol Chem,
279,
47866-47870.
|
 |
|
|
|
|
 |
A.N.Stephens,
M.A.Khan,
X.Roucou,
P.Nagley,
and
R.J.Devenish
(2003).
The molecular neighborhood of subunit 8 of yeast mitochondrial F1F0-ATP synthase probed by cysteine scanning mutagenesis and chemical modification.
|
| |
J Biol Chem,
278,
17867-17875.
|
 |
|
|
|
|
 |
A.Nazabal,
M.Laguerre,
J.M.Schmitter,
J.Vaillier,
S.Chaignepain,
and
J.Velours
(2003).
Hydrogen/deuterium exchange on yeast ATPase supramolecular protein complex analyzed at high sensitivity by MALDI mass spectrometry.
|
| |
J Am Soc Mass Spectrom,
14,
471-481.
|
 |
|
|
|
|
 |
C.M.Angevine,
and
R.H.Fillingame
(2003).
Aqueous access channels in subunit a of rotary ATP synthase.
|
| |
J Biol Chem,
278,
6066-6074.
|
 |
|
|
|
|
 |
C.Mellwig,
and
B.Böttcher
(2003).
A unique resting position of the ATP-synthase from chloroplasts.
|
| |
J Biol Chem,
278,
18544-18549.
|
 |
|
|
|
|
 |
D.Zhang,
and
S.B.Vik
(2003).
Close proximity of a cytoplasmic loop of subunit a with c subunits of the ATP synthase from Escherichia coli.
|
| |
J Biol Chem,
278,
12319-12324.
|
 |
|
|
|
|
 |
E.Cabezón,
M.G.Montgomery,
A.G.Leslie,
and
J.E.Walker
(2003).
The structure of bovine F1-ATPase in complex with its regulatory protein IF1.
|
| |
Nat Struct Biol,
10,
744-750.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
G.Arselin,
M.F.Giraud,
A.Dautant,
J.Vaillier,
D.Brèthes,
B.Coulary-Salin,
J.Schaeffer,
and
J.Velours
(2003).
The GxxxG motif of the transmembrane domain of subunit e is involved in the dimerization/oligomerization of the yeast ATP synthase complex in the mitochondrial membrane.
|
| |
Eur J Biochem,
270,
1875-1884.
|
 |
|
|
|
|
 |
J.L.Rubinstein,
J.E.Walker,
and
R.Henderson
(2003).
Structure of the mitochondrial ATP synthase by electron cryomicroscopy.
|
| |
EMBO J,
22,
6182-6192.
|
 |
|
|
|
|
 |
J.Weber,
A.Muharemagic,
S.Wilke-Mounts,
and
A.E.Senior
(2003).
F1F0-ATP synthase. Binding of delta subunit to a 22-residue peptide mimicking the N-terminal region of alpha subunit.
|
| |
J Biol Chem,
278,
13623-13626.
|
 |
|
|
|
|
 |
M.Dittrich,
S.Hayashi,
and
K.Schulten
(2003).
On the mechanism of ATP hydrolysis in F1-ATPase.
|
| |
Biophys J,
85,
2253-2266.
|
 |
|
|
|
|
 |
M.Prescott,
S.Nowakowski,
P.Gavin,
P.Nagley,
J.C.Whisstock,
and
R.J.Devenish
(2003).
Subunit gamma-green fluorescent protein fusions are functionally incorporated into mitochondrial F1F0-ATP synthase, arguing against a rigid cap structure at the top of F1.
|
| |
J Biol Chem,
278,
251-256.
|
 |
|
|
|
|
 |
R.A.Böckmann,
and
H.Grubmüller
(2003).
Conformational dynamics of the F1-ATPase beta-subunit: a molecular dynamics study.
|
| |
Biophys J,
85,
1482-1491.
|
 |
|
|
|
|
 |
R.Yasuda,
T.Masaike,
K.Adachi,
H.Noji,
H.Itoh,
and
K.Kinosita
(2003).
The ATP-waiting conformation of rotating F1-ATPase revealed by single-pair fluorescence resonance energy transfer.
|
| |
Proc Natl Acad Sci U S A,
100,
9314-9318.
|
 |
|
|
|
|
 |
S.Duvezin-Caubet,
M.Caron,
M.F.Giraud,
J.Velours,
and
J.P.di Rago
(2003).
The two rotor components of yeast mitochondrial ATP synthase are mechanically coupled by subunit delta.
|
| |
Proc Natl Acad Sci U S A,
100,
13235-13240.
|
 |
|
|
|
|
 |
T.Murata,
I.Arechaga,
I.M.Fearnley,
Y.Kakinuma,
I.Yamato,
and
J.E.Walker
(2003).
The membrane domain of the Na+-motive V-ATPase from Enterococcus hirae contains a heptameric rotor.
|
| |
J Biol Chem,
278,
21162-21167.
|
 |
|
|
|
|
 |
T.Suzuki,
T.Murakami,
R.Iino,
J.Suzuki,
S.Ono,
Y.Shirakihara,
and
M.Yoshida
(2003).
F0F1-ATPase/synthase is geared to the synthesis mode by conformational rearrangement of epsilon subunit in response to proton motive force and ADP/ATP balance.
|
| |
J Biol Chem,
278,
46840-46846.
|
 |
|
|
|
|
 |
W.Yang,
Y.Q.Gao,
Q.Cui,
J.Ma,
and
M.Karplus
(2003).
The missing link between thermodynamics and structure in F1-ATPase.
|
| |
Proc Natl Acad Sci U S A,
100,
874-879.
|
 |
|
|
|
|
 |
Y.Kato-Yamada,
and
M.Yoshida
(2003).
Isolated epsilon subunit of thermophilic F1-ATPase binds ATP.
|
| |
J Biol Chem,
278,
36013-36016.
|
 |
|
|
|
|
 |
Z.Zhang,
C.Charsky,
P.M.Kane,
and
S.Wilkens
(2003).
Yeast V1-ATPase: affinity purification and structural features by electron microscopy.
|
| |
J Biol Chem,
278,
47299-47306.
|
 |
|
|
|
|
 |
B.A.Feniouk,
D.A.Cherepanov,
N.E.Voskoboynikova,
A.Y.Mulkidjanian,
and
W.Junge
(2002).
Chromatophore vesicles of Rhodobacter capsulatus contain on average one F(O)F(1)-ATP synthase each.
|
| |
Biophys J,
82,
1115-1122.
|
 |
|
|
|
|
 |
C.Verde,
V.Carratore,
A.Riccio,
M.Tamburrini,
E.Parisi,
and
G.Di Prisco
(2002).
The functionally distinct hemoglobins of the Arctic spotted wolffish Anarhichas minor.
|
| |
J Biol Chem,
277,
36312-36320.
|
 |
|
|
|
|
 |
C.von Ballmoos,
Y.Appoldt,
J.Brunner,
T.Granier,
A.Vasella,
and
P.Dimroth
(2002).
Membrane topography of the coupling ion binding site in Na+-translocating F1F0 ATP synthase.
|
| |
J Biol Chem,
277,
3504-3510.
|
 |
|
|
|
|
 |
D.J.Cipriano,
Y.Bi,
and
S.D.Dunn
(2002).
Genetic fusions of globular proteins to the epsilon subunit of the Escherichia coli ATP synthase: Implications for in vivo rotational catalysis and epsilon subunit function.
|
| |
J Biol Chem,
277,
16782-16790.
|
 |
|
|
|
|
 |
E.A.Johnson,
and
R.E.McCarty
(2002).
The carboxyl terminus of the epsilon subunit of the chloroplast ATP synthase is exposed during illumination.
|
| |
Biochemistry,
41,
2446-2451.
|
 |
|
|
|
|
 |
J.Ma,
T.C.Flynn,
Q.Cui,
A.G.Leslie,
J.E.Walker,
and
M.Karplus
(2002).
A dynamic analysis of the rotation mechanism for conformational change in F(1)-ATPase.
|
| |
Structure,
10,
921-931.
|
 |
|
|
|
|
 |
R.A.Böckmann,
and
H.Grubmüller
(2002).
Nanoseconds molecular dynamics simulation of primary mechanical energy transfer steps in F1-ATP synthase.
|
| |
Nat Struct Biol,
9,
198-202.
|
 |
|
|
|
|
 |
R.A.Capaldi,
and
R.Aggeler
(2002).
Mechanism of the F(1)F(0)-type ATP synthase, a biological rotary motor.
|
| |
Trends Biochem Sci,
27,
154-160.
|
 |
|
|
|
|
 |
S.Bandyopadhyay,
H.Ren,
C.S.Wang,
and
W.S.Allison
(2002).
The (alpha F(357)C)(3)(beta R(372)C)(3)gamma subcomplex of the F(1)-ATPase from the thermophilic Bacillus PS3 has altered ATPase activity after cross-linking alpha and beta subunits at noncatalytic site interfaces.
|
| |
Biochemistry,
41,
3226-3234.
|
 |
|
|
|
|
 |
U.Coskun,
G.Grüber,
M.H.Koch,
J.Godovac-Zimmermann,
T.Lemker,
and
V.Müller
(2002).
Cross-talk in the A1-ATPase from Methanosarcina mazei Go1 due to nucleotide binding.
|
| |
J Biol Chem,
277,
17327-17333.
|
 |
|
|
|
|
 |
A.C.Hausrath,
R.A.Capaldi,
and
B.W.Matthews
(2001).
The conformation of the epsilon- and gamma-subunits within the Escherichia coli F(1) ATPase.
|
| |
J Biol Chem,
276,
47227-47232.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.G.Tate
(2001).
A feast of membrane protein structures in Madrid. Workshop: Pumps, channels and transporters: structure and function.
|
| |
EMBO Rep,
2,
476-480.
|
 |
|
|
|
|
 |
E.Cabezón,
M.J.Runswick,
A.G.Leslie,
and
J.E.Walker
(2001).
The structure of bovine IF(1), the regulatory subunit of mitochondrial F-ATPase.
|
| |
EMBO J,
20,
6990-6996.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
G.Grüber,
D.I.Svergun,
U.Coskun,
T.Lemker,
M.H.Koch,
H.Schägger,
and
V.Müller
(2001).
Structural Insights into the A1 ATPase from the archaeon, Methanosarcina mazei Gö1.
|
| |
Biochemistry,
40,
1890-1896.
|
 |
|
|
|
|
 |
H.Stahlberg,
D.J.Müller,
K.Suda,
D.Fotiadis,
A.Engel,
T.Meier,
U.Matthey,
and
P.Dimroth
(2001).
Bacterial Na(+)-ATP synthase has an undecameric rotor.
|
| |
EMBO Rep,
2,
229-233.
|
 |
|
|
|
|
 |
M.L.Hutcheon,
T.M.Duncan,
H.Ngai,
and
R.L.Cross
(2001).
Energy-driven subunit rotation at the interface between subunit a and the c oligomer in the F(O) sector of Escherichia coli ATP synthase.
|
| |
Proc Natl Acad Sci U S A,
98,
8519-8524.
|
 |
|
|
|
|
 |
P.D.Boyer
(2001).
New insights into one of nature's remarkable catalysts, the ATP synthase.
|
| |
Mol Cell,
8,
246-247.
|
 |
|
|
|
|
 |
R.I.Menz,
J.E.Walker,
and
A.G.Leslie
(2001).
Structure of bovine mitochondrial F(1)-ATPase with nucleotide bound to all three catalytic sites: implications for the mechanism of rotary catalysis.
|
| |
Cell,
106,
331-341.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.P.Tsunoda,
A.J.Rodgers,
R.Aggeler,
M.C.Wilce,
M.Yoshida,
and
R.A.Capaldi
(2001).
Large conformational changes of the epsilon subunit in the bacterial F1F0 ATP synthase provide a ratchet action to regulate this rotary motor enzyme.
|
| |
Proc Natl Acad Sci U S A,
98,
6560-6564.
|
 |
|
|
|
|
 |
S.P.Tsunoda,
R.Aggeler,
M.Yoshida,
and
R.A.Capaldi
(2001).
Rotation of the c subunit oligomer in fully functional F1Fo ATP synthase.
|
| |
Proc Natl Acad Sci U S A,
98,
898-902.
|
 |
|
|
|
|
 |
D.Stock,
C.Gibbons,
I.Arechaga,
A.G.Leslie,
and
J.E.Walker
(2000).
The rotary mechanism of ATP synthase.
|
| |
Curr Opin Struct Biol,
10,
672-679.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
| |