|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
Chains B, D:
E.C.2.7.10.1
- receptor protein-tyrosine kinase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
L-tyrosyl-[protein] + ATP = O-phospho-L-tyrosyl-[protein] + ADP + H+
|
 |
 |
 |
 |
 |
L-tyrosyl-[protein]
|
+
|
ATP
|
=
|
O-phospho-L-tyrosyl-[protein]
|
+
|
ADP
|
+
|
H(+)
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
DOI no:
|
Nature
407:1029-1034
(2000)
|
|
PubMed id:
|
|
|
|
|
| |
|
Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin.
|
|
L.Pellegrini,
D.F.Burke,
F.von Delft,
B.Mulloy,
T.L.Blundell.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Fibroblast growth factors (FGFs) are a large family of structurally related
proteins with a wide range of physiological and pathological activities. Signal
transduction requires association of FGF with its receptor tyrosine kinase
(FGFR) and heparan sulphate proteoglycan in a specific complex on the cell
surface. Direct involvement of the heparan sulphate glycosaminoglycan
polysaccharide in the molecular association between FGF and its receptor is
essential for biological activity. Although crystal structures of binary
complexes of FGF-heparin and FGF-FGFR have been described, the molecular
architecture of the FGF signalling complex has not been elucidated. Here we
report the crystal structure of the FGFR2 ectodomain in a dimeric form that is
induced by simultaneous binding to FGF1 and a heparin decasaccharide. The
complex is assembled around a central heparin molecule linking two FGF1 ligands
into a dimer that bridges between two receptor chains. The asymmetric heparin
binding involves contacts with both FGF1 molecules but only one receptor chain.
The structure of the FGF1-FGFR2-heparin ternary complex provides a structural
basis for the essential role of heparan sulphate in FGF signalling.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 1.
Figure 1: The FGF1-FGFR2-heparin complex. a, View
perpendicular to the approximate dyad of the complex. FGFR2
domains 2 (D2) and 3 (D3) are cyan and magenta, respectively,
and FGF1 is green. The heparin molecule is in CPK
representation. b, View along the dyad. c, Amino-acid sequence
of the ligand-binding region of human FGFR2. Domains D2 and D3
are coloured as in a. Residues that interact with heparin and
FGF1 are highlighted in red and green, respectively. Regions of
secondary structure are boxed. -strands,
-helices
and 3[ 10] helices are indicated below the relative sequence. D3
residues 294-309, which were disordered in the crystals, are in
lower case.
|
 |
Figure 3.
Figure 3: Overall architecture of the FGF1-FGFR2-heparin
complex. a, Electrostatic potential of the heparin-binding
site in the FGF1-FGFR2-heparin complex, mapped onto a molecular
surface rendition of the complex. The heparin is shown as a
stick model. In the ternary complex, the heparin decasaccharide
is surrounded by regions of positive charge (blue represents
+20e per Å 2). b, Superposition of heparin-linked FGF1 dimers.
The dimer from the FGF1-FGFR2-heparin complex is yellow, the PDB
entry 2AXM is blue. The FGFR2 ectodomains are shown in CPK
representation.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Macmillan Publishers Ltd:
Nature
(2000,
407,
1029-1034)
copyright 2000.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
F.Li,
W.Shi,
M.Capurro,
and
J.Filmus
(2011).
Glypican-5 stimulates rhabdomyosarcoma cell proliferation by activating Hedgehog signaling.
|
| |
J Cell Biol,
192,
691-704.
|
 |
|
|
|
|
 |
J.E.Tengood,
R.Ridenour,
R.Brodsky,
A.J.Russell,
and
S.R.Little
(2011).
Sequential delivery of basic fibroblast growth factor and platelet-derived growth factor for angiogenesis.
|
| |
Tissue Eng Part A,
17,
1181-1189.
|
 |
|
|
|
|
 |
J.Lee,
S.I.Blaber,
V.K.Dubey,
and
M.Blaber
(2011).
A polypeptide "building block" for the β-trefoil fold identified by "top-down symmetric deconstruction".
|
| |
J Mol Biol,
407,
744-763.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.M.Dreyfuss,
C.Jacobs,
Y.Gindin,
G.Benson,
G.O.Staples,
and
J.Zaia
(2011).
Targeted analysis of glycomics liquid chromatography/mass spectrometry data.
|
| |
Anal Bioanal Chem,
399,
727-735.
|
 |
|
|
|
|
 |
S.Piecewicz,
and
S.Sengupta
(2011).
The dynamic glycome microenvironment and stem cell differentiation into vasculature.
|
| |
Stem Cells Dev,
20,
749-758.
|
 |
|
|
|
|
 |
A.K.Powell,
Y.A.Ahmed,
E.A.Yates,
and
J.E.Turnbull
(2010).
Generating heparan sulfate saccharide libraries for glycomics applications.
|
| |
Nat Protoc,
5,
821-833.
|
 |
|
|
|
|
 |
B.J.Zern,
H.Chu,
and
Y.Wang
(2010).
Control growth factor release using a self-assembled [polycation:heparin] complex.
|
| |
PLoS One,
5,
e11017.
|
 |
|
|
|
|
 |
E.Wijelath,
M.Namekata,
J.Murray,
M.Furuyashiki,
S.Zhang,
D.Coan,
M.Wakao,
R.B.Harris,
Y.Suda,
L.Wang,
and
M.Sobel
(2010).
Multiple mechanisms for exogenous heparin modulation of vascular endothelial growth factor activity.
|
| |
J Cell Biochem,
111,
461-468.
|
 |
|
|
|
|
 |
G.Ren,
J.Yin,
W.Wang,
L.Li,
and
D.Li
(2010).
Fibroblast growth factor (FGF)-21 signals through both FGF receptor-1 and 2.
|
| |
Sci China Life Sci,
53,
1000-1008.
|
 |
|
|
|
|
 |
H.Zhu,
L.Duchesne,
P.S.Rudland,
and
D.G.Fernig
(2010).
The heparan sulfate co-receptor and the concentration of fibroblast growth factor-2 independently elicit different signalling patterns from the fibroblast growth factor receptor.
|
| |
Cell Commun Signal,
8,
14.
|
 |
|
|
|
|
 |
J.Gattineni,
and
M.Baum
(2010).
Regulation of phosphate transport by fibroblast growth factor 23 (FGF23): implications for disorders of phosphate metabolism.
|
| |
Pediatr Nephrol,
25,
591-601.
|
 |
|
|
|
|
 |
M.Buono,
I.Visigalli,
R.Bergamasco,
A.Biffi,
and
M.P.Cosma
(2010).
Sulfatase modifying factor 1-mediated fibroblast growth factor signaling primes hematopoietic multilineage development.
|
| |
J Exp Med,
207,
1647-1660.
|
 |
|
|
|
|
 |
M.Frank,
and
S.Schloissnig
(2010).
Bioinformatics and molecular modeling in glycobiology.
|
| |
Cell Mol Life Sci,
67,
2749-2772.
|
 |
|
|
|
|
 |
W.J.Kuo,
M.A.Digman,
and
A.D.Lander
(2010).
Heparan sulfate acts as a bone morphogenetic protein coreceptor by facilitating ligand-induced receptor hetero-oligomerization.
|
| |
Mol Biol Cell,
21,
4028-4041.
|
 |
|
|
|
|
 |
Y.Hu,
and
P.M.Bouloux
(2010).
Novel insights in FGFR1 regulation: lessons from Kallmann syndrome.
|
| |
Trends Endocrinol Metab,
21,
385-393.
|
 |
|
|
|
|
 |
E.A.Verderio,
A.Scarpellini,
and
T.S.Johnson
(2009).
Novel interactions of TG2 with heparan sulfate proteoglycans: reflection on physiological implications.
|
| |
Amino Acids,
36,
671-677.
|
 |
|
|
|
|
 |
E.S.Place,
N.D.Evans,
and
M.M.Stevens
(2009).
Complexity in biomaterials for tissue engineering.
|
| |
Nat Mater,
8,
457-470.
|
 |
|
|
|
|
 |
E.Stuttfeld,
and
K.Ballmer-Hofer
(2009).
Structure and function of VEGF receptors.
|
| |
IUBMB Life,
61,
915-922.
|
 |
|
|
|
|
 |
I.Kalus,
B.Salmen,
C.Viebahn,
K.von Figura,
D.Schmitz,
R.D'Hooge,
and
T.Dierks
(2009).
Differential involvement of the extracellular 6-O-endosulfatases Sulf1 and Sulf2 in brain development and neuronal and behavioural plasticity.
|
| |
J Cell Mol Med,
13,
4505-4521.
|
 |
|
|
|
|
 |
J.Jia,
M.Maccarana,
X.Zhang,
M.Bespalov,
U.Lindahl,
and
J.P.Li
(2009).
Lack of L-iduronic acid in heparan sulfate affects interaction with growth factors and cell signaling.
|
| |
J Biol Chem,
284,
15942-15950.
|
 |
|
|
|
|
 |
J.Moreaux,
A.C.Sprynski,
S.R.Dillon,
K.Mahtouk,
M.Jourdan,
A.Ythier,
P.Moine,
N.Robert,
E.Jourdan,
J.F.Rossi,
and
B.Klein
(2009).
APRIL and TACI interact with syndecan-1 on the surface of multiple myeloma cells to form an essential survival loop.
|
| |
Eur J Haematol,
83,
119-129.
|
 |
|
|
|
|
 |
K.Iwao,
M.Inatani,
Y.Matsumoto,
M.Ogata-Iwao,
Y.Takihara,
F.Irie,
Y.Yamaguchi,
S.Okinami,
and
H.Tanihara
(2009).
Heparan sulfate deficiency leads to Peters anomaly in mice by disturbing neural crest TGF-beta2 signaling.
|
| |
J Clin Invest,
119,
1997-2008.
|
 |
|
|
|
|
 |
M.A.Frese,
F.Milz,
M.Dick,
W.C.Lamanna,
and
T.Dierks
(2009).
Characterization of the human sulfatase Sulf1 and its high affinity heparin/heparan sulfate interaction domain.
|
| |
J Biol Chem,
284,
28033-28044.
|
 |
|
|
|
|
 |
M.Zakrzewska,
A.Wiedlocha,
A.Szlachcic,
D.Krowarsch,
J.Otlewski,
and
S.Olsnes
(2009).
Increased protein stability of FGF1 can compensate for its reduced affinity for heparin.
|
| |
J Biol Chem,
284,
25388-25403.
|
 |
|
|
|
|
 |
S.Ashikari-Hada,
H.Habuchi,
N.Sugaya,
T.Kobayashi,
and
K.Kimata
(2009).
Specific inhibition of FGF-2 signaling with 2-O-sulfated octasaccharides of heparan sulfate.
|
| |
Glycobiology,
19,
644-654.
|
 |
|
|
|
|
 |
S.Li,
C.Christensen,
L.B.Køhler,
V.V.Kiselyov,
V.Berezin,
and
E.Bock
(2009).
Agonists of fibroblast growth factor receptor induce neurite outgrowth and survival of cerebellar granule neurons.
|
| |
Dev Neurobiol,
69,
837-854.
|
 |
|
|
|
|
 |
U.M.Polanska,
L.Duchesne,
J.C.Harries,
D.G.Fernig,
and
T.K.Kinnunen
(2009).
N-Glycosylation regulates fibroblast growth factor receptor/EGL-15 activity in Caenorhabditis elegans in vivo.
|
| |
J Biol Chem,
284,
33030-33039.
|
 |
|
|
|
|
 |
Y.Hu,
S.E.Guimond,
P.Travers,
S.Cadman,
E.Hohenester,
J.E.Turnbull,
S.H.Kim,
and
P.M.Bouloux
(2009).
Novel mechanisms of fibroblast growth factor receptor 1 regulation by extracellular matrix protein anosmin-1.
|
| |
J Biol Chem,
284,
29905-29920.
|
 |
|
|
|
|
 |
Y.Luo,
C.Yang,
C.Jin,
R.Xie,
F.Wang,
and
W.L.McKeehan
(2009).
Novel phosphotyrosine targets of FGFR2IIIb signaling.
|
| |
Cell Signal,
21,
1370-1378.
|
 |
|
|
|
|
 |
Z.Oezyuerek,
K.Franke,
M.Nitschke,
R.Schulze,
F.Simon,
K.J.Eichhorn,
T.Pompe,
C.Werner,
and
B.Voit
(2009).
Sulfated glyco-block copolymers with specific receptor and growth factor binding to support cell adhesion and proliferation.
|
| |
Biomaterials,
30,
1026-1035.
|
 |
|
|
|
|
 |
A.Kochoyan,
F.M.Poulsen,
V.Berezin,
E.Bock,
and
V.V.Kiselyov
(2008).
Structural basis for the activation of FGFR by NCAM.
|
| |
Protein Sci,
17,
1698-1705.
|
 |
|
|
|
|
 |
D.G.Seidler,
and
R.Dreier
(2008).
Decorin and its galactosaminoglycan chain: extracellular regulator of cellular function?
|
| |
IUBMB Life,
60,
729-733.
|
 |
|
|
|
|
 |
K.R.Catlow,
J.A.Deakin,
Z.Wei,
M.Delehedde,
D.G.Fernig,
E.Gherardi,
J.T.Gallagher,
M.S.Pavão,
and
M.Lyon
(2008).
Interactions of hepatocyte growth factor/scatter factor with various glycosaminoglycans reveal an important interplay between the presence of iduronate and sulfate density.
|
| |
J Biol Chem,
283,
5235-5248.
|
 |
|
|
|
|
 |
K.Tan,
M.Duquette,
J.H.Liu,
K.Shanmugasundaram,
A.Joachimiak,
J.T.Gallagher,
A.C.Rigby,
J.H.Wang,
and
J.Lawler
(2008).
Heparin-induced cis- and trans-dimerization modes of the thrombospondin-1 N-terminal domain.
|
| |
J Biol Chem,
283,
3932-3941.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.E.Levenstein,
W.T.Berggren,
J.E.Lee,
K.R.Conard,
R.A.Llanas,
R.J.Wagner,
L.M.Smith,
and
J.A.Thomson
(2008).
Secreted proteoglycans directly mediate human embryonic stem cell-basic fibroblast growth factor 2 interactions critical for proliferation.
|
| |
Stem Cells,
26,
3099-3107.
|
 |
|
|
|
|
 |
N.Fukuhara,
J.A.Howitt,
S.A.Hussain,
and
E.Hohenester
(2008).
Structural and functional analysis of slit and heparin binding to immunoglobulin-like domains 1 and 2 of Drosophila Robo.
|
| |
J Biol Chem,
283,
16226-16234.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
N.Kulahin,
V.Kiselyov,
A.Kochoyan,
O.Kristensen,
J.S.Kastrup,
V.Berezin,
E.Bock,
and
M.Gajhede
(2008).
Dimerization effect of sucrose octasulfate on rat FGF1.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
64,
448-452.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
N.S.Gandhi,
and
R.L.Mancera
(2008).
The structure of glycosaminoglycans and their interactions with proteins.
|
| |
Chem Biol Drug Des,
72,
455-482.
|
 |
|
|
|
|
 |
N.Sugaya,
H.Habuchi,
N.Nagai,
S.Ashikari-Hada,
and
K.Kimata
(2008).
6-O-sulfation of heparan sulfate differentially regulates various fibroblast growth factor-dependent signalings in culture.
|
| |
J Biol Chem,
283,
10366-10376.
|
 |
|
|
|
|
 |
S.J.Goodger,
C.J.Robinson,
K.J.Murphy,
N.Gasiunas,
N.J.Harmer,
T.L.Blundell,
D.A.Pye,
and
J.T.Gallagher
(2008).
Evidence that heparin saccharides promote FGF2 mitogenesis through two distinct mechanisms.
|
| |
J Biol Chem,
283,
13001-13008.
|
 |
|
|
|
|
 |
S.Mori,
C.Y.Wu,
S.Yamaji,
J.Saegusa,
B.Shi,
Z.Ma,
Y.Kuwabara,
K.S.Lam,
R.R.Isseroff,
Y.K.Takada,
and
Y.Takada
(2008).
Direct binding of integrin alphavbeta3 to FGF1 plays a role in FGF1 signaling.
|
| |
J Biol Chem,
283,
18066-18075.
|
 |
|
|
|
|
 |
T.Muramatsu,
and
H.Muramatsu
(2008).
Glycosaminoglycan-binding cytokines as tumor markers.
|
| |
Proteomics,
8,
3350-3359.
|
 |
|
|
|
|
 |
V.N.Patel,
K.M.Likar,
S.Zisman-Rozen,
S.N.Cowherd,
K.S.Lassiter,
I.Sher,
E.A.Yates,
J.E.Turnbull,
D.Ron,
and
M.P.Hoffman
(2008).
Specific heparan sulfate structures modulate FGF10-mediated submandibular gland epithelial morphogenesis and differentiation.
|
| |
J Biol Chem,
283,
9308-9317.
|
 |
|
|
|
|
 |
W.Zhang,
Y.Chen,
M.R.Swift,
E.Tassi,
D.C.Stylianou,
K.A.Gibby,
A.T.Riegel,
and
A.Wellstein
(2008).
Effect of FGF-binding Protein 3 on Vascular Permeability.
|
| |
J Biol Chem,
283,
28329-28337.
|
 |
|
|
|
|
 |
C.Morlot,
N.M.Thielens,
R.B.Ravelli,
W.Hemrika,
R.A.Romijn,
P.Gros,
S.Cusack,
and
A.A.McCarthy
(2007).
Structural insights into the Slit-Robo complex.
|
| |
Proc Natl Acad Sci U S A,
104,
14923-14928.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.R.Holst,
H.Bou-Reslan,
B.B.Gore,
K.Wong,
D.Grant,
S.Chalasani,
R.A.Carano,
G.D.Frantz,
M.Tessier-Lavigne,
B.Bolon,
D.M.French,
and
A.Ashkenazi
(2007).
Secreted sulfatases Sulf1 and Sulf2 have overlapping yet essential roles in mouse neonatal survival.
|
| |
PLoS ONE,
2,
e575.
|
 |
|
|
|
|
 |
E.L.Shipp,
and
L.C.Hsieh-Wilson
(2007).
Profiling the sulfation specificities of glycosaminoglycan interactions with growth factors and chemotactic proteins using microarrays.
|
| |
Chem Biol,
14,
195-208.
|
 |
|
|
|
|
 |
E.Sandilands,
S.Akbarzadeh,
A.Vecchione,
D.G.McEwan,
M.C.Frame,
and
J.K.Heath
(2007).
Src kinase modulates the activation, transport and signalling dynamics of fibroblast growth factor receptors.
|
| |
EMBO Rep,
8,
1162-1169.
|
 |
|
|
|
|
 |
J.Jacobs
(2007).
Combating cardiovascular disease with angiogenic therapy.
|
| |
Drug Discov Today,
12,
1040-1045.
|
 |
|
|
|
|
 |
J.L.de Paz,
C.Noti,
F.Böhm,
S.Werner,
and
P.H.Seeberger
(2007).
Potentiation of fibroblast growth factor activity by synthetic heparin oligosaccharide glycodendrimers.
|
| |
Chem Biol,
14,
879-887.
|
 |
|
|
|
|
 |
K.Park,
Y.S.Kim,
G.Y.Lee,
J.O.Nam,
S.K.Lee,
R.W.Park,
S.Y.Kim,
I.S.Kim,
and
Y.Byun
(2007).
Antiangiogenic effect of bile acid acylated heparin derivative.
|
| |
Pharm Res,
24,
176-185.
|
 |
|
|
|
|
 |
N.Kulahin,
V.Kiselyov,
A.Kochoyan,
O.Kristensen,
J.S.Kastrup,
V.Berezin,
E.Bock,
and
M.Gajhede
(2007).
Structure of rat acidic fibroblast growth factor at 1.4 A resolution.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
63,
65-68.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
N.Salamat-Miller,
J.Fang,
C.W.Seidel,
Y.Assenov,
M.Albrecht,
and
C.R.Middaugh
(2007).
A network-based analysis of polyanion-binding proteins utilizing human protein arrays.
|
| |
J Biol Chem,
282,
10153-10163.
|
 |
|
|
|
|
 |
P.M.Smallwood,
J.Williams,
Q.Xu,
D.J.Leahy,
and
J.Nathans
(2007).
Mutational analysis of Norrin-Frizzled4 recognition.
|
| |
J Biol Chem,
282,
4057-4068.
|
 |
|
|
|
|
 |
T.Derrick,
A.O.Grillo,
S.N.Vitharana,
L.Jones,
J.Rexroad,
A.Shah,
M.Perkins,
T.M.Spitznagel,
and
C.R.Middaugh
(2007).
Effect of polyanions on the structure and stability of repifermin (keratinocyte growth factor-2).
|
| |
J Pharm Sci,
96,
761-776.
|
 |
|
|
|
|
 |
T.Kobayashi,
H.Habuchi,
K.Tamura,
H.Ide,
and
K.Kimata
(2007).
Essential role of heparan sulfate 2-O-sulfotransferase in chick limb bud patterning and development.
|
| |
J Biol Chem,
282,
19589-19597.
|
 |
|
|
|
|
 |
V.Vreys,
and
G.David
(2007).
Mammalian heparanase: what is the message?
|
| |
J Cell Mol Med,
11,
427-452.
|
 |
|
|
|
|
 |
W.D.Tolbert,
J.Daugherty,
C.Gao,
Q.Xie,
C.Miranti,
E.Gherardi,
G.V.Woude,
and
H.E.Xu
(2007).
A mechanistic basis for converting a receptor tyrosine kinase agonist to an antagonist.
|
| |
Proc Natl Acad Sci U S A,
104,
14592-14597.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Canales,
R.Lozano,
B.López-Méndez,
J.Angulo,
R.Ojeda,
P.M.Nieto,
M.Martín-Lomas,
G.Giménez-Gallego,
and
J.Jiménez-Barbero
(2006).
Solution NMR structure of a human FGF-1 monomer, activated by a hexasaccharide heparin-analogue.
|
| |
FEBS J,
273,
4716-4727.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Canales-Mayordomo,
R.Fayos,
J.Angulo,
R.Ojeda,
M.Martín-Pastor,
P.M.Nieto,
M.Martín-Lomas,
R.Lozano,
G.Giménez-Gallego,
and
J.Jiménez-Barbero
(2006).
Backbone dynamics of a biologically active human FGF-1 monomer, complexed to a hexasaccharide heparin-analogue, by 15N NMR relaxation methods.
|
| |
J Biomol NMR,
35,
225-239.
|
 |
|
|
|
|
 |
A.E.Harrington,
S.A.Morris-Triggs,
B.T.Ruotolo,
C.V.Robinson,
S.Ohnuma,
and
M.Hyvönen
(2006).
Structural basis for the inhibition of activin signalling by follistatin.
|
| |
EMBO J,
25,
1035-1045.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Raghuraman,
P.D.Mosier,
and
U.R.Desai
(2006).
Finding a needle in a haystack: development of a combinatorial virtual screening approach for identifying high specificity heparin/heparan sulfate sequence(s).
|
| |
J Med Chem,
49,
3553-3562.
|
 |
|
|
|
|
 |
E.Gherardi,
S.Sandin,
M.V.Petoukhov,
J.Finch,
M.E.Youles,
L.G.Ofverstedt,
R.N.Miguel,
T.L.Blundell,
G.F.Vande Woude,
U.Skoglund,
and
D.I.Svergun
(2006).
Structural basis of hepatocyte growth factor/scatter factor and MET signalling.
|
| |
Proc Natl Acad Sci U S A,
103,
4046-4051.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
E.Sanchez-Heras,
F.V.Howell,
G.Williams,
and
P.Doherty
(2006).
The fibroblast growth factor receptor acid box is essential for interactions with N-cadherin and all of the major isoforms of neural cell adhesion molecule.
|
| |
J Biol Chem,
281,
35208-35216.
|
 |
|
|
|
|
 |
G.Su,
K.Meyer,
C.D.Nandini,
D.Qiao,
S.Salamat,
and
A.Friedl
(2006).
Glypican-1 is frequently overexpressed in human gliomas and enhances FGF-2 signaling in glioma cells.
|
| |
Am J Pathol,
168,
2014-2026.
|
 |
|
|
|
|
 |
J.Lee,
V.K.Dubey,
T.Somasundaram,
and
M.Blaber
(2006).
Conversion of type I 4:6 to 3:5 beta-turn types in human acidic fibroblast growth factor: effects upon structure, stability, folding, and mitogenic function.
|
| |
Proteins,
62,
686-697.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
L.Duchesne,
B.Tissot,
T.R.Rudd,
A.Dell,
and
D.G.Fernig
(2006).
N-glycosylation of fibroblast growth factor receptor 1 regulates ligand and heparan sulfate co-receptor binding.
|
| |
J Biol Chem,
281,
27178-27189.
|
 |
|
|
|
|
 |
L.L.Kiessling,
J.E.Gestwicki,
and
L.E.Strong
(2006).
Synthetic multivalent ligands as probes of signal transduction.
|
| |
Angew Chem Int Ed Engl,
45,
2348-2368.
|
 |
|
|
|
|
 |
L.Ling,
S.Murali,
C.Dombrowski,
L.M.Haupt,
G.S.Stein,
A.J.van Wijnen,
V.Nurcombe,
and
S.M.Cool
(2006).
Sulfated glycosaminoglycans mediate the effects of FGF2 on the osteogenic potential of rat calvarial osteoprogenitor cells.
|
| |
J Cell Physiol,
209,
811-825.
|
 |
|
|
|
|
 |
L.M.McDowell,
B.A.Frazier,
D.R.Studelska,
K.Giljum,
J.Chen,
J.Liu,
K.Yu,
D.M.Ornitz,
and
L.Zhang
(2006).
Inhibition or activation of Apert syndrome FGFR2 (S252W) signaling by specific glycosaminoglycans.
|
| |
J Biol Chem,
281,
6924-6930.
|
 |
|
|
|
|
 |
M.A.Dupree,
S.R.Pollack,
E.M.Levine,
and
C.T.Laurencin
(2006).
Fibroblast growth factor 2 induced proliferation in osteoblasts and bone marrow stromal cells: a whole cell model.
|
| |
Biophys J,
91,
3097-3112.
|
 |
|
|
|
|
 |
N.A.Oliveira,
L.G.Alonso,
R.D.Fanganiello,
and
M.R.Passos-Bueno
(2006).
Further evidence of association between mutations in FGFR2 and syndromic craniosynostosis with sacrococcygeal eversion.
|
| |
Birth Defects Res A Clin Mol Teratol,
76,
629-633.
|
 |
|
|
|
|
 |
N.Jastrebova,
M.Vanwildemeersch,
A.C.Rapraeger,
G.Giménez-Gallego,
U.Lindahl,
and
D.Spillmann
(2006).
Heparan sulfate-related oligosaccharides in ternary complex formation with fibroblast growth factors 1 and 2 and their receptors.
|
| |
J Biol Chem,
281,
26884-26892.
|
 |
|
|
|
|
 |
R.Sasisekharan,
R.Raman,
and
V.Prabhakar
(2006).
Glycomics approach to structure-function relationships of glycosaminoglycans.
|
| |
Annu Rev Biomed Eng,
8,
181-231.
|
 |
|
|
|
|
 |
S.A.Hussain,
M.Piper,
N.Fukuhara,
L.Strochlic,
G.Cho,
J.A.Howitt,
Y.Ahmed,
A.K.Powell,
J.E.Turnbull,
C.E.Holt,
and
E.Hohenester
(2006).
A molecular mechanism for the heparan sulfate dependence of slit-robo signaling.
|
| |
J Biol Chem,
281,
39693-39698.
|
 |
|
|
|
|
 |
T.L.Blundell,
B.L.Sibanda,
R.W.Montalvão,
S.Brewerton,
V.Chelliah,
C.L.Worth,
N.J.Harmer,
O.Davies,
and
D.Burke
(2006).
Structural biology and bioinformatics in drug design: opportunities and challenges for target identification and lead discovery.
|
| |
Philos Trans R Soc Lond B Biol Sci,
361,
413-423.
|
 |
|
|
|
|
 |
V.V.Kiselyov,
A.Kochoyan,
F.M.Poulsen,
E.Bock,
and
V.Berezin
(2006).
Elucidation of the mechanism of the regulatory function of the Ig1 module of the fibroblast growth factor receptor 1.
|
| |
Protein Sci,
15,
2318-2322.
|
 |
|
|
|
|
 |
V.V.Kiselyov,
E.Bock,
V.Berezin,
and
F.M.Poulsen
(2006).
NMR structure of the first Ig module of mouse FGFR1.
|
| |
Protein Sci,
15,
1512-1515.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Y.Luo,
S.Ye,
M.Kan,
and
W.L.McKeehan
(2006).
Control of fibroblast growth factor (FGF) 7- and FGF1-induced mitogenesis and downstream signaling by distinct heparin octasaccharide motifs.
|
| |
J Biol Chem,
281,
21052-21061.
|
 |
|
|
|
|
 |
Y.Luo,
S.Ye,
M.Kan,
and
W.L.McKeehan
(2006).
Structural specificity in a FGF7-affinity purified heparin octasaccharide required for formation of a complex with FGF7 and FGFR2IIIb.
|
| |
J Cell Biochem,
97,
1241-1258.
|
 |
|
|
|
|
 |
A.A.Anderson,
C.E.Kendal,
M.Garcia-Maya,
A.V.Kenny,
S.A.Morris-Triggs,
T.Wu,
R.Reynolds,
E.Hohenester,
and
J.L.Saffell
(2005).
A peptide from the first fibronectin domain of NCAM acts as an inverse agonist and stimulates FGF receptor activation, neurite outgrowth and survival.
|
| |
J Neurochem,
95,
570-583.
|
 |
|
|
|
|
 |
C.I.Gama,
and
L.C.Hsieh-Wilson
(2005).
Chemical approaches to deciphering the glycosaminoglycan code.
|
| |
Curr Opin Chem Biol,
9,
609-619.
|
 |
|
|
|
|
 |
C.J.Robinson,
N.J.Harmer,
S.J.Goodger,
T.L.Blundell,
and
J.T.Gallagher
(2005).
Cooperative dimerization of fibroblast growth factor 1 (FGF1) upon a single heparin saccharide may drive the formation of 2:2:1 FGF1.FGFR2c.heparin ternary complexes.
|
| |
J Biol Chem,
280,
42274-42282.
|
 |
|
|
|
|
 |
F.Carinci,
F.Pezzetti,
P.Locci,
E.Becchetti,
F.Carls,
A.Avantaggiato,
A.Becchetti,
P.Carinci,
T.Baroni,
and
M.Bodo
(2005).
Apert and Crouzon syndromes: clinical findings, genes and extracellular matrix.
|
| |
J Craniofac Surg,
16,
361-368.
|
 |
|
|
|
|
 |
J.Kim,
J.Lee,
S.R.Brych,
T.M.Logan,
and
M.Blaber
(2005).
Sequence swapping does not result in conformation swapping for the beta4/beta5 and beta8/beta9 beta-hairpin turns in human acidic fibroblast growth factor.
|
| |
Protein Sci,
14,
351-359.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.Ingold,
A.Zumsteg,
A.Tardivel,
B.Huard,
Q.G.Steiner,
T.G.Cachero,
F.Qiang,
L.Gorelik,
S.L.Kalled,
H.Acha-Orbea,
P.D.Rennert,
J.Tschopp,
and
P.Schneider
(2005).
Identification of proteoglycans as the APRIL-specific binding partners.
|
| |
J Exp Med,
201,
1375-1383.
|
 |
|
|
|
|
 |
L.Jin,
P.E.Barran,
J.A.Deakin,
M.Lyon,
and
D.Uhrín
(2005).
Conformation of glycosaminoglycans by ion mobility mass spectrometry and molecular modelling.
|
| |
Phys Chem Chem Phys,
7,
3464-3471.
|
 |
|
|
|
|
 |
M.Baum,
S.Schiavi,
V.Dwarakanath,
and
R.Quigley
(2005).
Effect of fibroblast growth factor-23 on phosphate transport in proximal tubules.
|
| |
Kidney Int,
68,
1148-1153.
|
 |
|
|
|
|
 |
M.Mohammadi,
S.K.Olsen,
and
O.A.Ibrahimi
(2005).
Structural basis for fibroblast growth factor receptor activation.
|
| |
Cytokine Growth Factor Rev,
16,
107-137.
|
 |
|
|
|
|
 |
M.Mohammadi,
S.K.Olsen,
and
R.Goetz
(2005).
A protein canyon in the FGF-FGF receptor dimer selects from an à la carte menu of heparan sulfate motifs.
|
| |
Curr Opin Struct Biol,
15,
506-516.
|
 |
|
|
|
|
 |
O.A.Ibrahimi,
B.K.Yeh,
A.V.Eliseenkova,
F.Zhang,
S.K.Olsen,
M.Igarashi,
S.A.Aaronson,
R.J.Linhardt,
and
M.Mohammadi
(2005).
Analysis of mutations in fibroblast growth factor (FGF) and a pathogenic mutation in FGF receptor (FGFR) provides direct evidence for the symmetric two-end model for FGFR dimerization.
|
| |
Mol Cell Biol,
25,
671-684.
|
 |
|
|
|
|
 |
T.Iwase,
C.G.Jung,
H.Bae,
M.Zhang,
and
B.Soliven
(2005).
Glial cell line-derived neurotrophic factor-induced signaling in Schwann cells.
|
| |
J Neurochem,
94,
1488-1499.
|
 |
|
|
|
|
 |
T.M.Handel,
Z.Johnson,
S.E.Crown,
E.K.Lau,
and
A.E.Proudfoot
(2005).
Regulation of protein function by glycosaminoglycans--as exemplified by chemokines.
|
| |
Annu Rev Biochem,
74,
385-410.
|
 |
|
|
|
|
 |
U.Häcker,
K.Nybakken,
and
N.Perrimon
(2005).
Heparan sulphate proteoglycans: the sweet side of development.
|
| |
Nat Rev Mol Cell Biol,
6,
530-541.
|
 |
|
|
|
|
 |
V.K.Dubey,
J.Lee,
and
M.Blaber
(2005).
Redesigning symmetry-related "mini-core" regions of FGF-1 to increase primary structure symmetry: thermodynamic and functional consequences of structural symmetry.
|
| |
Protein Sci,
14,
2315-2323.
|
 |
|
|
|
|
 |
A.Bennasroune,
A.Gardin,
D.Aunis,
G.Crémel,
and
P.Hubert
(2004).
Tyrosine kinase receptors as attractive targets of cancer therapy.
|
| |
Crit Rev Oncol Hematol,
50,
23-38.
|
 |
|
|
|
|
 |
C.Dodé,
and
J.P.Hardelin
(2004).
Kallmann syndrome: fibroblast growth factor signaling insufficiency?
|
| |
J Mol Med,
82,
725-734.
|
 |
|
|
|
|
 |
D.Berry,
D.M.Lynn,
R.Sasisekharan,
and
R.Langer
(2004).
Poly(beta-amino ester)s promote cellular uptake of heparin and cancer cell death.
|
| |
Chem Biol,
11,
487-498.
|
 |
|
|
|
|
 |
G.A.Nicolaes,
K.W.Sørensen,
U.Friedrich,
G.Tans,
J.Rosing,
L.Autin,
B.Dahlbäck,
and
B.O.Villoutreix
(2004).
Altered inactivation pathway of factor Va by activated protein C in the presence of heparin.
|
| |
Eur J Biochem,
271,
2724-2736.
|
 |
|
|
|
|
 |
J.Angulo,
R.Ojeda,
J.L.de Paz,
R.Lucas,
P.M.Nieto,
R.M.Lozano,
M.Redondo-Horcajo,
G.Giménez-Gallego,
and
M.Martín-Lomas
(2004).
The activation of fibroblast growth factors (FGFs) by glycosaminoglycans: influence of the sulfation pattern on the biological activity of FGF-1.
|
| |
Chembiochem,
5,
55-61.
|
 |
|
|
|
|
 |
K.Nogami,
H.Suzuki,
H.Habuchi,
N.Ishiguro,
H.Iwata,
and
K.Kimata
(2004).
Distinctive expression patterns of heparan sulfate O-sulfotransferases and regional differences in heparan sulfate structure in chick limb buds.
|
| |
J Biol Chem,
279,
8219-8229.
|
 |
|
|
|
|
 |
M.J.Bernett,
T.Somasundaram,
and
M.Blaber
(2004).
An atomic resolution structure for human fibroblast growth factor 1.
|
| |
Proteins,
57,
626-634.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.T.Böttcher,
N.Pollet,
H.Delius,
and
C.Niehrs
(2004).
The transmembrane protein XFLRT3 forms a complex with FGF receptors and promotes FGF signalling.
|
| |
Nat Cell Biol,
6,
38-44.
|
 |
|
|
|
|
 |
S.Wang,
X.Ai,
S.D.Freeman,
M.E.Pownall,
Q.Lu,
D.S.Kessler,
and
C.P.Emerson
(2004).
QSulf1, a heparan sulfate 6-O-endosulfatase, inhibits fibroblast growth factor signaling in mesoderm induction and angiogenesis.
|
| |
Proc Natl Acad Sci U S A,
101,
4833-4838.
|
 |
|
|
|
|
 |
Y.Wegrowski,
and
F.X.Maquart
(2004).
Involvement of stromal proteoglycans in tumour progression.
|
| |
Crit Rev Oncol Hematol,
49,
259-268.
|
 |
|
|
|
|
 |
Z.Shriver,
S.Raguram,
and
R.Sasisekharan
(2004).
Glycomics: a pathway to a class of new and improved therapeutics.
|
| |
Nat Rev Drug Discov,
3,
863-873.
|
 |
|
|
|
|
 |
B.K.Yeh,
M.Igarashi,
A.V.Eliseenkova,
A.N.Plotnikov,
I.Sher,
D.Ron,
S.A.Aaronson,
and
M.Mohammadi
(2003).
Structural basis by which alternative splicing confers specificity in fibroblast growth factor receptors.
|
| |
Proc Natl Acad Sci U S A,
100,
2266-2271.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.Fernández-Tornero,
R.M.Lozano,
M.Redondo-Horcajo,
A.M.Gómez,
J.C.López,
E.Quesada,
C.Uriel,
S.Valverde,
P.Cuevas,
A.Romero,
and
G.Giménez-Gallego
(2003).
Leads for development of new naphthalenesulfonate derivatives with enhanced antiangiogenic activity: crystal structure of acidic fibroblast growth factor in complex with 5-amino-2-naphthalene sulfonate.
|
| |
J Biol Chem,
278,
21774-21781.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.Ito,
Y.Saitoh,
Y.Fujita,
Y.Yamazaki,
T.Imamura,
S.Oka,
and
S.Suzuki
(2003).
Decapeptide with fibroblast growth factor (FGF)-5 partial sequence inhibits hair growth suppressing activity of FGF-5.
|
| |
J Cell Physiol,
197,
272-283.
|
 |
|
|
|
|
 |
E.Gherardi,
M.E.Youles,
R.N.Miguel,
T.L.Blundell,
L.Iamele,
J.Gough,
A.Bandyopadhyay,
G.Hartmann,
and
P.J.Butler
(2003).
Functional map and domain structure of MET, the product of the c-met protooncogene and receptor for hepatocyte growth factor/scatter factor.
|
| |
Proc Natl Acad Sci U S A,
100,
12039-12044.
|
 |
|
|
|
|
 |
J.Greenwald,
J.Groppe,
P.Gray,
E.Wiater,
W.Kwiatkowski,
W.Vale,
and
S.Choe
(2003).
The BMP7/ActRII extracellular domain complex provides new insights into the cooperative nature of receptor assembly.
|
| |
Mol Cell,
11,
605-617.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Borgenström,
M.Jalkanen,
and
M.Salmivirta
(2003).
Sulfated derivatives of Escherichia coli K5 polysaccharides as modulators of fibroblast growth factor signaling.
|
| |
J Biol Chem,
278,
49882-49889.
|
 |
|
|
|
|
 |
P.Lindblom,
H.Gerhardt,
S.Liebner,
A.Abramsson,
M.Enge,
M.Hellstrom,
G.Backstrom,
S.Fredriksson,
U.Landegren,
H.C.Nystrom,
G.Bergstrom,
E.Dejana,
A.Ostman,
P.Lindahl,
and
C.Betsholtz
(2003).
Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall.
|
| |
Genes Dev,
17,
1835-1840.
|
 |
|
|
|
|
 |
R.Raman,
G.Venkataraman,
S.Ernst,
V.Sasisekharan,
and
R.Sasisekharan
(2003).
Structural specificity of heparin binding in the fibroblast growth factor family of proteins.
|
| |
Proc Natl Acad Sci U S A,
100,
2357-2362.
|
 |
|
|
|
|
 |
S.K.Olsen,
M.Garbi,
N.Zampieri,
A.V.Eliseenkova,
D.M.Ornitz,
M.Goldfarb,
and
M.Mohammadi
(2003).
Fibroblast growth factor (FGF) homologous factors share structural but not functional homology with FGFs.
|
| |
J Biol Chem,
278,
34226-34236.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.R.Brych,
J.Kim,
T.M.Logan,
and
M.Blaber
(2003).
Accommodation of a highly symmetric core within a symmetric protein superfold.
|
| |
Protein Sci,
12,
2704-2718.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.Merkulova-Rainon,
P.England,
S.Ding,
C.Demerens,
and
G.Tobelem
(2003).
The N-terminal domain of hepatocyte growth factor inhibits the angiogenic behavior of endothelial cells independently from binding to the c-met receptor.
|
| |
J Biol Chem,
278,
37400-37408.
|
 |
|
|
|
|
 |
Z.L.Wu,
L.Zhang,
T.Yabe,
B.Kuberan,
D.L.Beeler,
A.Love,
and
R.D.Rosenberg
(2003).
The involvement of heparan sulfate (HS) in FGF1/HS/FGFR1 signaling complex.
|
| |
J Biol Chem,
278,
17121-17129.
|
 |
|
|
|
|
 |
A.K.Powell,
D.G.Fernig,
and
J.E.Turnbull
(2002).
Fibroblast growth factor receptors 1 and 2 interact differently with heparin/heparan sulfate. Implications for dynamic assembly of a ternary signaling complex.
|
| |
J Biol Chem,
277,
28554-28563.
|
 |
|
|
|
|
 |
A.O.Wilkie,
S.J.Patey,
S.H.Kan,
A.M.van den Ouweland,
and
B.C.Hamel
(2002).
FGFs, their receptors, and human limb malformations: clinical and molecular correlations.
|
| |
Am J Med Genet,
112,
266-278.
|
 |
|
|
|
|
 |
B.K.Yeh,
A.V.Eliseenkova,
A.N.Plotnikov,
D.Green,
J.Pinnell,
T.Polat,
A.Gritli-Linde,
R.J.Linhardt,
and
M.Mohammadi
(2002).
Structural basis for activation of fibroblast growth factor signaling by sucrose octasulfate.
|
| |
Mol Cell Biol,
22,
7184-7192.
|
 |
|
|
|
|
 |
B.M.Loo,
and
M.Salmivirta
(2002).
Heparin/Heparan sulfate domains in binding and signaling of fibroblast growth factor 8b.
|
| |
J Biol Chem,
277,
32616-32623.
|
 |
|
|
|
|
 |
C.Mundhenke,
K.Meyer,
S.Drew,
and
A.Friedl
(2002).
Heparan sulfate proteoglycans as regulators of fibroblast growth factor-2 receptor binding in breast carcinomas.
|
| |
Am J Pathol,
160,
185-194.
|
 |
|
|
|
|
 |
C.Rolny,
D.Spillmann,
U.Lindahl,
and
L.Claesson-Welsh
(2002).
Heparin amplifies platelet-derived growth factor (PDGF)- BB-induced PDGF alpha -receptor but not PDGF beta -receptor tyrosine phosphorylation in heparan sulfate-deficient cells. Effects on signal transduction and biological responses.
|
| |
J Biol Chem,
277,
19315-19321.
|
 |
|
|
|
|
 |
D.G.Vanselow
(2002).
Role of constraint in catalysis and high-affinity binding by proteins.
|
| |
Biophys J,
82,
2293-2303.
|
 |
|
|
|
|
 |
D.McCabe,
T.Cukierman,
and
J.E.Gabay
(2002).
Basic residues in azurocidin/HBP contribute to both heparin binding and antimicrobial activity.
|
| |
J Biol Chem,
277,
27477-27488.
|
 |
|
|
|
|
 |
H.Ogiso,
R.Ishitani,
O.Nureki,
S.Fukai,
M.Yamanaka,
J.H.Kim,
K.Saito,
A.Sakamoto,
M.Inoue,
M.Shirouzu,
and
S.Yokoyama
(2002).
Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains.
|
| |
Cell,
110,
775-787.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
I.Capila,
and
R.J.Linhardt
(2002).
Heparin-protein interactions.
|
| |
Angew Chem Int Ed Engl,
41,
391-412.
|
 |
|
|
|
|
 |
J.D.Esko,
and
S.B.Selleck
(2002).
Order out of chaos: assembly of ligand binding sites in heparan sulfate.
|
| |
Annu Rev Biochem,
71,
435-471.
|
 |
|
|
|
|
 |
J.Kim,
S.I.Blaber,
and
M.Blaber
(2002).
Alternative type I and I' turn conformations in the beta8/beta9 beta-hairpin of human acidic fibroblast growth factor.
|
| |
Protein Sci,
11,
459-466.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Kreuger,
T.Matsumoto,
M.Vanwildemeersch,
T.Sasaki,
R.Timpl,
L.Claesson-Welsh,
D.Spillmann,
and
U.Lindahl
(2002).
Role of heparan sulfate domain organization in endostatin inhibition of endothelial cell function.
|
| |
EMBO J,
21,
6303-6311.
|
 |
|
|
|
|
 |
J.M.Trowbridge,
J.A.Rudisill,
D.Ron,
and
R.L.Gallo
(2002).
Dermatan sulfate binds and potentiates activity of keratinocyte growth factor (FGF-7).
|
| |
J Biol Chem,
277,
42815-42820.
|
 |
|
|
|
|
 |
K.Tan,
M.Duquette,
J.H.Liu,
Y.Dong,
R.Zhang,
A.Joachimiak,
J.Lawler,
and
J.H.Wang
(2002).
Crystal structure of the TSP-1 type 1 repeats: a novel layered fold and its biological implication.
|
| |
J Cell Biol,
159,
373-382.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
P.F.Varela,
A.S.Llera,
R.A.Mariuzza,
and
J.Tormo
(2002).
Crystal structure of imaginal disc growth factor-2. A member of a new family of growth-promoting glycoproteins from Drosophila melanogaster.
|
| |
J Biol Chem,
277,
13229-13236.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.H.Kan,
N.Elanko,
D.Johnson,
L.Cornejo-Roldan,
J.Cook,
E.W.Reich,
S.Tomkins,
A.Verloes,
S.R.Twigg,
S.Rannan-Eliya,
D.M.McDonald-McGinn,
E.H.Zackai,
S.A.Wall,
M.Muenke,
and
A.O.Wilkie
(2002).
Genomic screening of fibroblast growth-factor receptor 2 reveals a wide spectrum of mutations in patients with syndromic craniosynostosis.
|
| |
Am J Hum Genet,
70,
472-486.
|
 |
|
|
|
|
 |
S.M.Prince,
M.Achtman,
and
J.P.Derrick
(2002).
Crystal structure of the OpcA integral membrane adhesin from Neisseria meningitidis.
|
| |
Proc Natl Acad Sci U S A,
99,
3417-3421.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.L.Blundell,
H.Jhoti,
and
C.Abell
(2002).
High-throughput crystallography for lead discovery in drug design.
|
| |
Nat Rev Drug Discov,
1,
45-54.
|
 |
|
|
|
|
 |
T.P.Garrett,
N.M.McKern,
M.Lou,
T.C.Elleman,
T.E.Adams,
G.O.Lovrecz,
H.J.Zhu,
F.Walker,
M.J.Frenkel,
P.A.Hoyne,
R.N.Jorissen,
E.C.Nice,
A.W.Burgess,
and
C.W.Ward
(2002).
Crystal structure of a truncated epidermal growth factor receptor extracellular domain bound to transforming growth factor alpha.
|
| |
Cell,
110,
763-773.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.Sasaki,
P.G.Knyazev,
Y.Cheburkin,
W.Göhring,
D.Tisi,
A.Ullrich,
R.Timpl,
and
E.Hohenester
(2002).
Crystal structure of a C-terminal fragment of growth arrest-specific protein Gas6. Receptor tyrosine kinase activation by laminin G-like domains.
|
| |
J Biol Chem,
277,
44164-44170.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
B.L.Allen,
M.S.Filla,
and
A.C.Rapraeger
(2001).
Role of heparan sulfate as a tissue-specific regulator of FGF-4 and FGF receptor recognition.
|
| |
J Cell Biol,
155,
845-858.
|
 |
|
|
|
|
 |
B.Mulloy,
and
R.J.Linhardt
(2001).
Order out of complexity--protein structures that interact with heparin.
|
| |
Curr Opin Struct Biol,
11,
623-628.
|
 |
|
|
|
|
 |
C.W.Mandl,
H.Kroschewski,
S.L.Allison,
R.Kofler,
H.Holzmann,
T.Meixner,
and
F.X.Heinz
(2001).
Adaptation of tick-borne encephalitis virus to BHK-21 cells results in the formation of multiple heparan sulfate binding sites in the envelope protein and attenuation in vivo.
|
| |
J Virol,
75,
5627-5637.
|
 |
|
|
|
|
 |
D.Lietha,
D.Y.Chirgadze,
B.Mulloy,
T.L.Blundell,
and
E.Gherardi
(2001).
Crystal structures of NK1-heparin complexes reveal the basis for NK1 activity and enable engineering of potent agonists of the MET receptor.
|
| |
EMBO J,
20,
5543-5555.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
G.J.Strewler
(2001).
FGF23, hypophosphatemia, and rickets: has phosphatonin been found?
|
| |
Proc Natl Acad Sci U S A,
98,
5945-5946.
|
 |
|
|
|
|
 |
H.J.Hecht,
R.Adar,
B.Hofmann,
O.Bogin,
H.Weich,
and
A.Yayon
(2001).
Structure of fibroblast growth factor 9 shows a symmetric dimer with unique receptor- and heparin-binding interfaces.
|
| |
Acta Crystallogr D Biol Crystallogr,
57,
378-384.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.D.Esko,
and
U.Lindahl
(2001).
Molecular diversity of heparan sulfate.
|
| |
J Clin Invest,
108,
169-173.
|
 |
|
|
|
|
 |
J.T.Gallagher
(2001).
Heparan sulfate: growth control with a restricted sequence menu.
|
| |
J Clin Invest,
108,
357-361.
|
 |
|
|
|
|
 |
J.Turnbull,
A.Powell,
and
S.Guimond
(2001).
Heparan sulfate: decoding a dynamic multifunctional cell regulator.
|
| |
Trends Cell Biol,
11,
75-82.
|
 |
|
|
|
|
 |
L.Pellegrini
(2001).
Role of heparan sulfate in fibroblast growth factor signalling: a structural view.
|
| |
Curr Opin Struct Biol,
11,
629-634.
|
 |
|
|
|
|
 |
O.A.Ibrahimi,
A.V.Eliseenkova,
A.N.Plotnikov,
K.Yu,
D.M.Ornitz,
and
M.Mohammadi
(2001).
Structural basis for fibroblast growth factor receptor 2 activation in Apert syndrome.
|
| |
Proc Natl Acad Sci U S A,
98,
7182-7187.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.Bellosta,
A.Iwahori,
A.N.Plotnikov,
A.V.Eliseenkova,
C.Basilico,
and
M.Mohammadi
(2001).
Identification of receptor and heparin binding sites in fibroblast growth factor 4 by structure-based mutagenesis.
|
| |
Mol Cell Biol,
21,
5946-5957.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.V.Iozzo,
and
J.D.San Antonio
(2001).
Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena.
|
| |
J Clin Invest,
108,
349-355.
|
 |
|
|
|
|
 |
Z.Zhang,
C.Coomans,
and
G.David
(2001).
Membrane heparan sulfate proteoglycan-supported FGF2-FGFR1 signaling: evidence in support of the "cooperative end structures" model.
|
| |
J Biol Chem,
276,
41921-41929.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |