spacer
spacer

PDBsum entry 1d4w

Go to PDB code: 
protein ligands links
Signaling protein PDB id
1d4w

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
104 a.a. *
Ligands
SER-LEU-THR-ILE-
PTR-ALA-GLN-VAL-
GLN-LYS
×2
Waters ×413
* Residue conservation analysis
PDB id:
1d4w
Name: Signaling protein
Title: Crystal structure of the xlp protein sap in complex with slam phosphopeptide
Structure: T cell signal transduction molecule sap. Chain: a, b. Fragment: sh2 domain. Synonym: sap. Engineered: yes. Mutation: yes. Signaling lymphocytic activation molecule. Chain: c, d. Fragment: cytoplasmic tail synthetic phospopeptide.
Source: Homo sapiens. Human. Organism_taxid: 9606. Tissue: blood. Cell: t cell. Expressed in: escherichia coli. Expression_system_taxid: 562. Synthetic: yes. Other_details: this peptide was chemically synthesized.
Biol. unit: Octamer (from PQS)
Resolution:
1.80Å     R-factor:   0.172     R-free:   0.240
Authors: F.Poy,M.B.Yaffe,J.Sayos,K.Saxena,M.J.Eck
Key ref:
F.Poy et al. (1999). Crystal structures of the XLP protein SAP reveal a class of SH2 domains with extended, phosphotyrosine-independent sequence recognition. Mol Cell, 4, 555-561. PubMed id: 10549287 DOI: 10.1016/S1097-2765(00)80206-3
Date:
06-Oct-99     Release date:   14-Oct-99    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
O60880  (SH21A_HUMAN) -  SH2 domain-containing protein 1A from Homo sapiens
Seq:
Struc:
128 a.a.
104 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 

 
DOI no: 10.1016/S1097-2765(00)80206-3 Mol Cell 4:555-561 (1999)
PubMed id: 10549287  
 
 
Crystal structures of the XLP protein SAP reveal a class of SH2 domains with extended, phosphotyrosine-independent sequence recognition.
F.Poy, M.B.Yaffe, J.Sayos, K.Saxena, M.Morra, J.Sumegi, L.C.Cantley, C.Terhorst, M.J.Eck.
 
  ABSTRACT  
 
SAP, the product of the gene mutated in X-linked lymphoproliferative syndrome (XLP), consists of a single SH2 domain that has been shown to bind the cytoplasmic tail of the lymphocyte coreceptor SLAM. Here we describe structures that show that SAP binds phosphorylated and nonphosphorylated SLAM peptides in a similar mode, with the tyrosine or phosphotyrosine residue inserted into the phosphotyrosine-binding pocket. We find that specific interactions with residues N-terminal to the tyrosine, in addition to more characteristic C-terminal interactions, stabilize the complexes. A phosphopeptide library screen and analysis of mutations identified in XLP patients confirm that these extended interactions are required for SAP function. Further, we show that SAP and the similar protein EAT-2 recognize the sequence motif TIpYXX(V/I).
 
  Selected figure(s)  
 
Figure 1.
Figure 1. Structure of SAP and the Location of Missense Mutations Identified in XLP Patients(A) Ribbon diagram showing the SAP/SLAM pY281 complex. The bound phosphopeptide is shown in a stick representation (yellow). Selected SAP residues that form the binding site are shown in blue. Elements of secondary structure are labeled using the standard SH2 domain nomenclature ([8]). Note that the pY −3 to pY −1 residues of the peptide make a parallel β sheet interaction with strand βD; the side chains of these peptide residues make hydrophobic contacts with Tyr-50, Ile-51, and Tyr-52 in strand βD, and with Leu-21. Thr (pY −2) in the peptide hydrogen bonds with Glu-17 and with a buried water molecule. The phosphotyrosine is coordinated in a manner similar to that observed in the N-terminal domain of SHP-2, and as in SHP-2, the phosphate group is rotated “above” the plane of the phosphotyrosine ring. Interestingly, arginine 13 (at position αA2), which is conserved in almost all SH2 domains and usually contributes to phosphotyrosine coordination, does not participate in phosphate binding in the SAP complex. Instead, arginine 55 (βD6) hydrogen bonds with the phosphate group. C-terminal to phosphotyrosine, Val(pY +3) binds in a mostly hydrophobic cleft.(B) Point mutations identified in XLP patients cluster along the peptide-binding site and at the back of the domain. Mutations that would be expected to directly disrupt the phosphotyrosine-binding pocket are shown in green, and those that would disrupt C-terminal interactions in magenta. The remaining mutations (gold) are remote from the peptide-binding surface and may destabilize the folded protein (see text).(C) Structure-based sequence comparisons of human SAP, murine EAT-2, and other SH2 domains. Elements of secondary structure are indicated above the alignment. Numbering corresponds to human SAP. The black diamonds indicate the mutations illustrated in (B).
Figure 2.
Figure 2. Structure and Comparisons of the SAP/SLAM Y281 Complex(A) Surface representation of the SAP domain with the bound nonphosphorylated peptide shown in green. Hydrophobic residues at the −1 and −3 positions of the peptide intercalate with hydrophobic and aromatic residues on the surface of the domain (see also [D] and Figure 1A). C-terminal to phosphotyrosine, Val+3 is buried in a mostly hydrophobic groove.(B) Superposition of the phosphorylated and nonphosphorylated peptides shows that they adopt an essentially identical conformation. An alpha-carbon trace of the domain is shown in gray.(C) Superposition of the unliganded domain (blue) and the phosphopeptide (yellow) and nonphosphorylated peptide complexes (green). In the absence of bound peptide, the EF and BG loops fold inward to close the hydrophobic +3 binding groove. The conformation of the phosphotyrosine-binding pocket is essentially the same in all structures. In the unliganded structure, a sulfate ion occupies the position of the phosphate group in the phosphopeptide complex.(D) Detail of the phosphotyrosine-binding pocket in the SLAM/pY281 complex. Red spheres represent ordered water molecules. The pY281 peptide is shown in yellow. Thin cyan lines indicate potential hydrogen bonds. Note that Arg-13 is poorly ordered and does not participate in phosphotyrosine coordination.(E) Detail of the phosphotyrosine-binding pocket in the nonphosphorylated SLAM/Y281 complex. Red spheres represent ordered water molecules. The Y281 peptide is shown in green. Thin cyan lines indicate potential hydrogen bonds. Note that Arg-32 organizes an extensive network of hydrogen bonds in spite of the lack of phosphorylation of Tyr-281.
 
  The above figures are reprinted by permission from Cell Press: Mol Cell (1999, 4, 555-561) copyright 1999.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21219180 J.L.Cannons, S.G.Tangye, and P.L.Schwartzberg (2011).
SLAM family receptors and SAP adaptors in immunity.
  Annu Rev Immunol, 29, 665-705.  
20146065 C.Detre, M.Keszei, X.Romero, G.C.Tsokos, and C.Terhorst (2010).
SLAM family receptors and the SLAM-associated protein (SAP) modulate T cell functions.
  Semin Immunopathol, 32, 157-171.  
20361049 J.O.Wrabl, and V.J.Hilser (2010).
Investigating homology between proteins using energetic profiles.
  PLoS Comput Biol, 6, e1000722.  
20357770 J.Wojcik, O.Hantschel, F.Grebien, I.Kaupe, K.L.Bennett, J.Barkinge, R.B.Jones, A.Koide, G.Superti-Furga, and S.Koide (2010).
A potent and highly specific FN3 monobody inhibitor of the Abl SH2 domain.
  Nat Struct Mol Biol, 17, 519-527.
PDB code: 3k2m
19909367 A.Veillette, Z.Dong, L.A.Pérez-Quintero, M.C.Zhong, and M.E.Cruz-Munoz (2009).
Importance and mechanism of 'switch' function of SAP family adapters.
  Immunol Rev, 232, 229-239.  
19502496 Z.Wunderlich, and L.A.Mirny (2009).
Using genome-wide measurements for computational prediction of SH2-peptide interactions.
  Nucleic Acids Res, 37, 4629-4641.  
18815745 H.Bassiri, W.C.Janice Yeo, J.Rothman, G.A.Koretzky, and K.E.Nichols (2008).
X-linked lymphoproliferative disease (XLP): a model of impaired anti-viral, anti-tumor and humoral immune responses.
  Immunol Res, 42, 145-159.  
18389064 I.E.Sánchez, P.Beltrao, F.Stricher, J.Schymkowitz, J.Ferkinghoff-Borg, F.Rousseau, and L.Serrano (2008).
Genome-wide prediction of SH2 domain targets using structural information and the FoldX algorithm.
  PLoS Comput Biol, 4, e1000052.  
18260110 I.Lappalainen, J.Thusberg, B.Shen, and M.Vihinen (2008).
Genome wide analysis of pathogenic SH2 domain mutations.
  Proteins, 72, 779-792.  
18484636 T.Ozawa, and K.Okazaki (2008).
CH/pi hydrogen bonds determine the selectivity of the Src homology 2 domain to tyrosine phosphotyrosyl peptides: an ab initio fragment molecular orbital study.
  J Comput Chem, 29, 2656-2666.  
17599905 N.G.Clarkson, S.J.Simmonds, M.J.Puklavec, and M.H.Brown (2007).
Direct and indirect interactions of the cytoplasmic region of CD244 (2B4) in mice and humans with FYN kinase.
  J Biol Chem, 282, 25385-25394.  
17190795 Y.C.Liao, L.Si, R.W.deVere White, and S.H.Lo (2007).
The phosphotyrosine-independent interaction of DLC-1 and the SH2 domain of cten regulates focal adhesion localization and growth suppression activity of DLC-1.
  J Cell Biol, 176, 43-49.  
16493427 A.Veillette (2006).
Immune regulation by SLAM family receptors and SAP-related adaptors.
  Nat Rev Immunol, 6, 56-66.  
17100873 A.Veillette (2006).
NK cell regulation by SLAM family receptors and SAP-related adapters.
  Immunol Rev, 214, 22-34.  
16793553 B.A.Liu, K.Jablonowski, M.Raina, M.Arcé, T.Pawson, and P.D.Nash (2006).
The human and mouse complement of SH2 domain proteins-establishing the boundaries of phosphotyrosine signaling.
  Mol Cell, 22, 851-868.  
16983070 C.Gu, S.G.Tangye, X.Sun, Y.Luo, Z.Lin, and J.Wu (2006).
The X-linked lymphoproliferative disease gene product SAP associates with PAK-interacting exchange factor and participates in T cell activation.
  Proc Natl Acad Sci U S A, 103, 14447-14452.  
16702225 D.Imhof, A.S.Wavreille, A.May, M.Zacharias, S.Tridandapani, and D.Pei (2006).
Sequence specificity of SHP-1 and SHP-2 Src homology 2 domains. Critical roles of residues beyond the pY+3 position.
  J Biol Chem, 281, 20271-20282.  
17215871 E.A.Ostrakhovitch, and S.S.Li (2006).
The role of SLAM family receptors in immune cell signaling.
  Biochem Cell Biol, 84, 832-843.  
16905102 E.Bergamin, J.Wu, and S.R.Hubbard (2006).
Structural basis for phosphotyrosine recognition by suppressor of cytokine signaling-3.
  Structure, 14, 1285-1292.
PDB code: 2hmh
16611216 E.Tokonzaba, D.G.Capelluto, T.G.Kutateladze, and M.Overduin (2006).
Phosphoinositide, phosphopeptide and pyridone interactions of the Abl SH2 domain.
  Chem Biol Drug Des, 67, 230-237.  
16990796 L.V.Kalia, G.M.Pitcher, K.A.Pelkey, and M.W.Salter (2006).
PSD-95 is a negative regulator of the tyrosine kinase Src in the NMDA receptor complex.
  EMBO J, 25, 4971-4982.  
16914752 N.J.Hassan, S.J.Simmonds, N.G.Clarkson, S.Hanrahan, M.J.Puklavec, M.Bomb, A.N.Barclay, and M.H.Brown (2006).
CD6 regulates T-cell responses through activation-dependent recruitment of the positive regulator SLP-76.
  Mol Cell Biol, 26, 6727-6738.  
16847311 R.Chen, S.Latour, X.Shi, and A.Veillette (2006).
Association between SAP and FynT: Inducible SH3 domain-mediated interaction controlled by engagement of the SLAM receptor.
  Mol Cell Biol, 26, 5559-5568.  
16425036 S.Calpe, E.Erdos, G.Liao, N.Wang, S.Rietdijk, M.Simarro, B.Scholtz, J.Mooney, C.H.Lee, M.S.Shin, E.Rajnavölgyi, J.Schatzle, H.C.Morse, C.Terhorst, and A.Lanyi (2006).
Identification and characterization of two related murine genes, Eat2a and Eat2b, encoding single SH2-domain adapters.
  Immunogenetics, 58, 15-25.  
16436386 Y.Matoba, T.Kumagai, A.Yamamoto, H.Yoshitsu, and M.Sugiyama (2006).
Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis.
  J Biol Chem, 281, 8981-8990.
PDB codes: 1wx2 1wx3 1wx4 1wx5 1wxc 2ahk 2ahl 2zmx
15661030 K.E.Nichols, C.S.Ma, J.L.Cannons, P.L.Schwartzberg, and S.G.Tangye (2005).
Molecular and cellular pathogenesis of X-linked lymphoproliferative disease.
  Immunol Rev, 203, 180-199.  
16223723 K.Y.Lo, W.H.Chin, Y.P.Ng, A.W.Cheng, Z.H.Cheung, and N.Y.Ip (2005).
SLAM-associated protein as a potential negative regulator in Trk signaling.
  J Biol Chem, 280, 41744-41752.  
15774582 M.Morra, R.A.Barrington, A.C.Abadia-Molina, S.Okamoto, A.Julien, C.Gullo, A.Kalsy, M.J.Edwards, G.Chen, R.Spolski, W.J.Leonard, B.T.Huber, P.Borrow, C.A.Biron, A.R.Satoskar, M.C.Carroll, and C.Terhorst (2005).
Defective B cell responses in the absence of SH2D1A.
  Proc Natl Acad Sci U S A, 102, 4819-4823.  
15456882 B.Q.Vuong, T.L.Arenzana, B.M.Showalter, J.Losman, X.P.Chen, J.Mostecki, A.S.Banks, A.Limnander, N.Fernandez, and P.B.Rothman (2004).
SOCS-1 localizes to the microtubule organizing complex-associated 20S proteasome.
  Mol Cell Biol, 24, 9092-9101.  
14988414 P.A.Valdez, H.Wang, D.Seshasayee, M.van Lookeren Campagne, A.Gurney, W.P.Lee, and I.S.Grewal (2004).
NTB-A, a new activating receptor in T cells that regulates autoimmune disease.
  J Biol Chem, 279, 18662-18669.  
15541655 S.Latour, and A.Veillette (2004).
The SAP family of adaptors in immune regulation.
  Semin Immunol, 16, 409-419.  
12787752 A.Veillette, and S.Latour (2003).
The SLAM family of immune-cell receptors.
  Curr Opin Immunol, 15, 277-285.  
12545174 B.Chan, A.Lanyi, H.K.Song, J.Griesbach, M.Simarro-Grande, F.Poy, D.Howie, J.Sumegi, C.Terhorst, and M.J.Eck (2003).
SAP couples Fyn to SLAM immune receptors.
  Nat Cell Biol, 5, 155-160.
PDB code: 1m27
14674764 C.Li, C.Iosef, C.Y.Jia, T.Gkourasas, V.K.Han, and S.Shun-Cheng Li (2003).
Disease-causing SAP mutants are defective in ligand binding and protein folding.
  Biochemistry, 42, 14885-14892.  
12458214 C.Li, C.Iosef, C.Y.Jia, V.K.Han, and S.S.Li (2003).
Dual functional roles for the X-linked lymphoproliferative syndrome gene product SAP/SH2D1A in signaling through the signaling lymphocyte activation molecule (SLAM) family of immune receptors.
  J Biol Chem, 278, 3852-3859.  
12621057 J.M.Del Valle, P.Engel, and M.Martín (2003).
The cell surface expression of SAP-binding receptor CD229 is regulated via its interaction with clathrin-associated adaptor complex 2 (AP-2).
  J Biol Chem, 278, 17430-17437.  
14510176 K.C.Gilmour, and H.B.Gaspar (2003).
Pathogenesis and diagnosis of X-linked lymphoproliferative disease.
  Expert Rev Mol Diagn, 3, 549-561.  
12670391 L.P.Kane, and A.Weiss (2003).
The PI-3 kinase/Akt pathway and T cell activation: pleiotropic pathways downstream of PIP3.
  Immunol Rev, 192, 7.  
14583885 N.B.Halasa, J.A.Whitlock, T.L.McCurley, J.A.Smith, Q.Zhu, H.Ochs, T.S.Dermody, and J.E.Crowe (2003).
Fatal hemophagocytic lymphohistiocytosis associated with Epstein-Barr virus infection in a patient with a novel mutation in the signaling lymphocytic activation molecule-associated protein.
  Clin Infect Dis, 37, e136-e141.  
12496276 O.Cen, M.M.Gorska, S.J.Stafford, S.Sur, and R.Alam (2003).
Identification of UNC119 as a novel activator of SRC-type tyrosine kinases.
  J Biol Chem, 278, 8837-8845.  
14523387 P.Engel, M.J.Eck, and C.Terhorst (2003).
The SAP and SLAM families in immune responses and X-linked lymphoproliferative disease.
  Nat Rev Immunol, 3, 813-821.  
12670405 S.Ilangumaran, and R.Rottapel (2003).
Regulation of cytokine receptor signaling by SOCS1.
  Immunol Rev, 192, 196-211.  
12670406 S.Latour, and A.Veillette (2003).
Molecular and immunological basis of X-linked lymphoproliferative disease.
  Immunol Rev, 192, 212-224.  
12545173 S.Latour, R.Roncagalli, R.Chen, M.Bakinowski, X.Shi, P.L.Schwartzberg, D.Davidson, and A.Veillette (2003).
Binding of SAP SH2 domain to FynT SH3 domain reveals a novel mechanism of receptor signalling in immune regulation.
  Nat Cell Biol, 5, 149-154.  
12165201 A.J.MacGinnitie, and R.Geha (2002).
X-linked lymphoproliferative disease: genetic lesions and clinical consequences.
  Curr Allergy Asthma Rep, 2, 361-367.  
12171941 D.G.Woodside, A.Obergfell, A.Talapatra, D.A.Calderwood, S.J.Shattil, and M.H.Ginsberg (2002).
The N-terminal SH2 domains of Syk and ZAP-70 mediate phosphotyrosine-independent binding to integrin beta cytoplasmic domains.
  J Biol Chem, 277, 39401-39408.  
12152986 J.Sumegi, T.A.Seemayer, D.Huang, J.R.Davis, M.Morra, T.G.Gross, L.Yin, G.Romco, E.Klein, C.Terhorst, and A.Lanyi (2002).
A spectrum of mutations in SH2D1A that causes X-linked lymphoproliferative disease and other Epstein-Barr virus-associated illnesses.
  Leuk Lymphoma, 43, 1189-1201.  
12384576 L.W.Donaldson, G.Gish, T.Pawson, L.E.Kay, and J.D.Forman-Kay (2002).
Structure of a regulatory complex involving the Abl SH3 domain, the Crk SH2 domain, and a Crk-derived phosphopeptide.
  Proc Natl Acad Sci U S A, 99, 14053-14058.
PDB code: 1ju5
11994738 M.B.Yaffe (2002).
Phosphotyrosine-binding domains in signal transduction.
  Nat Rev Mol Cell Biol, 3, 177-186.  
11823424 P.M.Hwang, C.Li, M.Morra, J.Lillywhite, D.R.Muhandiram, F.Gertler, C.Terhorst, L.E.Kay, T.Pawson, J.D.Forman-Kay, and S.C.Li (2002).
A "three-pronged" binding mechanism for the SAP/SH2D1A SH2 domain: structural basis and relevance to the XLP syndrome.
  EMBO J, 21, 314-323.
PDB codes: 1ka6 1ka7
11406362 A.Leo, and B.Schraven (2001).
Adapters in lymphocyte signalling.
  Curr Opin Immunol, 13, 307-316.  
11536173 G.Henning, M.S.Kraft, T.Derfuss, R.Pirzer, G.de Saint-Basile, G.Aversa, B.Fleckenstein, and E.Meinl (2001).
Signaling lymphocytic activation molecule (SLAM) regulates T cellular cytotoxicity.
  Eur J Immunol, 31, 2741-2750.  
11406364 L.L.Lanier (2001).
Face off--the interplay between activating and inhibitory immune receptors.
  Curr Opin Immunol, 13, 326-331.  
11251878 L.Nitschke, H.Floyd, and P.R.Crocker (2001).
New functions for the sialic acid-binding adhesion molecule CD22, a member of the growing family of Siglecs.
  Scand J Immunol, 53, 227-234.  
11244050 M.Morra, D.Howie, M.S.Grande, J.Sayos, N.Wang, C.Wu, P.Engel, and C.Terhorst (2001).
X-linked lymphoproliferative disease: a progressive immunodeficiency.
  Annu Rev Immunol, 19, 657-682.  
11689425 M.Morra, J.Lu, F.Poy, M.Martin, J.Sayos, S.Calpe, C.Gullo, D.Howie, S.Rietdijk, A.Thompson, A.J.Coyle, C.Denny, M.B.Yaffe, P.Engel, M.J.Eck, and C.Terhorst (2001).
Structural basis for the interaction of the free SH2 domain EAT-2 with SLAM receptors in hematopoietic cells.
  EMBO J, 20, 5840-5852.
PDB code: 1i3z
10852966 B.S.Sylla, K.Murphy, E.Cahir-McFarland, W.S.Lane, G.Mosialos, and E.Kieff (2000).
The X-linked lymphoproliferative syndrome gene product SH2D1A associates with p62dok (Dok1) and activates NF-kappa B.
  Proc Natl Acad Sci U S A, 97, 7470-7475.  
12760058 D.Durocher, S.J.Smerdon, M.B.Yaffe, and S.P.Jackson (2000).
The FHA domain in DNA repair and checkpoint signaling.
  Cold Spring Harb Symp Quant Biol, 65, 423-431.  
10899030 D.Howie, J.Sayos, C.Terhorst, and M.Morra (2000).
The gene defective in X-linked lymphoproliferative disease controls T cell dependent immune surveillance against Epstein-Barr virus.
  Curr Opin Immunol, 12, 474-478.  
11093147 H.Nakajima, M.Cella, A.Bouchon, H.L.Grierson, J.Lewis, C.S.Duckett, J.I.Cohen, and M.Colonna (2000).
Patients with X-linked lymphoproliferative disease have a defect in 2B4 receptor-mediated NK cell cytotoxicity.
  Eur J Immunol, 30, 3309-3318.  
10911998 M.S.Kimber, J.Nachman, A.M.Cunningham, G.D.Gish, T.Pawson, and E.F.Pai (2000).
Structural basis for specificity switching of the Src SH2 domain.
  Mol Cell, 5, 1043-1049.
PDB codes: 1f1w 1f2f
10607564 S.C.Li, G.Gish, D.Yang, A.J.Coffey, J.D.Forman-Kay, I.Ernberg, L.E.Kay, and T.Pawson (1999).
Novel mode of ligand binding by the SH2 domain of the human XLP disease gene product SAP/SH2D1A.
  Curr Biol, 9, 1355-1362.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer