PDBsum entry 1cun

Go to PDB code: 
protein Protein-protein interface(s) links
Structural protein PDB id
Jmol PyMol
Protein chains
213 a.a. *
Waters ×688
* Residue conservation analysis
PDB id:
Name: Structural protein
Title: Crystal structure of repeats 16 and 17 of chicken brain alpha spectrin
Structure: Protein (alpha spectrin). Chain: a, b, c. Fragment: repeats 16 and 17 (residues 1771 to 1982 plus an n-terminal met). Engineered: yes. Mutation: yes
Source: Gallus gallus. Chicken. Organism_taxid: 9031. Gene: chicken brain mRNA for spectrin alpha-chain. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
Biol. unit: Hexamer (from PQS)
2.00Å     R-factor:   0.220     R-free:   0.257
Authors: V.L.Grum,D.Li,R.I.Macdonald,A.Mondragon
Key ref:
V.L.Grum et al. (1999). Structures of two repeats of spectrin suggest models of flexibility. Cell, 98, 523-535. PubMed id: 10481916 DOI: 10.1016/S0092-8674(00)81980-7
20-Aug-99     Release date:   06-Oct-99    
Go to PROCHECK summary

Protein chains
Pfam   ArchSchema ?
P07751  (SPTA2_CHICK) -  Spectrin alpha chain, non-erythrocytic 1
2477 a.a.
213 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 3 residue positions (black crosses)


DOI no: 10.1016/S0092-8674(00)81980-7 Cell 98:523-535 (1999)
PubMed id: 10481916  
Structures of two repeats of spectrin suggest models of flexibility.
V.L.Grum, D.Li, R.I.MacDonald, A.Mondragón.
Spectrin is a vital component of the cytoskeleton, conferring flexibility on cells and providing a scaffold for a variety of proteins. It is composed of tandem, antiparallel coiled-coil repeats. We report four related crystal structures at 1.45 A, 2.0 A, 3.1 A, and 4.0 A resolution of two connected repeats of chicken brain alpha-spectrin. In all of the structures, the linker region between adjacent units is alpha-helical without breaks, kinks, or obvious boundaries. Two features observed in the structures are (1) conformational rearrangement in one repeat, resulting in movement of the position of a loop, and (2) varying degrees of bending at the linker region. These features form the basis of two different models of flexibility: a conformational rearrangement and a bending model. These models provide novel atomic details of spectrin flexibility.
  Selected figure(s)  
Figure 1.
Figure 1. Structure of Two Repeats of Chicken Brain α-Spectrin(A) Schematic diagram of the structure of 2U[−8+4]. The first repeat (R16) is in red, the second repeat (R17) is in blue, and the linker region, which joins the repeats and is clearly helical, is in green.(B) Stereo diagram indicating all of the atoms of the same structure. The color scheme is identical to that in (A). Amino acids are numbered according to [51].
Figure 7.
Figure 7. The Bending Model of Spectrin FlexibilityThe lower panel is a hypothetical 20 repeat molecule based on the 2U structures and representing the fully extended conformation. The middle panel depicts an vert, similar 30% decrease in the end-to-end distance of spectrin due to its supercoiling into 2.5 superhelical turns with eight spectrin repeats per turn. The upper panel depicts a further decrease to 50% of the initial end-to-end distance by a further decrease in the pitch of the superhelix.
  The above figures are reprinted by permission from Cell Press: Cell (1999, 98, 523-535) copyright 1999.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21330489 A.P.Carter, C.Cho, L.Jin, and R.D.Vale (2011).
Crystal structure of the dynein motor domain.
  Science, 331, 1159-1165.
PDB code: 3qmz
21412925 Y.Song, C.Antoniou, A.Memic, B.K.Kay, and L.W.Fung (2011).
Apparent structural differences at the tetramerization region of erythroid and nonerythroid beta spectrin as discriminated by phage displayed scFvs.
  Protein Sci, 20, 867-879.  
20411297 A.Czogalla, and A.F.Sikorski (2010).
Do we already know how spectrin attracts ankyrin?
  Cell Mol Life Sci, 67, 2679-2683.  
20197550 J.J.Ipsaro, S.L.Harper, T.E.Messick, R.Marmorstein, A.Mondragón, and D.W.Speicher (2010).
Crystal structure and functional interpretation of the erythrocyte spectrin tetramerization domain complex.
  Blood, 115, 4843-4852.
PDB code: 3lbx
19906646 J.T.Hoopes, X.Liu, X.Xu, B.Demeler, E.Folta-Stogniew, C.Li, and Y.Ha (2010).
Structural characterization of the E2 domain of APL-1, a Caenorhabditis elegans homolog of human amyloid precursor protein, and its heparin binding site.
  J Biol Chem, 285, 2165-2173.
PDB codes: 3k66 3k6b
20079712 P.J.La-Borde, P.R.Stabach, I.Simonović, J.S.Morrow, and M.Simonović (2010).
Ankyrin recognizes both surface character and shape of the 14-15 di-repeat of beta-spectrin.
  Biochem Biophys Res Commun, 392, 490-494.  
19141864 J.J.Ipsaro, L.Huang, and A.Mondragón (2009).
Structures of the spectrin-ankyrin interaction binding domains.
  Blood, 113, 5385-5393.
PDB codes: 3f57 3f59
19168783 P.R.Stabach, I.Simonović, M.A.Ranieri, M.S.Aboodi, T.A.Steitz, M.Simonovi, and J.S.Morrow (2009).
The structure of the ankyrin-binding site of beta-spectrin reveals how tandem spectrin-repeats generate unique ligand-binding properties.
  Blood, 113, 5377-5384.
PDB code: 3edu
19478050 P.S.Low (2009).
Where spectrin snuggles with ankyrin.
  Blood, 113, 5372-5373.  
19072330 Q.Li, and L.W.Fung (2009).
Structural and dynamic study of the tetramerization region of non-erythroid alpha-spectrin: a frayed helix revealed by site-directed spin labeling electron paramagnetic resonance.
  Biochemistry, 48, 206-215.  
19158079 S.Legardinier, B.Legrand, C.Raguénès-Nicol, A.Bondon, S.Hardy, C.Tascon, E.Le Rumeur, and J.F.Hubert (2009).
A Two-amino Acid Mutation Encountered in Duchenne Muscular Dystrophy Decreases Stability of the Rod Domain 23 (R23) Spectrin-like Repeat of Dystrophin.
  J Biol Chem, 284, 8822-8832.  
19759292 X.Yang, J.Zou, D.R.Hyde, L.A.Davidson, and X.Wei (2009).
Stepwise maturation of apicobasal polarity of the neuroepithelium is essential for vertebrate neurulation.
  J Neurosci, 29, 11426-11440.  
18783249 C.Antoniou, V.Q.Lam, and L.W.Fung (2008).
Conformational changes at the tetramerization site of erythroid alpha-spectrin upon binding beta-spectrin: a spin label EPR study.
  Biochemistry, 47, 10765-10772.  
18445190 M.Weghofer, Y.Dall'Antonia, M.Grote, A.Stöcklinger, M.Kneidinger, N.Balic, M.T.Krauth, E.Fernández-Caldas, W.R.Thomas, M.van Hage, S.Vieths, S.Spitzauer, F.Horak, D.I.Svergun, P.V.Konarev, P.Valent, J.Thalhamer, W.Keller, R.Valenta, and S.Vrtala (2008).
Characterization of Der p 21, a new important allergen derived from the gut of house dust mites.
  Allergy, 63, 758-767.  
19436439 S.Batey, A.A.Nickson, and J.Clarke (2008).
Studying the folding of multidomain proteins.
  HFSP J, 2, 365-377.  
18815288 X.An, E.Gauthier, X.Zhang, X.Guo, D.J.Anstee, N.Mohandas, and J.A.Chasis (2008).
Adhesive activity of Lu glycoproteins is regulated by interaction with spectrin.
  Blood, 112, 5212-5218.  
17192394 C.P.Johnson, M.Gaetani, V.Ortiz, N.Bhasin, S.Harper, P.G.Gallagher, D.W.Speicher, and D.E.Discher (2007).
Pathogenic proline mutation in the linker between spectrin repeats: disease caused by spectrin unfolding.
  Blood, 109, 3538-3543.  
17905835 F.Long, D.McElheny, S.Jiang, S.Park, M.S.Caffrey, and L.W.Fung (2007).
Conformational change of erythroid alpha-spectrin at the tetramerization site upon binding beta-spectrin.
  Protein Sci, 16, 2519-2530.  
17356578 J.H.Han, S.Batey, A.A.Nickson, S.A.Teichmann, and J.Clarke (2007).
The folding and evolution of multidomain proteins.
  Nat Rev Mol Cell Biol, 8, 319-330.  
17161423 J.J.Jefferson, C.Ciatto, L.Shapiro, and R.K.Liem (2007).
Structural analysis of the plakin domain of bullous pemphigoid antigen1 (BPAG1) suggests that plakins are members of the spectrin superfamily.
  J Mol Biol, 366, 244-257.
PDB code: 2iak
17417653 K.Kamada, Y.Kubota, T.Arata, Y.Shindo, and F.Hanaoka (2007).
Structure of the human GINS complex and its assembly and functional interface in replication initiation.
  Nat Struct Mol Biol, 14, 388-396.
PDB code: 2e9x
17085494 L.G.Randles, R.W.Rounsevell, and J.Clarke (2007).
Spectrin domains lose cooperativity in forced unfolding.
  Biophys J, 92, 571-577.  
17510959 M.Salomone-Stagni, B.Zambelli, F.Musiani, and S.Ciurli (2007).
A model-based proposal for the role of UreF as a GTPase-activating protein in the urease active site biosynthesis.
  Proteins, 68, 749-761.  
17115122 M.Soncini, S.Vesentini, D.Ruffoni, M.Orsi, M.A.Deriu, and A.Redaelli (2007).
Mechanical response and conformational changes of alpha-actinin domains during unfolding: a molecular dynamics study.
  Biomech Model Mechanobiol, 6, 399-407.  
17867784 S.Paramore, G.S.Ayton, and G.A.Voth (2007).
Transient violations of the second law of thermodynamics in protein unfolding examined using synthetic atomic force microscopy and the fluctuation theorem.
  J Chem Phys, 127, 105105.  
17468340 X.Pei, X.Guo, R.Coppel, S.Bhattacharjee, K.Haldar, W.Gratzer, N.Mohandas, and X.An (2007).
The ring-infected erythrocyte surface antigen (RESA) of Plasmodium falciparum stabilizes spectrin tetramers and suppresses further invasion.
  Blood, 110, 1036-1042.  
17029004 A.Chakrabarti, D.A.Kelkar, and A.Chattopadhyay (2006).
Spectrin organization and dynamics: new insights.
  Biosci Rep, 26, 369-386.  
16971897 K.E.Davies, and K.J.Nowak (2006).
Molecular mechanisms of muscular dystrophies: old and new players.
  Nat Rev Mol Cell Biol, 7, 762-773.  
16716778 N.Menhart (2006).
Hybrid spectrin type repeats produced by exon-skipping in dystrophin.
  Biochim Biophys Acta, 1764, 993-999.  
16387757 S.Batey, K.A.Scott, and J.Clarke (2006).
Complex folding kinetics of a multidomain protein.
  Biophys J, 90, 2120-2130.  
16891371 S.Paramore, and G.A.Voth (2006).
Examining the influence of linkers and tertiary structure in the forced unfolding of multiple-repeat spectrin molecules.
  Biophys J, 91, 3436-3445.  
16227506 S.Paramore, G.S.Ayton, D.T.Mirijanian, and G.A.Voth (2006).
Extending a spectrin repeat unit. I: linear force-extension response.
  Biophys J, 90, 92.  
16227505 S.Paramore, G.S.Ayton, and G.A.Voth (2006).
Extending a spectrin repeat unit. II: rupture behavior.
  Biophys J, 90, 101-111.  
16476728 X.An, X.Guo, X.Zhang, A.J.Baines, G.Debnath, D.Moyo, M.Salomao, N.Bhasin, C.Johnson, D.Discher, W.B.Gratzer, and N.Mohandas (2006).
Conformational stabilities of the structural repeats of erythroid spectrin and their functional implications.
  J Biol Chem, 281, 10527-10532.  
15648086 D.A.Kelkar, A.Chattopadhyay, A.Chakrabarti, and M.Bhattacharyya (2005).
Effect of ionic strength on the organization and dynamics of tryptophan residues in erythroid spectrin: a fluorescence approach.
  Biopolymers, 77, 325-334.  
15749778 J.Li, M.Dao, C.T.Lim, and S.Suresh (2005).
Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte.
  Biophys J, 88, 3707-3719.  
15930007 K.A.Scott, and J.Clarke (2005).
Spectrin R16: broad energy barrier or sequential transition states?
  Protein Sci, 14, 1617-1629.  
15711878 S.Ray, M.Bhattacharyya, and A.Chakrabarti (2005).
Conformational study of spectrin in presence of submolar concentrations of denaturants.
  J Fluoresc, 15, 61-70.  
15937186 V.Oganesyan, N.Oganesyan, P.D.Adams, J.Jancarik, H.A.Yokota, R.Kim, and S.H.Kim (2005).
Crystal structure of the "PhoU-like" phosphate uptake regulator from Aquifex aeolicus.
  J Bacteriol, 187, 4238-4244.
PDB codes: 1t72 1t8b
14992721 A.Shimada, M.Nyitrai, I.R.Vetter, D.Kühlmann, B.Bugyi, S.Narumiya, M.A.Geeves, and A.Wittinghofer (2004).
The core FH2 domain of diaphanous-related formins is an elongated actin binding protein that inhibits polymerization.
  Mol Cell, 13, 511-522.
PDB code: 1v9d
15062087 H.Kusunoki, R.I.MacDonald, and A.Mondragón (2004).
Structural insights into the stability and flexibility of unusual erythroid spectrin repeats.
  Structure, 12, 645-656.
PDB code: 1s35
15232572 J.J.Jefferson, C.L.Leung, and R.K.Liem (2004).
Plakins: goliaths that link cell junctions and the cytoskeleton.
  Nat Rev Mol Cell Biol, 5, 542-553.  
15492010 M.Bhattacharyya, S.Ray, S.Bhattacharya, and A.Chakrabarti (2004).
Chaperone activity and prodan binding at the self-associating domain of erythroid spectrin.
  J Biol Chem, 279, 55080-55088.  
14747656 R.I.MacDonald, and J.A.Cummings (2004).
Stabilities of folding of clustered, two-repeat fragments of spectrin reveal a potential hinge in the human erythroid spectrin tetramer.
  Proc Natl Acad Sci U S A, 101, 1502-1507.  
14573853 A.Chattopadhyay, S.S.Rawat, D.A.Kelkar, S.Ray, and A.Chakrabarti (2003).
Organization and dynamics of tryptophan residues in erythroid spectrin: novel structural features of denatured spectrin revealed by the wavelength-selective fluorescence approach.
  Protein Sci, 12, 2389-2403.  
12486728 M.Albrecht, D.Hoffmann, B.O.Evert, I.Schmitt, U.Wüllner, and T.Lengauer (2003).
Structural modeling of ataxin-3 reveals distant homology to adaptins.
  Proteins, 50, 355-370.  
14536023 M.Grynberg, L.Jaroszewski, and A.Godzik (2003).
Domain analysis of the tubulin cofactor system: a model for tubulin folding and dimerization.
  BMC Bioinformatics, 4, 46.  
14581229 R.Law, G.Liao, S.Harper, G.Yang, D.W.Speicher, and D.E.Discher (2003).
Pathway shifts and thermal softening in temperature-coupled forced unfolding of spectrin domains.
  Biophys J, 85, 3286-3293.  
12524305 R.Law, P.Carl, S.Harper, P.Dalhaimer, D.W.Speicher, and D.E.Discher (2003).
Cooperativity in forced unfolding of tandem spectrin repeats.
  Biophys J, 84, 533-544.  
14661984 S.Mehboob, J.Jacob, M.May, L.Kotula, P.Thiyagarajan, M.E.Johnson, and L.W.Fung (2003).
Structural analysis of the alpha N-terminal region of erythroid and nonerythroid spectrins by small-angle X-ray scattering.
  Biochemistry, 42, 14702-14710.  
12672815 S.Park, M.S.Caffrey, M.E.Johnson, and L.W.Fung (2003).
Solution structural studies on human erythrocyte alpha-spectrin tetramerization site.
  J Biol Chem, 278, 21837-21844.
PDB code: 1owa
12451592 S.Ray, and A.Chakrabarti (2003).
Erythroid spectrin in miceller detergents.
  Cell Motil Cytoskeleton, 54, 16-28.  
12038451 B.H.Luo, S.Mehboob, M.G.Hurtuk, N.H.Pipalia, and L.W.Fung (2002).
Important region in the beta-spectrin C-terminus for spectrin tetramer formation.
  Eur J Haematol, 68, 73-79.  
11976292 L.C.Anthony, A.A.Dombkowski, and R.R.Burgess (2002).
Using disulfide bond engineering to study conformational changes in the beta'260-309 coiled-coil region of Escherichia coli RNA polymerase during sigma(70) binding.
  J Bacteriol, 184, 2634-2641.  
11844996 M.Nakao (2002).
New insights into regulation of erythrocyte shape.
  Curr Opin Hematol, 9, 127-132.  
12169623 M.Witty, C.Sanz, A.Shah, J.G.Grossmann, K.Mizuguchi, R.N.Perham, and B.Luisi (2002).
Structure of the periplasmic domain of Pseudomonas aeruginosa TolA: evidence for an evolutionary relationship with the TonB transporter protein.
  EMBO J, 21, 4207-4218.
PDB code: 1lr0
12021428 Y.Liu, and D.Eisenberg (2002).
3D domain swapping: as domains continue to swap.
  Protein Sci, 11, 1285-1299.  
11169588 G.H.Thomas (2001).
Spectrin: the ghost in the machine.
  Bioessays, 23, 152-160.  
11509359 V.Heinrich, K.Ritchie, N.Mohandas, and E.Evans (2001).
Elastic thickness compressibilty of the red cell membrane.
  Biophys J, 81, 1452-1463.  
11226153 W.Kliche, S.Fujita-Becker, M.Kollmar, D.J.Manstein, and F.J.Kull (2001).
Structure of a genetically engineered molecular motor.
  EMBO J, 20, 40-46.
PDB code: 1g8x
10698299 D.E.Discher (2000).
New insights into erythrocyte membrane organization and microelasticity.
  Curr Opin Hematol, 7, 117-122.  
10866978 L.Cherry, L.W.Fung, and N.Menhart (2000).
Flexibility of the alpha-spectrin N-terminus by EPR and fluorescence polarization.
  Biophys J, 79, 526-535.  
10607557 A.McGough (1999).
How to build a molecular shock absorber.
  Curr Biol, 9, R887-R889.  
10559237 Y.Sun, J.Zhang, S.K.Kraeft, D.Auclair, M.S.Chang, Y.Liu, R.Sutherland, R.Salgia, J.D.Griffin, L.H.Ferland, and L.B.Chen (1999).
Molecular cloning and characterization of human trabeculin-alpha, a giant protein defining a new family of actin-binding proteins.
  J Biol Chem, 274, 33522-33530.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.