UniProt functional annotation for P36887

UniProt code: P36887.

Organism: Sus scrofa (Pig).
Taxonomy: Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Laurasiatheria; Cetartiodactyla; Suina; Suidae; Sus.
 
Function: Phosphorylates a large number of substrates in the cytoplasm and the nucleus. Regulates the abundance of compartmentalized pools of its regulatory subunits through phosphorylation of PJA2 which binds and ubiquitinates these subunits, leading to their subsequent proteolysis. Phosphorylates CDC25B, ABL1, NFKB1, CLDN3, PSMC5/RPT6, PJA2, RYR2, RORA and VASP. RORA is activated by phosphorylation. Required for glucose- mediated adipogenic differentiation increase and osteogenic differentiation inhibition from osteoblasts. Involved in the regulation of platelets in response to thrombin and collagen; maintains circulating platelets in a resting state by phosphorylating proteins in numerous platelet inhibitory pathways when in complex with NF-kappa-B (NFKB1 and NFKB2) and I-kappa-B- alpha (NFKBIA), but thrombin and collagen disrupt these complexes and free active PRKACA stimulates platelets and leads to platelet aggregation by phosphorylating VASP. Prevents the antiproliferative and anti-invasive effects of alpha- difluoromethylornithine in breast cancer cells when activated. RYR2 channel activity is potentiated by phosphorylation in presence of luminal Ca(2+), leading to reduced amplitude and increased frequency of store overload-induced Ca(2+) release (SOICR) characterized by an increased rate of Ca(2+) release and propagation velocity of spontaneous Ca(2+) waves, despite reduced wave amplitude and resting cytosolic Ca(2+). PSMC5/RPT6 activation by phosphorylation stimulates proteasome. Negatively regulates tight junctions (TJs) in ovarian cancer cells via CLDN3 phosphorylation. NFKB1 phosphorylation promotes NF-kappa-B p50-p50 DNA binding. Involved in embryonic development by down-regulating the Hedgehog (Hh) signaling pathway that determines embryo pattern formation and morphogenesis. Prevents meiosis resumption in prophase-arrested oocytes via CDC25B inactivation by phosphorylation. May also regulate rapid eye movement (REM) sleep in the pedunculopontine tegmental (PPT) (By similarity). Phosphorylates APOBEC3G and AICDA (By similarity).
 
Catalytic activity: ATP + a protein = ADP + a phosphoprotein.
Enzyme regulation: Allosterically activated by various compounds, including ATP. Activated by cAMP; the nucleotide acts as a dynamic and allosteric activator by coupling the two lobes of apo PKA, enhancing the enzyme dynamics synchronously and priming it for catalysis.
Subunit: A number of inactive tetrameric holoenzymes are produced by the combination of homo- or heterodimers of the different regulatory subunits associated with two catalytic subunits. cAMP causes the dissociation of the inactive holoenzyme into a dimer of regulatory subunits bound to four cAMP and two free monomeric catalytic subunits. The cAMP-dependent protein kinase catalytic subunit binds PJA2. Activates cAMP-sensitive PKAI and PKAII holoenzymes by interacting with regulatory subunit (R) of PKA, PRKAR1A/PKR1 and PRKAR2A/PKR2, respectively. Interacts with NFKB1, NFKB2 and NFKBIA in platelets; these interactions are disrupted by thrombin and collagen. Binds to ABL1 in spermatozoa and with CDC25B in oocytes (By similarity). Interacts with APOBEC3G and AICDA (By similarity). Interacts with RAB13; downstream effector of RAB13 involved in tight junction assembly (By similarity).
Subcellular location: Cytoplasm (By similarity). Cell membrane (By similarity). Nucleus (By similarity). Mitochondrion (By similarity). Note=Translocates into the nucleus (monomeric catalytic subunit). The inactive holoenzyme is found in the cytoplasm. Distributed throughout the cytoplasm in meiotically incompetent oocytes. Associated to mitochondrion as meiotic competence is acquired. Aggregates around the germinal vesicles (GV) at the immature GV stage oocytes (By similarity).
Tissue specificity: Ubiquitously expressed in mammalian tissues.
Ptm: Asn-3 is deaminated to Asp in more than 25% of the proteins, giving rise to 2 major isoelectric variants, called CB and CA respectively (0.4 pH unit change). Deamidation proceeds via the so-called beta-aspartyl shift mechanism and yields either 'D-Asp- 2' (major) or 'D-isoAsp-2' (minor), in addition to L-isomers. Deamidation occurs after the addition of myristate. The Asn-3 form reaches a significantly larger nuclear/cytoplasmic ratio than the 'Asp-2' form.
Ptm: Autophosphorylated. Phosphorylation is enhanced by vitamin K(2). Phosphorylated on threonine and serine residues. Phosphorylation on Thr-198 is required for full activity (By similarity).
Ptm: Phosphorylated at Tyr-331 by activated receptor tyrosine kinases EGFR and PDGFR; this increases catalytic efficienncy (By similarity).
Similarity: Belongs to the protein kinase superfamily. AGC Ser/Thr protein kinase family. cAMP subfamily.
Similarity: Contains 1 AGC-kinase C-terminal domain.
Similarity: Contains 1 protein kinase domain.

Annotations taken from UniProtKB at the EBI.