spacer
spacer

PDBsum entry 1cpu

Go to PDB code: 
Top Page protein ligands metals links
Hydrolase PDB id
1cpu
Jmol
Contents
Protein chain
496 a.a. *
Ligands
GLC-AGL
GLC-GLC
NAG
HMC
Metals
_CA
_CL
Waters ×261
* Residue conservation analysis

References listed in PDB file
Key reference
Title Subsite mapping of the human pancreatic alpha-Amylase active site through structural, Kinetic, And mutagenesis techniques.
Authors G.D.Brayer, G.Sidhu, R.Maurus, E.H.Rydberg, C.Braun, Y.Wang, N.T.Nguyen, C.M.Overall, S.G.Withers.
Ref. Biochemistry, 2000, 39, 4778-4791. [DOI no: 10.1021/bi9921182]
PubMed id 10769135
Abstract
We report a multifaceted study of the active site region of human pancreatic alpha-amylase. Through a series of novel kinetic analyses using malto-oligosaccharides and malto-oligosaccharyl fluorides, an overall cleavage action pattern for this enzyme has been developed. The preferred binding/cleavage mode occurs when a maltose residue serves as the leaving group (aglycone sites +1 and +2) and there are three sugars in the glycon (-1, -2, -3) sites. Overall it appears that five binding subsites span the active site, although an additional glycon subsite appears to be a significant factor in the binding of longer substrates. Kinetic parameters for the cleavage of substrates modified at the 2 and 4' ' positions also highlight the importance of these hydroxyl groups for catalysis and identify the rate-determining step. Further kinetic and structural studies pinpoint Asp197 as being the likely nucleophile in catalysis, with substitution of this residue leading to an approximately 10(6)-fold drop in catalytic activity. Structural studies show that the original pseudo-tetrasaccharide structure of acarbose is modified upon binding, presumably through a series of hydrolysis and transglycosylation reactions. The end result is a pseudo-pentasaccharide moiety that spans the active site region with its N-linked "glycosidic" bond positioned at the normal site of cleavage. Interestingly, the side chains of Glu233 and Asp300, along with a water molecule, are aligned about the inhibitor N-linked glycosidic bond in a manner suggesting that these might act individually or collectively in the role of acid/base catalyst in the reaction mechanism. Indeed, kinetic analyses show that substitution of the side chains of either Glu233 or Asp300 leads to as much as a approximately 10(3)-fold decrease in catalytic activity. Structural analyses of the Asp300Asn variant of human pancreatic alpha-amylase and its complex with acarbose clearly demonstrate the importance of Asp300 to the mode of inhibitor binding.
PROCHECK
Go to PROCHECK summary
 Headers