|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Calmodulin-peptide complex
|
 |
|
Title:
|
 |
Calmodulin/rat ca2+/calmodulin dependent protein kinase fragment
|
|
Structure:
|
 |
Calmodulin-1. Chain: a. Engineered: yes. Calcium/calmodulin-dependent protein kinase kinase 1. Chain: b. Fragment: calmodulin binding domain. Synonym: camkk 1,cam-kinase iv kinase,calcium/calmodulin-dependent protein kinase kinase alpha,camkk alpha. Engineered: yes.
|
|
Source:
|
 |
Xenopus laevis. African clawed frog. Organism_taxid: 8355. Gene: calm1. Expressed in: escherichia coli. Expression_system_taxid: 562. Rattus norvegicus. Rat. Organism_taxid: 10116.
|
|
NMR struc:
|
 |
30 models
|
 |
|
Authors:
|
 |
M.Osawa,H.Tokumitsu,M.B.Swindells,H.Kurihara,M.Orita,T.Shibanuma, T.Furuya,M.Ikura
|
Key ref:
|
 |
M.Osawa
et al.
(1999).
A novel target recognition revealed by calmodulin in complex with Ca2+-calmodulin-dependent kinase kinase.
Nat Struct Biol,
6,
819-824.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
20-Nov-98
|
Release date:
|
10-Sep-99
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
Chain B:
E.C.2.7.11.17
- calcium/calmodulin-dependent protein kinase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
|
1.
|
L-seryl-[protein] + ATP = O-phospho-L-seryl-[protein] + ADP + H+
|
|
2.
|
L-threonyl-[protein] + ATP = O-phospho-L-threonyl-[protein] + ADP + H+
|
|
 |
 |
 |
 |
 |
L-seryl-[protein]
|
+
|
ATP
|
=
|
O-phospho-L-seryl-[protein]
|
+
|
ADP
|
+
|
H(+)
|
|
 |
 |
 |
 |
 |
L-threonyl-[protein]
|
+
|
ATP
|
=
|
O-phospho-L-threonyl-[protein]
|
+
|
ADP
|
+
|
H(+)
|
|
 |
 |
 |
 |
 |
 |
 |
 |
Cofactor:
|
 |
Ca(2+)
|
 |
 |
 |
 |
 |
 |
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
DOI no:
|
Nat Struct Biol
6:819-824
(1999)
|
|
PubMed id:
|
|
|
|
|
| |
|
A novel target recognition revealed by calmodulin in complex with Ca2+-calmodulin-dependent kinase kinase.
|
|
M.Osawa,
H.Tokumitsu,
M.B.Swindells,
H.Kurihara,
M.Orita,
T.Shibanuma,
T.Furuya,
M.Ikura.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The structure of calcium-bound calmodulin (Ca2+/CaM) complexed with a 26-residue
peptide, corresponding to the CaM-binding domain of rat Ca2+/CaM-dependent
protein kinase kinase (CaMKK), has been determined by NMR spectroscopy. In this
complex, the CaMKK peptide forms a fold comprising an alpha-helix and a
hairpin-like loop whose C-terminus folds back on itself. The binding orientation
of this CaMKK peptide by the two CaM domains is opposite to that observed in all
other CaM-target complexes determined so far. The N- and C-terminal hydrophobic
pockets of Ca2+/CaM anchor Trp 444 and Phe 459 of the CaMKK peptide,
respectively. This 14-residue separation between two key hydrophobic groups is
also unique among previously determined CaM complexes. The present structure
represents a new and distinct class of Ca2+/CaM target recognition that may be
shared by other Ca2+/CaM-stimulated proteins.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 2.
Figure 2. a, Schematic drawing of interacting residues between
Ca ^2+ /CaM and CaMKK peptide. Residues in N-domain and
C-domain are colored in cyan and violet, respectively. Key
residues of the CaMKK peptide anchoring the hydrophobic pocket
in each domain, Trp 444 and Phe 459, are shown in green. b,
Portions of ^13 C/F[3]-filtered ^13 C/F[1]-edited HMQC-NOESY
spectrum ^24 showing intermolecular NOEs between CaM and the
CaMKK peptide. Stereo drawing of the key residues of CaMKK
peptide in the hydrophobic pocket of c, N-domain and
d,C−domain. esidues within 5 Šof the key residues, Trp
444 and Phe 459, are shown. N, O and S atoms are colored in
blue, red and yellow, respectively, while C atoms of N- and
C-domain of CaM and CaMKK are shown in cyan, violet and gray,
respectively. Diagrams (c) and (d) were generated using the
program MOLMOL^55.
|
 |
Figure 3.
Figure 3. Electrostatic potential surfaces of the CaM−target
peptide complexes. In the upper panels, the surface of Ca ^2+
/CaM is shown with the target peptide as an yellow tube. The
peptide surface is in the lower panels. The surface is colored
according to the local electrostatic potential, with blue and
red representing positive and negative potential, respectively.
Acidic and basic residues interacting with the target peptide
are labeled in red and blue, respectively. a, CaM−CaMKK; b,
CaM−MLCK^19, ^20; c, CaM−CaMKII^21. The domain linker of CaM
in the CaM−CaMKII complex was modeled in the Insight II, since
residues 74−83 are absent from the PDB file because of the
high flexibility of this region.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Macmillan Publishers Ltd:
Nat Struct Biol
(1999,
6,
819-824)
copyright 1999.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
J.L.Gifford,
H.Ishida,
and
H.J.Vogel
(2011).
Fast methionine-based solution structure determination of calcium-calmodulin complexes.
|
| |
J Biomol NMR,
50,
71-81.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Tokumitsu,
N.Hatano,
M.Tsuchiya,
S.Yurimoto,
T.Fujimoto,
N.Ohara,
R.Kobayashi,
and
H.Sakagami
(2010).
Identification and characterization of PRG-1 as a neuronal calmodulin-binding protein.
|
| |
Biochem J,
431,
81-91.
|
 |
|
|
|
|
 |
M.S.Marlow,
J.Dogan,
K.K.Frederick,
K.G.Valentine,
and
A.J.Wand
(2010).
The role of conformational entropy in molecular recognition by calmodulin.
|
| |
Nat Chem Biol,
6,
352-358.
|
 |
|
|
|
|
 |
N.Juranic,
E.Atanasova,
A.G.Filoteo,
S.Macura,
F.G.Prendergast,
J.T.Penniston,
and
E.E.Strehler
(2010).
Calmodulin wraps around its binding domain in the plasma membrane Ca2+ pump anchored by a novel 18-1 motif.
|
| |
J Biol Chem,
285,
4015-4024.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
N.Uchikoga,
and
T.Hirokawa
(2010).
Analysis of protein-protein docking decoys using interaction fingerprints: application to the reconstruction of CaM-ligand complexes.
|
| |
BMC Bioinformatics,
11,
236.
|
 |
|
|
|
|
 |
Y.Zhang,
H.Tan,
G.Chen,
and
Z.Jia
(2010).
Investigating the disorder-order transition of calmodulin binding domain upon binding calmodulin using molecular dynamics simulation.
|
| |
J Mol Recognit,
23,
360-368.
|
 |
|
|
|
|
 |
C.Neufeld,
F.V.Filipp,
B.Simon,
A.Neuhaus,
N.Schüller,
C.David,
H.Kooshapur,
T.Madl,
R.Erdmann,
W.Schliebs,
M.Wilmanns,
and
M.Sattler
(2009).
Structural basis for competitive interactions of Pex14 with the import receptors Pex5 and Pex19.
|
| |
EMBO J,
28,
745-754.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.A.Macdougall,
S.Wachten,
A.Ciruela,
A.Sinz,
and
D.M.Cooper
(2009).
Separate elements within a single IQ-like motif in adenylyl cyclase type 8 impart ca2+/calmodulin binding and autoinhibition.
|
| |
J Biol Chem,
284,
15573-15588.
|
 |
|
|
|
|
 |
J.P.Junker,
and
M.Rief
(2009).
Single-molecule force spectroscopy distinguishes target binding modes of calmodulin.
|
| |
Proc Natl Acad Sci U S A,
106,
14361-14366.
|
 |
|
|
|
|
 |
L.Wang,
K.Tsuda,
M.Sato,
J.D.Cohen,
F.Katagiri,
and
J.Glazebrook
(2009).
Arabidopsis CaM binding protein CBP60g contributes to MAMP-induced SA accumulation and is involved in disease resistance against Pseudomonas syringae.
|
| |
PLoS Pathog,
5,
e1000301.
|
 |
|
|
|
|
 |
N.T.Wright,
B.R.Cannon,
P.T.Wilder,
M.T.Morgan,
K.M.Varney,
D.B.Zimmer,
and
D.J.Weber
(2009).
Solution structure of S100A1 bound to the CapZ peptide (TRTK12).
|
| |
J Mol Biol,
386,
1265-1277.
|
 |
|
|
|
|
 |
Q.K.Kleerekoper,
and
J.A.Putkey
(2009).
PEP-19, an Intrinsically Disordered Regulator of Calmodulin Signaling.
|
| |
J Biol Chem,
284,
7455-7464.
|
 |
|
|
|
|
 |
S.J.Abraham,
R.P.Nolet,
R.J.Calvert,
L.M.Anderson,
and
V.Gaponenko
(2009).
The hypervariable region of K-Ras4B is responsible for its specific interactions with calmodulin.
|
| |
Biochemistry,
48,
7575-7583.
|
 |
|
|
|
|
 |
A.Scheschonka,
S.Findlow,
R.Schemm,
O.El Far,
J.H.Caldwell,
M.P.Crump,
K.Holden-Dye,
V.O'Connor,
H.Betz,
and
J.M.Werner
(2008).
Structural determinants of calmodulin binding to the intracellular C-terminal domain of the metabotropic glutamate receptor 7A.
|
| |
J Biol Chem,
283,
5577-5588.
|
 |
|
|
|
|
 |
D.S.Libich,
and
G.Harauz
(2008).
Backbone dynamics of the 18.5 kDa isoform of myelin basic protein reveals transient alpha-helices and a calmodulin-binding site.
|
| |
Biophys J,
94,
4847-4866.
|
 |
|
|
|
|
 |
E.Y.Kim,
C.H.Rumpf,
Y.Fujiwara,
E.S.Cooley,
F.Van Petegem,
and
D.L.Minor
(2008).
Structures of CaV2 Ca2+/CaM-IQ domain complexes reveal binding modes that underlie calcium-dependent inactivation and facilitation.
|
| |
Structure,
16,
1455-1467.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
L.He,
Z.Hou,
and
R.Z.Qi
(2008).
Calmodulin binding and Cdk5 phosphorylation of p35 regulate its effect on microtubules.
|
| |
J Biol Chem,
283,
13252-13260.
|
 |
|
|
|
|
 |
M.X.Mori,
C.W.Vander Kooi,
D.J.Leahy,
and
D.T.Yue
(2008).
Crystal structure of the CaV2 IQ domain in complex with Ca2+/calmodulin: high-resolution mechanistic implications for channel regulation by Ca2+.
|
| |
Structure,
16,
607-620.
|
 |
|
|
|
|
 |
N.V.Valeyev,
D.G.Bates,
P.Heslop-Harrison,
I.Postlethwaite,
and
N.V.Kotov
(2008).
Elucidating the mechanisms of cooperative calcium-calmodulin interactions: a structural systems biology approach.
|
| |
BMC Syst Biol,
2,
48.
|
 |
|
|
|
|
 |
Q.Guo,
J.E.Jureller,
J.T.Warren,
E.Solomaha,
J.Florián,
and
W.J.Tang
(2008).
Protein-protein docking and analysis reveal that two homologous bacterial adenylyl cyclase toxins interact with calmodulin differently.
|
| |
J Biol Chem,
283,
23836-23845.
|
 |
|
|
|
|
 |
Q.Ye,
H.Wang,
J.Zheng,
Q.Wei,
and
Z.Jia
(2008).
The complex structure of calmodulin bound to a calcineurin peptide.
|
| |
Proteins,
73,
19-27.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Y.Zhang,
H.Tan,
Z.Jia,
and
G.Chen
(2008).
Ligand-induced dimer formation of calmodulin.
|
| |
J Mol Recognit,
21,
267-274.
|
 |
|
|
|
|
 |
E.Pham,
J.Chiang,
I.Li,
W.Shum,
and
K.Truong
(2007).
A computational tool for designing FRET protein biosensors by rigid-body sampling of their conformational space.
|
| |
Structure,
15,
515-523.
|
 |
|
|
|
|
 |
H.S.Kim,
B.O.Park,
J.H.Yoo,
M.S.Jung,
S.M.Lee,
H.J.Han,
K.E.Kim,
S.H.Kim,
C.O.Lim,
D.J.Yun,
S.Y.Lee,
and
W.S.Chung
(2007).
Identification of a calmodulin-binding NAC protein as a transcriptional repressor in Arabidopsis.
|
| |
J Biol Chem,
282,
36292-36302.
|
 |
|
|
|
|
 |
J.R.Horton,
S.J.Elgar,
S.I.Khan,
X.Zhang,
P.A.Wade,
and
X.Cheng
(2007).
Structure of the SANT domain from the Xenopus chromatin remodeling factor ISWI.
|
| |
Proteins,
67,
1198-1202.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.L.Russell,
N.V.McFerran,
E.M.Hoey,
A.Trudgett,
and
D.J.Timson
(2007).
Characterisation of two calmodulin-like proteins from the liver fluke, Fasciola hepatica.
|
| |
Biol Chem,
388,
593-599.
|
 |
|
|
|
|
 |
Y.Zhou,
W.Yang,
M.M.Lurtz,
Y.Ye,
Y.Huang,
H.W.Lee,
Y.Chen,
C.F.Louis,
and
J.J.Yang
(2007).
Identification of the calmodulin binding domain of connexin 43.
|
| |
J Biol Chem,
282,
35005-35017.
|
 |
|
|
|
|
 |
A.A.Maximciuc,
J.A.Putkey,
Y.Shamoo,
and
K.R.Mackenzie
(2006).
Complex of calmodulin with a ryanodine receptor target reveals a novel, flexible binding mode.
|
| |
Structure,
14,
1547-1556.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Ganoth,
E.Nachliel,
R.Friedman,
and
M.Gutman
(2006).
Molecular dynamics study of a calmodulin-like protein with an IQ peptide: spontaneous refolding of the protein around the peptide.
|
| |
Proteins,
64,
133-146.
|
 |
|
|
|
|
 |
A.Ganoth,
R.Friedman,
E.Nachliel,
and
M.Gutman
(2006).
A molecular dynamics study and free energy analysis of complexes between the Mlc1p protein and two IQ motif peptides.
|
| |
Biophys J,
91,
2436-2450.
|
 |
|
|
|
|
 |
A.Houdusse,
J.F.Gaucher,
E.Krementsova,
S.Mui,
K.M.Trybus,
and
C.Cohen
(2006).
Crystal structure of apo-calmodulin bound to the first two IQ motifs of myosin V reveals essential recognition features.
|
| |
Proc Natl Acad Sci U S A,
103,
19326-19331.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Raichaudhuri,
R.Bhattacharyya,
S.Chaudhuri,
P.Chakrabarti,
and
M.Dasgupta
(2006).
Domain analysis of a groundnut calcium-dependent protein kinase: nuclear localization sequence in the junction domain is coupled with nonconsensus calcium binding domains.
|
| |
J Biol Chem,
281,
10399-10409.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.E.Spratt,
E.Newman,
J.Mosher,
D.K.Ghosh,
J.C.Salerno,
and
J.G.Guillemette
(2006).
Binding and activation of nitric oxide synthase isozymes by calmodulin EF hand pairs.
|
| |
FEBS J,
273,
1759-1771.
|
 |
|
|
|
|
 |
J.Martinez-Sanz,
A.Yang,
Y.Blouquit,
P.Duchambon,
L.Assairi,
and
C.T.Craescu
(2006).
Binding of human centrin 2 to the centrosomal protein hSfi1.
|
| |
FEBS J,
273,
4504-4515.
|
 |
|
|
|
|
 |
K.Chen,
J.Ruan,
and
L.A.Kurgan
(2006).
Prediction of three dimensional structure of calmodulin.
|
| |
Protein J,
25,
57-70.
|
 |
|
|
|
|
 |
L.Baekgaard,
L.Luoni,
M.I.De Michelis,
and
M.G.Palmgren
(2006).
The plant plasma membrane Ca2+ pump ACA8 contains overlapping as well as physically separated autoinhibitory and calmodulin-binding domains.
|
| |
J Biol Chem,
281,
1058-1065.
|
 |
|
|
|
|
 |
M.Ikura,
and
J.B.Ames
(2006).
Genetic polymorphism and protein conformational plasticity in the calmodulin superfamily: two ways to promote multifunctionality.
|
| |
Proc Natl Acad Sci U S A,
103,
1159-1164.
|
 |
|
|
|
|
 |
M.S.Marlow,
and
A.J.Wand
(2006).
Conformational dynamics of calmodulin in complex with the calmodulin-dependent kinase kinase alpha calmodulin-binding domain.
|
| |
Biochemistry,
45,
8732-8741.
|
 |
|
|
|
|
 |
P.Radivojac,
S.Vucetic,
T.R.O'Connor,
V.N.Uversky,
Z.Obradovic,
and
A.K.Dunker
(2006).
Calmodulin signaling: analysis and prediction of a disorder-dependent molecular recognition.
|
| |
Proteins,
63,
398-410.
|
 |
|
|
|
|
 |
S.Li,
A.M.Sandercock,
P.Conduit,
C.V.Robinson,
R.L.Williams,
and
J.V.Kilmartin
(2006).
Structural role of Sfi1p-centrin filaments in budding yeast spindle pole body duplication.
|
| |
J Cell Biol,
173,
867-877.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.L.Chyan,
P.C.Huang,
T.H.Lin,
J.W.Huang,
S.S.Lin,
H.B.Huang,
and
Y.C.Chen
(2005).
Purification, crystallization and preliminary crystallographic studies of a calmodulin-OLFp hybrid molecule.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
61,
785-787.
|
 |
|
|
|
|
 |
F.Van Petegem,
F.C.Chatelain,
and
D.L.Minor
(2005).
Insights into voltage-gated calcium channel regulation from the structure of the CaV1.2 IQ domain-Ca2+/calmodulin complex.
|
| |
Nat Struct Mol Biol,
12,
1108-1115.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
G.Fiorin,
R.R.Biekofsky,
A.Pastore,
and
P.Carloni
(2005).
Unwinding the helical linker of calcium-loaded calmodulin: a molecular dynamics study.
|
| |
Proteins,
61,
829-839.
|
 |
|
|
|
|
 |
G.M.Contessa,
M.Orsale,
S.Melino,
V.Torre,
M.Paci,
A.Desideri,
and
D.O.Cicero
(2005).
Structure of calmodulin complexed with an olfactory CNG channel fragment and role of the central linker: residual dipolar couplings to evaluate calmodulin binding modes outside the kinase family.
|
| |
J Biomol NMR,
31,
185-199.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.L.Fallon,
D.B.Halling,
S.L.Hamilton,
and
F.A.Quiocho
(2005).
Structure of calmodulin bound to the hydrophobic IQ domain of the cardiac Ca(v)1.2 calcium channel.
|
| |
Structure,
13,
1881-1886.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
L.Xiong,
Q.K.Kleerekoper,
R.He,
J.A.Putkey,
and
S.L.Hamilton
(2005).
Sites on calmodulin that interact with the C-terminal tail of Cav1.2 channel.
|
| |
J Biol Chem,
280,
7070-7079.
|
 |
|
|
|
|
 |
A.P.Yamniuk,
and
H.J.Vogel
(2004).
Structurally homologous binding of plant calmodulin isoforms to the calmodulin-binding domain of vacuolar calcium-ATPase.
|
| |
J Biol Chem,
279,
7698-7707.
|
 |
|
|
|
|
 |
C.H.Yun,
J.Bai,
D.Y.Sun,
D.F.Cui,
W.R.Chang,
and
D.C.Liang
(2004).
Structure of potato calmodulin PCM6: the first report of the three-dimensional structure of a plant calmodulin.
|
| |
Acta Crystallogr D Biol Crystallogr,
60,
1214-1219.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
E.Newman,
D.E.Spratt,
J.Mosher,
B.Cheyne,
H.J.Montgomery,
D.L.Wilson,
J.B.Weinberg,
S.M.Smith,
J.C.Salerno,
D.K.Ghosh,
and
J.G.Guillemette
(2004).
Differential activation of nitric-oxide synthase isozymes by calmodulin-troponin C chimeras.
|
| |
J Biol Chem,
279,
33547-33557.
|
 |
|
|
|
|
 |
I.Bertini,
C.Del Bianco,
I.Gelis,
N.Katsaros,
C.Luchinat,
G.Parigi,
M.Peana,
A.Provenzani,
and
M.A.Zoroddu
(2004).
Experimentally exploring the conformational space sampled by domain reorientation in calmodulin.
|
| |
Proc Natl Acad Sci U S A,
101,
6841-6846.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.H.Yoo,
M.S.Cheong,
C.Y.Park,
B.C.Moon,
M.C.Kim,
Y.H.Kang,
H.C.Park,
M.S.Choi,
J.H.Lee,
W.Y.Jung,
H.W.Yoon,
W.S.Chung,
C.O.Lim,
S.Y.Lee,
and
M.J.Cho
(2004).
Regulation of the dual specificity protein phosphatase, DsPTP1, through interactions with calmodulin.
|
| |
J Biol Chem,
279,
848-858.
|
 |
|
|
|
|
 |
M.A.Schumacher,
M.Crum,
and
M.C.Miller
(2004).
Crystal structures of apocalmodulin and an apocalmodulin/SK potassium channel gating domain complex.
|
| |
Structure,
12,
849-860.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Matsubara,
T.Nakatsu,
H.Kato,
and
H.Taniguchi
(2004).
Crystal structure of a myristoylated CAP-23/NAP-22 N-terminal domain complexed with Ca2+/calmodulin.
|
| |
EMBO J,
23,
712-718.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.M.Weljie,
A.P.Yamniuk,
H.Yoshino,
Y.Izumi,
and
H.J.Vogel
(2003).
Protein conformational changes studied by diffusion NMR spectroscopy: application to helix-loop-helix calcium binding proteins.
|
| |
Protein Sci,
12,
228-236.
|
 |
|
|
|
|
 |
A.Popescu,
S.Miron,
Y.Blouquit,
P.Duchambon,
P.Christova,
and
C.T.Craescu
(2003).
Xeroderma pigmentosum group C protein possesses a high affinity binding site to human centrin 2 and calmodulin.
|
| |
J Biol Chem,
278,
40252-40261.
|
 |
|
|
|
|
 |
D.S.Libich,
C.M.Hill,
I.R.Bates,
F.R.Hallett,
S.Armstrong,
A.Siemiarczuk,
and
G.Harauz
(2003).
Interaction of the 18.5-kD isoform of myelin basic protein with Ca2+ -calmodulin: effects of deimination assessed by intrinsic Trp fluorescence spectroscopy, dynamic light scattering, and circular dichroism.
|
| |
Protein Sci,
12,
1507-1521.
|
 |
|
|
|
|
 |
E.Yamauchi,
T.Nakatsu,
M.Matsubara,
H.Kato,
and
H.Taniguchi
(2003).
Crystal structure of a MARCKS peptide containing the calmodulin-binding domain in complex with Ca2+-calmodulin.
|
| |
Nat Struct Biol,
10,
226-231.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Tokumitsu,
H.Inuzuka,
Y.Ishikawa,
and
R.Kobayashi
(2003).
A single amino acid difference between alpha and beta Ca2+/calmodulin-dependent protein kinase kinase dictates sensitivity to the specific inhibitor, STO-609.
|
| |
J Biol Chem,
278,
10908-10913.
|
 |
|
|
|
|
 |
I.Berger,
C.Bieniossek,
C.Schaffitzel,
M.Hassler,
E.Santelli,
and
T.J.Richmond
(2003).
Direct interaction of Ca2+/calmodulin inhibits histone deacetylase 5 repressor core binding to myocyte enhancer factor 2.
|
| |
J Biol Chem,
278,
17625-17635.
|
 |
|
|
|
|
 |
J.M.Shifman,
and
S.L.Mayo
(2003).
Exploring the origins of binding specificity through the computational redesign of calmodulin.
|
| |
Proc Natl Acad Sci U S A,
100,
13274-13279.
|
 |
|
|
|
|
 |
M.Aoyagi,
A.S.Arvai,
J.A.Tainer,
and
E.D.Getzoff
(2003).
Structural basis for endothelial nitric oxide synthase binding to calmodulin.
|
| |
EMBO J,
22,
766-775.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.W.Vetter,
and
E.Leclerc
(2003).
Novel aspects of calmodulin target recognition and activation.
|
| |
Eur J Biochem,
270,
404-414.
|
 |
|
|
|
|
 |
D.S.Libich,
and
G.Harauz
(2002).
Interactions of the 18.5-kDa isoform of myelin basic protein with Ca(2+)-calmodulin: in vitro studies using fluorescence microscopy and spectroscopy.
|
| |
Biochem Cell Biol,
80,
395-406.
|
 |
|
|
|
|
 |
H.Tokumitsu,
H.Inuzuka,
Y.Ishikawa,
M.Ikeda,
I.Saji,
and
R.Kobayashi
(2002).
STO-609, a specific inhibitor of the Ca(2+)/calmodulin-dependent protein kinase kinase.
|
| |
J Biol Chem,
277,
15813-15818.
|
 |
|
|
|
|
 |
J.D.Joseph,
and
A.R.Means
(2002).
Calcium binding is required for calmodulin function in Aspergillus nidulans.
|
| |
Eukaryot Cell,
1,
119-125.
|
 |
|
|
|
|
 |
J.K.Kranz,
E.K.Lee,
A.C.Nairn,
and
A.J.Wand
(2002).
A direct test of the reductionist approach to structural studies of calmodulin activity: relevance of peptide models of target proteins.
|
| |
J Biol Chem,
277,
16351-16354.
|
 |
|
|
|
|
 |
M.C.Kim,
S.H.Lee,
J.K.Kim,
H.J.Chun,
M.S.Choi,
W.S.Chung,
B.C.Moon,
C.H.Kang,
C.Y.Park,
J.H.Yoo,
Y.H.Kang,
S.C.Koo,
Y.D.Koo,
J.C.Jung,
S.T.Kim,
P.Schulze-Lefert,
S.Y.Lee,
and
M.J.Cho
(2002).
Mlo, a modulator of plant defense and cell death, is a novel calmodulin-binding protein. Isolation and characterization of a rice Mlo homologue.
|
| |
J Biol Chem,
277,
19304-19314.
|
 |
|
|
|
|
 |
M.Ikura,
M.Osawa,
and
J.B.Ames
(2002).
The role of calcium-binding proteins in the control of transcription: structure to function.
|
| |
Bioessays,
24,
625-636.
|
 |
|
|
|
|
 |
M.L.Mattinen,
K.Pääkkönen,
T.Ikonen,
J.Craven,
T.Drakenberg,
R.Serimaa,
J.Waltho,
and
A.Annila
(2002).
Quaternary structure built from subunits combining NMR and small-angle x-ray scattering data.
|
| |
Biophys J,
83,
1177-1183.
|
 |
|
|
|
|
 |
N.Hayashi,
M.Matsubara,
Y.Jinbo,
K.Titani,
Y.Izumi,
and
N.Matsushima
(2002).
Nef of HIV-1 interacts directly with calcium-bound calmodulin.
|
| |
Protein Sci,
11,
529-537.
|
 |
|
|
|
|
 |
R.Wissmann,
W.Bildl,
H.Neumann,
A.F.Rivard,
N.Klöcker,
D.Weitz,
U.Schulte,
J.P.Adelman,
D.Bentrop,
and
B.Fakler
(2002).
A helical region in the C terminus of small-conductance Ca2+-activated K+ channels controls assembly with apo-calmodulin.
|
| |
J Biol Chem,
277,
4558-4564.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.R.Martin,
and
P.M.Bayley
(2002).
Regulatory implications of a novel mode of interaction of calmodulin with a double IQ-motif target sequence from murine dilute myosin V.
|
| |
Protein Sci,
11,
2909-2923.
|
 |
|
|
|
|
 |
W.T.Barry,
C.Boudignon-Proudhon,
D.D.Shock,
A.McFadden,
J.M.Weiss,
J.Sondek,
and
L.V.Parise
(2002).
Molecular basis of CIB binding to the integrin alpha IIb cytoplasmic domain.
|
| |
J Biol Chem,
277,
28877-28883.
|
 |
|
|
|
|
 |
B.R.Sorensen,
J.T.Eppel,
and
M.A.Shea
(2001).
Paramecium calmodulin mutants defective in ion channel regulation associate with melittin in the absence of calcium but require it for tertiary collapse.
|
| |
Biochemistry,
40,
896-903.
|
 |
|
|
|
|
 |
G.Larsson,
J.Schleucher,
J.Onions,
S.Hermann,
T.Grundström,
and
S.S.Wijmenga
(2001).
A novel target recognition revealed by calmodulin in complex with the basic helix--loop--helix transcription factor SEF2-1/E2-2.
|
| |
Protein Sci,
10,
169-186.
|
 |
|
|
|
|
 |
K.Truong,
A.Sawano,
H.Mizuno,
H.Hama,
K.I.Tong,
T.K.Mal,
A.Miyawaki,
and
M.Ikura
(2001).
FRET-based in vivo Ca2+ imaging by a new calmodulin-GFP fusion molecule.
|
| |
Nat Struct Biol,
8,
1069-1073.
|
 |
|
|
|
|
 |
A.Lewit-Bentley,
and
S.Réty
(2000).
EF-hand calcium-binding proteins.
|
| |
Curr Opin Struct Biol,
10,
637-643.
|
 |
|
|
|
|
 |
A.Ulrich,
A.A.Schmitz,
T.Braun,
T.Yuan,
H.J.Vogel,
and
G.Vergères
(2000).
Mapping the interface between calmodulin and MARCKS-related protein by fluorescence spectroscopy.
|
| |
Proc Natl Acad Sci U S A,
97,
5191-5196.
|
 |
|
|
|
|
 |
D.Chin,
and
A.R.Means
(2000).
Calmodulin: a prototypical calcium sensor.
|
| |
Trends Cell Biol,
10,
322-328.
|
 |
|
|
|
|
 |
H.Ishida,
K.Takahashi,
K.Nakashima,
Y.Kumaki,
M.Nakata,
K.Hikichi,
and
M.Yazawa
(2000).
Solution structures of the N-terminal domain of yeast calmodulin: Ca2+-dependent conformational change and its functional implication.
|
| |
Biochemistry,
39,
13660-13668.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
O.R.Jaren,
S.Harmon,
A.F.Chen,
and
M.A.Shea
(2000).
Paramecium calmodulin mutants defective in ion channel regulation can bind calcium and undergo calcium-induced conformational switching.
|
| |
Biochemistry,
39,
6881-6890.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |