|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Calmodulin
|
 |
|
Title:
|
 |
Nmr solution structure of a complex of calmodulin with a binding peptide of the ca2+-pump
|
|
Structure:
|
 |
Calmodulin. Chain: a. Synonym: cam. Engineered: yes. Calcium pump. Chain: b. Fragment: cam-binding domain. Engineered: yes. Mutation: yes
|
|
Source:
|
 |
Xenopus laevis. African clawed frog. Organism_taxid: 8355. Strain: 71. Expressed in: escherichia coli. Expression_system_taxid: 562. Synthetic: yes. Homo sapiens. Organism_taxid: 9606
|
|
NMR struc:
|
 |
26 models
|
 |
|
Authors:
|
 |
B.Elshorst,M.Hennig,H.Foersterling,A.Diener,M.Maurer,P.Schulte, H.Schwalbe,J.Krebs,H.Schmid,T.Vorherr,E.Carafoli,C.Griesinger
|
Key ref:
|
 |
B.Elshorst
et al.
(1999).
NMR solution structure of a complex of calmodulin with a binding peptide of the Ca2+ pump.
Biochemistry,
38,
12320-12332.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
18-Mar-99
|
Release date:
|
24-Sep-99
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
Chain B:
E.C.7.2.2.10
- P-type Ca(2+) transporter.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
Ca2+(in) + ATP + H2O = Ca2+(out) + ADP + phosphate + H+
|
 |
 |
 |
 |
 |
Ca(2+)(in)
|
+
|
ATP
|
+
|
H2O
|
=
|
Ca(2+)(out)
|
+
|
ADP
|
+
|
phosphate
|
+
|
H(+)
|
|
 |
 |
 |
 |
 |
 |
 |
 |
Cofactor:
|
 |
Mg(2+)
|
 |
 |
 |
 |
 |
 |
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
DOI no:
|
Biochemistry
38:12320-12332
(1999)
|
|
PubMed id:
|
|
|
|
|
| |
|
NMR solution structure of a complex of calmodulin with a binding peptide of the Ca2+ pump.
|
|
B.Elshorst,
M.Hennig,
H.Försterling,
A.Diener,
M.Maurer,
P.Schulte,
H.Schwalbe,
C.Griesinger,
J.Krebs,
H.Schmid,
T.Vorherr,
E.Carafoli.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The three-dimensional structure of the complex between calmodulin (CaM) and a
peptide corresponding to the N-terminal portion of the CaM-binding domain of the
plasma membrane calcium pump, the peptide C20W, has been solved by heteronuclear
three-dimensional nuclear magnetic resonance (NMR) spectroscopy. The structure
calculation is based on a total of 1808 intramolecular NOEs and 49
intermolecular NOEs between the peptide C20W and calmodulin from
heteronuclear-filtered NOESY spectra and a half-filtered experiment,
respectively. Chemical shift differences between free Ca(2+)-saturated CaM and
its complex with C20W as well as the structure calculation reveal that C20W
binds solely to the C-terminal half of CaM. In addition, comparison of the
methyl resonances of the nine assigned methionine residues of free
Ca(2+)-saturated CaM with those of the CaM/C20W complex revealed a significant
difference between the N-terminal and the C-terminal domain; i.e., resonances in
the N-terminal domain of the complex were much more similar to those reported
for free CaM in contrast to those in the C-terminal half which were
significantly different not only from the resonances of free CaM but also from
those reported for the CaM/M13 complex. As a consequence, the global structure
of the CaM/C20W complex is unusual, i.e., different from other peptide
calmodulin complexes, since we find no indication for a collapsed structure. The
fine modulation in the peptide protein interface shows a number of differences
to the CaM/M13 complex studied by Ikura et al. [Ikura, M., Clore, G. M.,
Gronenborn, A. M., Zhu, G., Klee, C. B., and Bax, A. (1992) Science 256,
632-638]. The unusual binding mode to only the C-terminal half of CaM is in
agreement with the biochemical observation that the calcium pump can be
activated by the C-terminal half of CaM alone [Guerini, D., Krebs, J., and
Carafoli, E. (1984) J. Biol. Chem. 259, 15172-15177].
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
F.Rodríguez-Castañeda,
M.Maestre-Martínez,
N.Coudevylle,
K.Dimova,
H.Junge,
N.Lipstein,
D.Lee,
S.Becker,
N.Brose,
O.Jahn,
T.Carlomagno,
and
C.Griesinger
(2010).
Modular architecture of Munc13/calmodulin complexes: dual regulation by Ca2+ and possible function in short-term synaptic plasticity.
|
| |
EMBO J,
29,
680-691.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
G.L.Butterfoss,
E.F.Derose,
S.A.Gabel,
L.Perera,
J.M.Krahn,
G.A.Mueller,
X.Zheng,
and
R.E.London
(2010).
Conformational dependence of (13)C shielding and coupling constants for methionine methyl groups.
|
| |
J Biomol NMR,
48,
31-47.
|
 |
|
|
|
|
 |
L.P.Martínez-Castilla,
and
R.Rodríguez-Sotres
(2010).
A score of the ability of a three-dimensional protein model to retrieve its own sequence as a quantitative measure of its quality and appropriateness.
|
| |
PLoS One,
5,
e12483.
|
 |
|
|
|
|
 |
M.Maestre-Martínez,
K.Haupt,
F.Edlich,
G.Jahreis,
F.Jarczowski,
F.Erdmann,
G.Fischer,
and
C.Lücke
(2010).
New structural aspects of FKBP38 activation.
|
| |
Biol Chem,
391,
1157-1167.
|
 |
|
|
|
|
 |
N.Hayashi,
and
K.Titani
(2010).
N-myristoylated proteins, key components in intracellular signal transduction systems enabling rapid and flexible cell responses.
|
| |
Proc Jpn Acad Ser B Phys Biol Sci,
86,
494-508.
|
 |
|
|
|
|
 |
N.Juranic,
E.Atanasova,
A.G.Filoteo,
S.Macura,
F.G.Prendergast,
J.T.Penniston,
and
E.E.Strehler
(2010).
Calmodulin wraps around its binding domain in the plasma membrane Ca2+ pump anchored by a novel 18-1 motif.
|
| |
J Biol Chem,
285,
4015-4024.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
N.Uchikoga,
and
T.Hirokawa
(2010).
Analysis of protein-protein docking decoys using interaction fingerprints: application to the reconstruction of CaM-ligand complexes.
|
| |
BMC Bioinformatics,
11,
236.
|
 |
|
|
|
|
 |
D.B.Halling,
D.K.Georgiou,
D.J.Black,
G.Yang,
J.L.Fallon,
F.A.Quiocho,
S.E.Pedersen,
and
S.L.Hamilton
(2009).
Determinants in CaV1 channels that regulate the Ca2+ sensitivity of bound calmodulin.
|
| |
J Biol Chem,
284,
20041-20051.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.J.Killock,
M.Parsons,
M.Zarrouk,
S.M.Ameer-Beg,
A.J.Ridley,
D.O.Haskard,
M.Zvelebil,
and
A.Ivetic
(2009).
In Vitro and in Vivo Characterization of Molecular Interactions between Calmodulin, Ezrin/Radixin/Moesin, and L-selectin.
|
| |
J Biol Chem,
284,
8833-8845.
|
 |
|
|
|
|
 |
H.Ishida,
M.Rainaldi,
and
H.J.Vogel
(2009).
Structural studies of soybean calmodulin isoform 4 bound to the calmodulin-binding domain of tobacco mitogen-activated protein kinase phosphatase-1 provide insights into a sequential target binding mode.
|
| |
J Biol Chem,
284,
28292-28305.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
E.Laine,
J.D.Yoneda,
A.Blondel,
and
T.E.Malliavin
(2008).
The conformational plasticity of calmodulin upon calcium complexation gives a model of its interaction with the oedema factor of Bacillus anthracis.
|
| |
Proteins,
71,
1813-1829.
|
 |
|
|
|
|
 |
J.Gsponer,
J.Christodoulou,
A.Cavalli,
J.M.Bui,
B.Richter,
C.M.Dobson,
and
M.Vendruscolo
(2008).
A coupled equilibrium shift mechanism in calmodulin-mediated signal transduction.
|
| |
Structure,
16,
736-746.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
N.V.Valeyev,
D.G.Bates,
P.Heslop-Harrison,
I.Postlethwaite,
and
N.V.Kotov
(2008).
Elucidating the mechanisms of cooperative calcium-calmodulin interactions: a structural systems biology approach.
|
| |
BMC Syst Biol,
2,
48.
|
 |
|
|
|
|
 |
T.L.Pukala,
T.Urathamakul,
S.J.Watt,
J.L.Beck,
R.J.Jackway,
and
J.H.Bowie
(2008).
Binding studies of nNOS-active amphibian peptides and Ca2+ calmodulin, using negative ion electrospray ionisation mass spectrometry.
|
| |
Rapid Commun Mass Spectrom,
22,
3501-3509.
|
 |
|
|
|
|
 |
Y.Zhang,
H.Tan,
Z.Jia,
and
G.Chen
(2008).
Ligand-induced dimer formation of calmodulin.
|
| |
J Mol Recognit,
21,
267-274.
|
 |
|
|
|
|
 |
A.J.Caride,
A.G.Filoteo,
J.T.Penniston,
and
E.E.Strehler
(2007).
The plasma membrane Ca2+ pump isoform 4a differs from isoform 4b in the mechanism of calmodulin binding and activation kinetics: implications for Ca2+ signaling.
|
| |
J Biol Chem,
282,
25640-25648.
|
 |
|
|
|
|
 |
A.P.Yamniuk,
M.Rainaldi,
and
H.J.Vogel
(2007).
Calmodulin has the Potential to Function as a Ca-Dependent Adaptor Protein.
|
| |
Plant Signal Behav,
2,
354-357.
|
 |
|
|
|
|
 |
B.D.Slaughter,
R.J.Urbauer,
J.L.Urbauer,
and
C.K.Johnson
(2007).
Mechanism of calmodulin recognition of the binding domain of isoform 1b of the plasma membrane Ca(2+)-ATPase: kinetic pathway and effects of methionine oxidation.
|
| |
Biochemistry,
46,
4045-4054.
|
 |
|
|
|
|
 |
L.Settimo,
S.Donnini,
A.H.Juffer,
R.W.Woody,
and
O.Marin
(2007).
Conformational changes upon calcium binding and phosphorylation in a synthetic fragment of calmodulin.
|
| |
Biopolymers,
88,
373-385.
|
 |
|
|
|
|
 |
T.L.Pukala,
J.R.Doyle,
L.E.Llewellyn,
L.Kuhn-Nentwig,
M.A.Apponyi,
F.Separovic,
and
J.H.Bowie
(2007).
Cupiennin 1a, an antimicrobial peptide from the venom of the neotropical wandering spider Cupiennius salei, also inhibits the formation of nitric oxide by neuronal nitric oxide synthase.
|
| |
FEBS J,
274,
1778-1784.
|
 |
|
|
|
|
 |
Y.Zhou,
W.Yang,
M.M.Lurtz,
Y.Ye,
Y.Huang,
H.W.Lee,
Y.Chen,
C.F.Louis,
and
J.J.Yang
(2007).
Identification of the calmodulin binding domain of connexin 43.
|
| |
J Biol Chem,
282,
35005-35017.
|
 |
|
|
|
|
 |
A.A.Maximciuc,
J.A.Putkey,
Y.Shamoo,
and
K.R.Mackenzie
(2006).
Complex of calmodulin with a ryanodine receptor target reveals a novel, flexible binding mode.
|
| |
Structure,
14,
1547-1556.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.E.Spratt,
E.Newman,
J.Mosher,
D.K.Ghosh,
J.C.Salerno,
and
J.G.Guillemette
(2006).
Binding and activation of nitric oxide synthase isozymes by calmodulin EF hand pairs.
|
| |
FEBS J,
273,
1759-1771.
|
 |
|
|
|
|
 |
F.Capozzi,
F.Casadei,
and
C.Luchinat
(2006).
EF-hand protein dynamics and evolution of calcium signal transduction: an NMR view.
|
| |
J Biol Inorg Chem,
11,
949-962.
|
 |
|
|
|
|
 |
J.Ruan,
K.Chen,
J.A.Tuszynski,
and
L.A.Kurgan
(2006).
Quantitative analysis of the conservation of the tertiary structure of protein segments.
|
| |
Protein J,
25,
301-315.
|
 |
|
|
|
|
 |
K.Chen,
J.Ruan,
and
L.A.Kurgan
(2006).
Prediction of three dimensional structure of calmodulin.
|
| |
Protein J,
25,
57-70.
|
 |
|
|
|
|
 |
L.Baekgaard,
L.Luoni,
M.I.De Michelis,
and
M.G.Palmgren
(2006).
The plant plasma membrane Ca2+ pump ACA8 contains overlapping as well as physically separated autoinhibitory and calmodulin-binding domains.
|
| |
J Biol Chem,
281,
1058-1065.
|
 |
|
|
|
|
 |
C.L.Chyan,
P.C.Huang,
T.H.Lin,
J.W.Huang,
S.S.Lin,
H.B.Huang,
and
Y.C.Chen
(2005).
Purification, crystallization and preliminary crystallographic studies of a calmodulin-OLFp hybrid molecule.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
61,
785-787.
|
 |
|
|
|
|
 |
I.Horváth,
V.Harmat,
A.Perczel,
V.Pálfi,
L.Nyitray,
A.Nagy,
E.Hlavanda,
G.Náray-Szabó,
and
J.Ovádi
(2005).
The structure of the complex of calmodulin with KAR-2: a novel mode of binding explains the unique pharmacology of the drug.
|
| |
J Biol Chem,
280,
8266-8274.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
N.A.Galeva,
S.W.Esch,
T.D.Williams,
L.M.Markille,
and
T.C.Squier
(2005).
Rapid method for quantifying the extent of methionine oxidation in intact calmodulin.
|
| |
J Am Soc Mass Spectrom,
16,
1470-1480.
|
 |
|
|
|
|
 |
C.H.Yun,
J.Bai,
D.Y.Sun,
D.F.Cui,
W.R.Chang,
and
D.C.Liang
(2004).
Structure of potato calmodulin PCM6: the first report of the three-dimensional structure of a plant calmodulin.
|
| |
Acta Crystallogr D Biol Crystallogr,
60,
1214-1219.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
E.Newman,
D.E.Spratt,
J.Mosher,
B.Cheyne,
H.J.Montgomery,
D.L.Wilson,
J.B.Weinberg,
S.M.Smith,
J.C.Salerno,
D.K.Ghosh,
and
J.G.Guillemette
(2004).
Differential activation of nitric-oxide synthase isozymes by calmodulin-troponin C chimeras.
|
| |
J Biol Chem,
279,
33547-33557.
|
 |
|
|
|
|
 |
I.Bertini,
C.Del Bianco,
I.Gelis,
N.Katsaros,
C.Luchinat,
G.Parigi,
M.Peana,
A.Provenzani,
and
M.A.Zoroddu
(2004).
Experimentally exploring the conformational space sampled by domain reorientation in calmodulin.
|
| |
Proc Natl Acad Sci U S A,
101,
6841-6846.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Christodoulou,
A.Malmendal,
J.F.Harper,
and
W.J.Chazin
(2004).
Evidence for differing roles for each lobe of the calmodulin-like domain in a calcium-dependent protein kinase.
|
| |
J Biol Chem,
279,
29092-29100.
|
 |
|
|
|
|
 |
M.A.Schumacher,
M.Crum,
and
M.C.Miller
(2004).
Crystal structures of apocalmodulin and an apocalmodulin/SK potassium channel gating domain complex.
|
| |
Structure,
12,
849-860.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Z.Akyol,
J.A.Bartos,
M.A.Merrill,
L.A.Faga,
O.R.Jaren,
M.A.Shea,
and
J.W.Hell
(2004).
Apo-calmodulin binds with its C-terminal domain to the N-methyl-D-aspartate receptor NR1 C0 region.
|
| |
J Biol Chem,
279,
2166-2175.
|
 |
|
|
|
|
 |
A.M.Weljie,
A.P.Yamniuk,
H.Yoshino,
Y.Izumi,
and
H.J.Vogel
(2003).
Protein conformational changes studied by diffusion NMR spectroscopy: application to helix-loop-helix calcium binding proteins.
|
| |
Protein Sci,
12,
228-236.
|
 |
|
|
|
|
 |
A.Popescu,
S.Miron,
Y.Blouquit,
P.Duchambon,
P.Christova,
and
C.T.Craescu
(2003).
Xeroderma pigmentosum group C protein possesses a high affinity binding site to human centrin 2 and calmodulin.
|
| |
J Biol Chem,
278,
40252-40261.
|
 |
|
|
|
|
 |
C.S.Brinkworth,
J.A.Carver,
K.L.Wegener,
J.Doyle,
L.E.Llewellyn,
and
J.H.Bowie
(2003).
The solution structure of frenatin 3, a neuronal nitric oxide synthase inhibitor from the giant tree frog, Litoria infrafrenata.
|
| |
Biopolymers,
70,
424-434.
|
 |
|
|
|
|
 |
E.Yamauchi,
T.Nakatsu,
M.Matsubara,
H.Kato,
and
H.Taniguchi
(2003).
Crystal structure of a MARCKS peptide containing the calmodulin-binding domain in complex with Ca2+-calmodulin.
|
| |
Nat Struct Biol,
10,
226-231.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Doyle,
C.S.Brinkworth,
K.L.Wegener,
J.A.Carver,
L.E.Llewellyn,
I.N.Olver,
J.H.Bowie,
P.A.Wabnitz,
and
M.J.Tyler
(2003).
nNOS inhibition, antimicrobial and anticancer activity of the amphibian skin peptide, citropin 1.1 and synthetic modifications. The solution structure of a modified citropin 1.1.
|
| |
Eur J Biochem,
270,
1141-1153.
|
 |
|
|
|
|
 |
J.M.Shifman,
and
S.L.Mayo
(2003).
Exploring the origins of binding specificity through the computational redesign of calmodulin.
|
| |
Proc Natl Acad Sci U S A,
100,
13274-13279.
|
 |
|
|
|
|
 |
N.M.Soldatov
(2003).
Ca2+ channel moving tail: link between Ca2+-induced inactivation and Ca2+ signal transduction.
|
| |
Trends Pharmacol Sci,
24,
167-171.
|
 |
|
|
|
|
 |
S.W.Vetter,
and
E.Leclerc
(2003).
Novel aspects of calmodulin target recognition and activation.
|
| |
Eur J Biochem,
270,
404-414.
|
 |
|
|
|
|
 |
A.R.Penheiter,
A.J.Caride,
A.Enyedi,
and
J.T.Penniston
(2002).
Tryptophan 1093 is largely responsible for the slow off rate of calmodulin from plasma membrane Ca2+ pump 4b.
|
| |
J Biol Chem,
277,
17728-17732.
|
 |
|
|
|
|
 |
J.D.Joseph,
and
A.R.Means
(2002).
Calcium binding is required for calmodulin function in Aspergillus nidulans.
|
| |
Eukaryot Cell,
1,
119-125.
|
 |
|
|
|
|
 |
J.K.Kranz,
E.K.Lee,
A.C.Nairn,
and
A.J.Wand
(2002).
A direct test of the reductionist approach to structural studies of calmodulin activity: relevance of peptide models of target proteins.
|
| |
J Biol Chem,
277,
16351-16354.
|
 |
|
|
|
|
 |
M.C.Kim,
S.H.Lee,
J.K.Kim,
H.J.Chun,
M.S.Choi,
W.S.Chung,
B.C.Moon,
C.H.Kang,
C.Y.Park,
J.H.Yoo,
Y.H.Kang,
S.C.Koo,
Y.D.Koo,
J.C.Jung,
S.T.Kim,
P.Schulze-Lefert,
S.Y.Lee,
and
M.J.Cho
(2002).
Mlo, a modulator of plant defense and cell death, is a novel calmodulin-binding protein. Isolation and characterization of a rice Mlo homologue.
|
| |
J Biol Chem,
277,
19304-19314.
|
 |
|
|
|
|
 |
N.Hayashi,
M.Matsubara,
Y.Jinbo,
K.Titani,
Y.Izumi,
and
N.Matsushima
(2002).
Nef of HIV-1 interacts directly with calcium-bound calmodulin.
|
| |
Protein Sci,
11,
529-537.
|
 |
|
|
|
|
 |
B.R.Sorensen,
J.T.Eppel,
and
M.A.Shea
(2001).
Paramecium calmodulin mutants defective in ion channel regulation associate with melittin in the absence of calcium but require it for tertiary collapse.
|
| |
Biochemistry,
40,
896-903.
|
 |
|
|
|
|
 |
G.Larsson,
J.Schleucher,
J.Onions,
S.Hermann,
T.Grundström,
and
S.S.Wijmenga
(2001).
A novel target recognition revealed by calmodulin in complex with the basic helix--loop--helix transcription factor SEF2-1/E2-2.
|
| |
Protein Sci,
10,
169-186.
|
 |
|
|
|
|
 |
J.Gao,
Y.Yao,
and
T.C.Squier
(2001).
Oxidatively modified calmodulin binds to the plasma membrane Ca-ATPase in a nonproductive and conformationally disordered complex.
|
| |
Biophys J,
80,
1791-1801.
|
 |
|
|
|
|
 |
A.Lewit-Bentley,
and
S.Réty
(2000).
EF-hand calcium-binding proteins.
|
| |
Curr Opin Struct Biol,
10,
637-643.
|
 |
|
|
|
|
 |
A.Ulrich,
A.A.Schmitz,
T.Braun,
T.Yuan,
H.J.Vogel,
and
G.Vergères
(2000).
Mapping the interface between calmodulin and MARCKS-related protein by fluorescence spectroscopy.
|
| |
Proc Natl Acad Sci U S A,
97,
5191-5196.
|
 |
|
|
|
|
 |
D.Chin,
and
A.R.Means
(2000).
Calmodulin: a prototypical calcium sensor.
|
| |
Trends Cell Biol,
10,
322-328.
|
 |
|
|
|
|
 |
H.Sun,
and
T.C.Squier
(2000).
Ordered and cooperative binding of opposing globular domains of calmodulin to the plasma membrane Ca-ATPase.
|
| |
J Biol Chem,
275,
1731-1738.
|
 |
|
|
|
|
 |
N.Hayashi,
Y.Izumi,
K.Titani,
and
N.Matsushima
(2000).
The binding of myristoylated N-terminal nonapeptide from neuro-specific protein CAP-23/NAP-22 to calmodulin does not induce the globular structure observed for the calmodulin-nonmyristylated peptide complex.
|
| |
Protein Sci,
9,
1905-1913.
|
 |
|
|
|
|
 |
O.R.Jaren,
S.Harmon,
A.F.Chen,
and
M.A.Shea
(2000).
Paramecium calmodulin mutants defective in ion channel regulation can bind calcium and undergo calcium-induced conformational switching.
|
| |
Biochemistry,
39,
6881-6890.
|
 |
|
|
|
|
 |
R.A.Atkinson,
C.Joseph,
F.Dal Piaz,
L.Birolo,
G.Stier,
P.Pucci,
and
A.Pastore
(2000).
Binding of alpha-actinin to titin: implications for Z-disk assembly.
|
| |
Biochemistry,
39,
5255-5264.
|
 |
|
|
|
|
 |
S.Fefeu,
R.R.Biekofsky,
J.E.McCormick,
S.R.Martin,
P.M.Bayley,
and
J.Feeney
(2000).
Calcium-induced refolding of the calmodulin V136G mutant studied by NMR spectroscopy: evidence for interaction between the two globular domains.
|
| |
Biochemistry,
39,
15920-15931.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |