spacer
spacer

PDBsum entry 1cff

Go to PDB code: 
protein metals Protein-protein interface(s) links
Calmodulin PDB id
1cff

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
148 a.a. *
20 a.a. *
Metals
_CA ×4
* Residue conservation analysis
PDB id:
1cff
Name: Calmodulin
Title: Nmr solution structure of a complex of calmodulin with a binding peptide of the ca2+-pump
Structure: Calmodulin. Chain: a. Synonym: cam. Engineered: yes. Calcium pump. Chain: b. Fragment: cam-binding domain. Engineered: yes. Mutation: yes
Source: Xenopus laevis. African clawed frog. Organism_taxid: 8355. Strain: 71. Expressed in: escherichia coli. Expression_system_taxid: 562. Synthetic: yes. Homo sapiens. Organism_taxid: 9606
NMR struc: 26 models
Authors: B.Elshorst,M.Hennig,H.Foersterling,A.Diener,M.Maurer,P.Schulte, H.Schwalbe,J.Krebs,H.Schmid,T.Vorherr,E.Carafoli,C.Griesinger
Key ref:
B.Elshorst et al. (1999). NMR solution structure of a complex of calmodulin with a binding peptide of the Ca2+ pump. Biochemistry, 38, 12320-12332. PubMed id: 10493800 DOI: 10.1021/bi9908235
Date:
18-Mar-99     Release date:   24-Sep-99    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
P0DP33  (CALM1_XENLA) -  Calmodulin-1 from Xenopus laevis
Seq:
Struc:
149 a.a.
148 a.a.
Protein chain
P23634  (AT2B4_HUMAN) -  Plasma membrane calcium-transporting ATPase 4 from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1241 a.a.
20 a.a.*
Key:    Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: Chain B: E.C.7.2.2.10  - P-type Ca(2+) transporter.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Ca2+(in) + ATP + H2O = Ca2+(out) + ADP + phosphate + H+
Ca(2+)(in)
+ ATP
+ H2O
= Ca(2+)(out)
+ ADP
+ phosphate
+ H(+)
      Cofactor: Mg(2+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1021/bi9908235 Biochemistry 38:12320-12332 (1999)
PubMed id: 10493800  
 
 
NMR solution structure of a complex of calmodulin with a binding peptide of the Ca2+ pump.
B.Elshorst, M.Hennig, H.Försterling, A.Diener, M.Maurer, P.Schulte, H.Schwalbe, C.Griesinger, J.Krebs, H.Schmid, T.Vorherr, E.Carafoli.
 
  ABSTRACT  
 
The three-dimensional structure of the complex between calmodulin (CaM) and a peptide corresponding to the N-terminal portion of the CaM-binding domain of the plasma membrane calcium pump, the peptide C20W, has been solved by heteronuclear three-dimensional nuclear magnetic resonance (NMR) spectroscopy. The structure calculation is based on a total of 1808 intramolecular NOEs and 49 intermolecular NOEs between the peptide C20W and calmodulin from heteronuclear-filtered NOESY spectra and a half-filtered experiment, respectively. Chemical shift differences between free Ca(2+)-saturated CaM and its complex with C20W as well as the structure calculation reveal that C20W binds solely to the C-terminal half of CaM. In addition, comparison of the methyl resonances of the nine assigned methionine residues of free Ca(2+)-saturated CaM with those of the CaM/C20W complex revealed a significant difference between the N-terminal and the C-terminal domain; i.e., resonances in the N-terminal domain of the complex were much more similar to those reported for free CaM in contrast to those in the C-terminal half which were significantly different not only from the resonances of free CaM but also from those reported for the CaM/M13 complex. As a consequence, the global structure of the CaM/C20W complex is unusual, i.e., different from other peptide calmodulin complexes, since we find no indication for a collapsed structure. The fine modulation in the peptide protein interface shows a number of differences to the CaM/M13 complex studied by Ikura et al. [Ikura, M., Clore, G. M., Gronenborn, A. M., Zhu, G., Klee, C. B., and Bax, A. (1992) Science 256, 632-638]. The unusual binding mode to only the C-terminal half of CaM is in agreement with the biochemical observation that the calcium pump can be activated by the C-terminal half of CaM alone [Guerini, D., Krebs, J., and Carafoli, E. (1984) J. Biol. Chem. 259, 15172-15177].
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
20010694 F.Rodríguez-Castañeda, M.Maestre-Martínez, N.Coudevylle, K.Dimova, H.Junge, N.Lipstein, D.Lee, S.Becker, N.Brose, O.Jahn, T.Carlomagno, and C.Griesinger (2010).
Modular architecture of Munc13/calmodulin complexes: dual regulation by Ca2+ and possible function in short-term synaptic plasticity.
  EMBO J, 29, 680-691.
PDB code: 2kdu
20734113 G.L.Butterfoss, E.F.Derose, S.A.Gabel, L.Perera, J.M.Krahn, G.A.Mueller, X.Zheng, and R.E.London (2010).
Conformational dependence of (13)C shielding and coupling constants for methionine methyl groups.
  J Biomol NMR, 48, 31-47.  
20830209 L.P.Martínez-Castilla, and R.Rodríguez-Sotres (2010).
A score of the ability of a three-dimensional protein model to retrieve its own sequence as a quantitative measure of its quality and appropriateness.
  PLoS One, 5, e12483.  
20707607 M.Maestre-Martínez, K.Haupt, F.Edlich, G.Jahreis, F.Jarczowski, F.Erdmann, G.Fischer, and C.Lücke (2010).
New structural aspects of FKBP38 activation.
  Biol Chem, 391, 1157-1167.  
20467215 N.Hayashi, and K.Titani (2010).
N-myristoylated proteins, key components in intracellular signal transduction systems enabling rapid and flexible cell responses.
  Proc Jpn Acad Ser B Phys Biol Sci, 86, 494-508.  
19996092 N.Juranic, E.Atanasova, A.G.Filoteo, S.Macura, F.G.Prendergast, J.T.Penniston, and E.E.Strehler (2010).
Calmodulin wraps around its binding domain in the plasma membrane Ca2+ pump anchored by a novel 18-1 motif.
  J Biol Chem, 285, 4015-4024.
PDB code: 2kne
20459766 N.Uchikoga, and T.Hirokawa (2010).
Analysis of protein-protein docking decoys using interaction fingerprints: application to the reconstruction of CaM-ligand complexes.
  BMC Bioinformatics, 11, 236.  
19473981 D.B.Halling, D.K.Georgiou, D.J.Black, G.Yang, J.L.Fallon, F.A.Quiocho, S.E.Pedersen, and S.L.Hamilton (2009).
Determinants in CaV1 channels that regulate the Ca2+ sensitivity of bound calmodulin.
  J Biol Chem, 284, 20041-20051.
PDB code: 2vay
19129194 D.J.Killock, M.Parsons, M.Zarrouk, S.M.Ameer-Beg, A.J.Ridley, D.O.Haskard, M.Zvelebil, and A.Ivetic (2009).
In Vitro and in Vivo Characterization of Molecular Interactions between Calmodulin, Ezrin/Radixin/Moesin, and L-selectin.
  J Biol Chem, 284, 8833-8845.  
19667066 H.Ishida, M.Rainaldi, and H.J.Vogel (2009).
Structural studies of soybean calmodulin isoform 4 bound to the calmodulin-binding domain of tobacco mitogen-activated protein kinase phosphatase-1 provide insights into a sequential target binding mode.
  J Biol Chem, 284, 28292-28305.
PDB code: 2kn2
18175311 E.Laine, J.D.Yoneda, A.Blondel, and T.E.Malliavin (2008).
The conformational plasticity of calmodulin upon calcium complexation gives a model of its interaction with the oedema factor of Bacillus anthracis.
  Proteins, 71, 1813-1829.  
18462678 J.Gsponer, J.Christodoulou, A.Cavalli, J.M.Bui, B.Richter, C.M.Dobson, and M.Vendruscolo (2008).
A coupled equilibrium shift mechanism in calmodulin-mediated signal transduction.
  Structure, 16, 736-746.
PDB codes: 2k0e 2k0f
18518982 N.V.Valeyev, D.G.Bates, P.Heslop-Harrison, I.Postlethwaite, and N.V.Kotov (2008).
Elucidating the mechanisms of cooperative calcium-calmodulin interactions: a structural systems biology approach.
  BMC Syst Biol, 2, 48.  
18853393 T.L.Pukala, T.Urathamakul, S.J.Watt, J.L.Beck, R.J.Jackway, and J.H.Bowie (2008).
Binding studies of nNOS-active amphibian peptides and Ca2+ calmodulin, using negative ion electrospray ionisation mass spectrometry.
  Rapid Commun Mass Spectrom, 22, 3501-3509.  
18461636 Y.Zhang, H.Tan, Z.Jia, and G.Chen (2008).
Ligand-induced dimer formation of calmodulin.
  J Mol Recognit, 21, 267-274.  
17595168 A.J.Caride, A.G.Filoteo, J.T.Penniston, and E.E.Strehler (2007).
The plasma membrane Ca2+ pump isoform 4a differs from isoform 4b in the mechanism of calmodulin binding and activation kinetics: implications for Ca2+ signaling.
  J Biol Chem, 282, 25640-25648.  
  19704657 A.P.Yamniuk, M.Rainaldi, and H.J.Vogel (2007).
Calmodulin has the Potential to Function as a Ca-Dependent Adaptor Protein.
  Plant Signal Behav, 2, 354-357.  
17343368 B.D.Slaughter, R.J.Urbauer, J.L.Urbauer, and C.K.Johnson (2007).
Mechanism of calmodulin recognition of the binding domain of isoform 1b of the plasma membrane Ca(2+)-ATPase: kinetic pathway and effects of methionine oxidation.
  Biochemistry, 46, 4045-4054.  
17173306 L.Settimo, S.Donnini, A.H.Juffer, R.W.Woody, and O.Marin (2007).
Conformational changes upon calcium binding and phosphorylation in a synthetic fragment of calmodulin.
  Biopolymers, 88, 373-385.  
17313650 T.L.Pukala, J.R.Doyle, L.E.Llewellyn, L.Kuhn-Nentwig, M.A.Apponyi, F.Separovic, and J.H.Bowie (2007).
Cupiennin 1a, an antimicrobial peptide from the venom of the neotropical wandering spider Cupiennius salei, also inhibits the formation of nitric oxide by neuronal nitric oxide synthase.
  FEBS J, 274, 1778-1784.  
17901047 Y.Zhou, W.Yang, M.M.Lurtz, Y.Ye, Y.Huang, H.W.Lee, Y.Chen, C.F.Louis, and J.J.Yang (2007).
Identification of the calmodulin binding domain of connexin 43.
  J Biol Chem, 282, 35005-35017.  
17027503 A.A.Maximciuc, J.A.Putkey, Y.Shamoo, and K.R.Mackenzie (2006).
Complex of calmodulin with a ryanodine receptor target reveals a novel, flexible binding mode.
  Structure, 14, 1547-1556.
PDB code: 2bcx
16623711 D.E.Spratt, E.Newman, J.Mosher, D.K.Ghosh, J.C.Salerno, and J.G.Guillemette (2006).
Binding and activation of nitric oxide synthase isozymes by calmodulin EF hand pairs.
  FEBS J, 273, 1759-1771.  
16957918 F.Capozzi, F.Casadei, and C.Luchinat (2006).
EF-hand protein dynamics and evolution of calcium signal transduction: an NMR view.
  J Biol Inorg Chem, 11, 949-962.  
16957991 J.Ruan, K.Chen, J.A.Tuszynski, and L.A.Kurgan (2006).
Quantitative analysis of the conservation of the tertiary structure of protein segments.
  Protein J, 25, 301-315.  
16721661 K.Chen, J.Ruan, and L.A.Kurgan (2006).
Prediction of three dimensional structure of calmodulin.
  Protein J, 25, 57-70.  
16267044 L.Baekgaard, L.Luoni, M.I.De Michelis, and M.G.Palmgren (2006).
The plant plasma membrane Ca2+ pump ACA8 contains overlapping as well as physically separated autoinhibitory and calmodulin-binding domains.
  J Biol Chem, 281, 1058-1065.  
  16511158 C.L.Chyan, P.C.Huang, T.H.Lin, J.W.Huang, S.S.Lin, H.B.Huang, and Y.C.Chen (2005).
Purification, crystallization and preliminary crystallographic studies of a calmodulin-OLFp hybrid molecule.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 61, 785-787.  
15596444 I.Horváth, V.Harmat, A.Perczel, V.Pálfi, L.Nyitray, A.Nagy, E.Hlavanda, G.Náray-Szabó, and J.Ovádi (2005).
The structure of the complex of calmodulin with KAR-2: a novel mode of binding explains the unique pharmacology of the drug.
  J Biol Chem, 280, 8266-8274.
PDB code: 1xa5
16023363 N.A.Galeva, S.W.Esch, T.D.Williams, L.M.Markille, and T.C.Squier (2005).
Rapid method for quantifying the extent of methionine oxidation in intact calmodulin.
  J Am Soc Mass Spectrom, 16, 1470-1480.  
15213382 C.H.Yun, J.Bai, D.Y.Sun, D.F.Cui, W.R.Chang, and D.C.Liang (2004).
Structure of potato calmodulin PCM6: the first report of the three-dimensional structure of a plant calmodulin.
  Acta Crystallogr D Biol Crystallogr, 60, 1214-1219.
PDB code: 1rfj
15138276 E.Newman, D.E.Spratt, J.Mosher, B.Cheyne, H.J.Montgomery, D.L.Wilson, J.B.Weinberg, S.M.Smith, J.C.Salerno, D.K.Ghosh, and J.G.Guillemette (2004).
Differential activation of nitric-oxide synthase isozymes by calmodulin-troponin C chimeras.
  J Biol Chem, 279, 33547-33557.  
15100408 I.Bertini, C.Del Bianco, I.Gelis, N.Katsaros, C.Luchinat, G.Parigi, M.Peana, A.Provenzani, and M.A.Zoroddu (2004).
Experimentally exploring the conformational space sampled by domain reorientation in calmodulin.
  Proc Natl Acad Sci U S A, 101, 6841-6846.
PDB code: 1sw8
15126505 J.Christodoulou, A.Malmendal, J.F.Harper, and W.J.Chazin (2004).
Evidence for differing roles for each lobe of the calmodulin-like domain in a calcium-dependent protein kinase.
  J Biol Chem, 279, 29092-29100.  
15130477 M.A.Schumacher, M.Crum, and M.C.Miller (2004).
Crystal structures of apocalmodulin and an apocalmodulin/SK potassium channel gating domain complex.
  Structure, 12, 849-860.
PDB codes: 1qx5 1qx7
14530275 Z.Akyol, J.A.Bartos, M.A.Merrill, L.A.Faga, O.R.Jaren, M.A.Shea, and J.W.Hell (2004).
Apo-calmodulin binds with its C-terminal domain to the N-methyl-D-aspartate receptor NR1 C0 region.
  J Biol Chem, 279, 2166-2175.  
12538886 A.M.Weljie, A.P.Yamniuk, H.Yoshino, Y.Izumi, and H.J.Vogel (2003).
Protein conformational changes studied by diffusion NMR spectroscopy: application to helix-loop-helix calcium binding proteins.
  Protein Sci, 12, 228-236.  
12890685 A.Popescu, S.Miron, Y.Blouquit, P.Duchambon, P.Christova, and C.T.Craescu (2003).
Xeroderma pigmentosum group C protein possesses a high affinity binding site to human centrin 2 and calmodulin.
  J Biol Chem, 278, 40252-40261.  
14579314 C.S.Brinkworth, J.A.Carver, K.L.Wegener, J.Doyle, L.E.Llewellyn, and J.H.Bowie (2003).
The solution structure of frenatin 3, a neuronal nitric oxide synthase inhibitor from the giant tree frog, Litoria infrafrenata.
  Biopolymers, 70, 424-434.  
12577052 E.Yamauchi, T.Nakatsu, M.Matsubara, H.Kato, and H.Taniguchi (2003).
Crystal structure of a MARCKS peptide containing the calmodulin-binding domain in complex with Ca2+-calmodulin.
  Nat Struct Biol, 10, 226-231.
PDB code: 1iwq
12631273 J.Doyle, C.S.Brinkworth, K.L.Wegener, J.A.Carver, L.E.Llewellyn, I.N.Olver, J.H.Bowie, P.A.Wabnitz, and M.J.Tyler (2003).
nNOS inhibition, antimicrobial and anticancer activity of the amphibian skin peptide, citropin 1.1 and synthetic modifications. The solution structure of a modified citropin 1.1.
  Eur J Biochem, 270, 1141-1153.  
14597710 J.M.Shifman, and S.L.Mayo (2003).
Exploring the origins of binding specificity through the computational redesign of calmodulin.
  Proc Natl Acad Sci U S A, 100, 13274-13279.  
12707002 N.M.Soldatov (2003).
Ca2+ channel moving tail: link between Ca2+-induced inactivation and Ca2+ signal transduction.
  Trends Pharmacol Sci, 24, 167-171.  
12542690 S.W.Vetter, and E.Leclerc (2003).
Novel aspects of calmodulin target recognition and activation.
  Eur J Biochem, 270, 404-414.  
11886854 A.R.Penheiter, A.J.Caride, A.Enyedi, and J.T.Penniston (2002).
Tryptophan 1093 is largely responsible for the slow off rate of calmodulin from plasma membrane Ca2+ pump 4b.
  J Biol Chem, 277, 17728-17732.  
12455978 J.D.Joseph, and A.R.Means (2002).
Calcium binding is required for calmodulin function in Aspergillus nidulans.
  Eukaryot Cell, 1, 119-125.  
11904288 J.K.Kranz, E.K.Lee, A.C.Nairn, and A.J.Wand (2002).
A direct test of the reductionist approach to structural studies of calmodulin activity: relevance of peptide models of target proteins.
  J Biol Chem, 277, 16351-16354.  
11904292 M.C.Kim, S.H.Lee, J.K.Kim, H.J.Chun, M.S.Choi, W.S.Chung, B.C.Moon, C.H.Kang, C.Y.Park, J.H.Yoo, Y.H.Kang, S.C.Koo, Y.D.Koo, J.C.Jung, S.T.Kim, P.Schulze-Lefert, S.Y.Lee, and M.J.Cho (2002).
Mlo, a modulator of plant defense and cell death, is a novel calmodulin-binding protein. Isolation and characterization of a rice Mlo homologue.
  J Biol Chem, 277, 19304-19314.  
11847276 N.Hayashi, M.Matsubara, Y.Jinbo, K.Titani, Y.Izumi, and N.Matsushima (2002).
Nef of HIV-1 interacts directly with calcium-bound calmodulin.
  Protein Sci, 11, 529-537.  
11170410 B.R.Sorensen, J.T.Eppel, and M.A.Shea (2001).
Paramecium calmodulin mutants defective in ion channel regulation associate with melittin in the absence of calcium but require it for tertiary collapse.
  Biochemistry, 40, 896-903.  
11266605 G.Larsson, J.Schleucher, J.Onions, S.Hermann, T.Grundström, and S.S.Wijmenga (2001).
A novel target recognition revealed by calmodulin in complex with the basic helix--loop--helix transcription factor SEF2-1/E2-2.
  Protein Sci, 10, 169-186.  
11259292 J.Gao, Y.Yao, and T.C.Squier (2001).
Oxidatively modified calmodulin binds to the plasma membrane Ca-ATPase in a nonproductive and conformationally disordered complex.
  Biophys J, 80, 1791-1801.  
11114499 A.Lewit-Bentley, and S.Réty (2000).
EF-hand calcium-binding proteins.
  Curr Opin Struct Biol, 10, 637-643.  
10792048 A.Ulrich, A.A.Schmitz, T.Braun, T.Yuan, H.J.Vogel, and G.Vergères (2000).
Mapping the interface between calmodulin and MARCKS-related protein by fluorescence spectroscopy.
  Proc Natl Acad Sci U S A, 97, 5191-5196.  
10884684 D.Chin, and A.R.Means (2000).
Calmodulin: a prototypical calcium sensor.
  Trends Cell Biol, 10, 322-328.  
10636869 H.Sun, and T.C.Squier (2000).
Ordered and cooperative binding of opposing globular domains of calmodulin to the plasma membrane Ca-ATPase.
  J Biol Chem, 275, 1731-1738.  
  11106163 N.Hayashi, Y.Izumi, K.Titani, and N.Matsushima (2000).
The binding of myristoylated N-terminal nonapeptide from neuro-specific protein CAP-23/NAP-22 to calmodulin does not induce the globular structure observed for the calmodulin-nonmyristylated peptide complex.
  Protein Sci, 9, 1905-1913.  
10841769 O.R.Jaren, S.Harmon, A.F.Chen, and M.A.Shea (2000).
Paramecium calmodulin mutants defective in ion channel regulation can bind calcium and undergo calcium-induced conformational switching.
  Biochemistry, 39, 6881-6890.  
10819994 R.A.Atkinson, C.Joseph, F.Dal Piaz, L.Birolo, G.Stier, P.Pucci, and A.Pastore (2000).
Binding of alpha-actinin to titin: implications for Z-disk assembly.
  Biochemistry, 39, 5255-5264.  
11123919 S.Fefeu, R.R.Biekofsky, J.E.McCormick, S.R.Martin, P.M.Bayley, and J.Feeney (2000).
Calcium-induced refolding of the calmodulin V136G mutant studied by NMR spectroscopy: evidence for interaction between the two globular domains.
  Biochemistry, 39, 15920-15931.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer