|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
142 a.a.
|
 |
|
|
|
|
|
|
|
19 a.a.
|
 |
|
|
|
|
|
|
|
20 a.a.
|
 |
|
|
|
|
|
|
|
18 a.a.
|
 |
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Calcium-binding protein
|
 |
|
Title:
|
 |
Target enzyme recognition by calmodulin: 2.4 angstroms structure of a calmodulin-peptide complex
|
|
Structure:
|
 |
Calmodulin. Chain: a, b, c, d. Engineered: yes. Calcium/calmodulin-dependent protein kinase type ii alpha chain. Chain: e, f, g, h. Engineered: yes
|
|
Source:
|
 |
Homo sapiens. Human. Organism_taxid: 9606.
|
|
Biol. unit:
|
 |
Dimer (from
)
|
|
Resolution:
|
 |
|
|
Authors:
|
 |
W.E.Meador,F.A.Quiocho
|
|
Key ref:
|
 |
W.E.Meador
et al.
(1992).
Target enzyme recognition by calmodulin: 2.4 A structure of a calmodulin-peptide complex.
Science,
257,
1251-1255.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
08-Oct-93
|
Release date:
|
31-Aug-94
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
P0DP23
(CALM1_HUMAN) -
Calmodulin-1 from Homo sapiens
|
|
|
|
Seq: Struc:
|
 |
 |
 |
149 a.a.
142 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P11799
(MYLK_CHICK) -
Myosin light chain kinase, smooth muscle from Gallus gallus
|
|
|
|
Seq: Struc:
|
 |
 |
 |
1906 a.a.
19 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
Chains E, F, G, H:
E.C.2.7.11.18
- [myosin light-chain] kinase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
|
1.
|
L-seryl-[myosin light chain] + ATP = O-phospho-L-seryl-[myosin light chain] + ADP + H+
|
|
2.
|
L-threonyl-[myosin light chain] + ATP = O-phospho-L-threonyl-[myosin light chain] + ADP + H+
|
|
 |
 |
 |
 |
 |
L-seryl-[myosin light chain]
|
+
|
ATP
|
=
|
O-phospho-L-seryl-[myosin light chain]
|
+
|
ADP
|
+
|
H(+)
|
|
 |
 |
 |
 |
 |
L-threonyl-[myosin light chain]
|
+
|
ATP
|
=
|
O-phospho-L-threonyl-[myosin light chain]
|
+
|
ADP
|
+
|
H(+)
|
|
 |
 |
 |
 |
 |
 |
 |
 |
Cofactor:
|
 |
Ca(2+)
|
 |
 |
 |
 |
 |
 |
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
DOI no:
|
Science
257:1251-1255
(1992)
|
|
PubMed id:
|
|
|
|
|
| |
|
Target enzyme recognition by calmodulin: 2.4 A structure of a calmodulin-peptide complex.
|
|
W.E.Meador,
A.R.Means,
F.A.Quiocho.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The crystal structure of calcium-bound calmodulin (Ca(2+)-CaM) bound to a
peptide analog of the CaM-binding region of chicken smooth muscle myosin light
chain kinase has been determined and refined to a resolution of 2.4 angstroms
(A). The structure is compact and has the shape of an ellipsoid (axial ratio
approximately 2:1). The bound CaM forms a tunnel diagonal to its long axis that
engulfs the helical peptide, with the hydrophobic regions of CaM melded into a
single area that closely covers the hydrophobic side of the peptide. There is a
remarkably high pseudo-twofold symmetry between the closely associated domains.
The central helix of the native CaM is unwound and expanded into a bend between
residues 73 and 77. About 185 contacts (less than 4 A) are formed between CaM
and the peptide, with van der Waals contacts comprising approximately 80% of
this total.
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
K.L.Thoren,
and
B.A.Krantz
(2011).
The unfolding story of anthrax toxin translocation.
|
| |
Mol Microbiol,
80,
588-595.
|
 |
|
|
|
|
 |
N.Isozumi,
Y.Iida,
A.Nakatomi,
N.Nemoto,
M.Yazawa,
and
S.Ohki
(2011).
Conformation of the calmodulin-binding domain of metabotropic glutamate receptor subtype 7 and its interaction with calmodulin.
|
| |
J Biochem,
149,
463-474.
|
 |
|
|
|
|
 |
S.E.O'Donnell,
L.Yu,
C.A.Fowler,
and
M.A.Shea
(2011).
Recognition of β-calcineurin by the domains of calmodulin: Thermodynamic and structural evidence for distinct roles.
|
| |
Proteins,
79,
765-786.
|
 |
|
|
|
|
 |
W.Ohashi,
H.Hirota,
and
T.Yamazaki
(2011).
Solution structure and fluctuation of the Mg(2+)-bound form of calmodulin C-terminal domain.
|
| |
Protein Sci,
20,
690-701.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
X.Xu,
R.Ishima,
and
J.B.Ames
(2011).
Conformational dynamics of recoverin's Ca(2+) -myristoyl switch probed by (15) N NMR relaxation dispersion and chemical shift analysis.
|
| |
Proteins,
79,
1910-1922.
|
 |
|
|
|
|
 |
Z.Grabarek
(2011).
Insights into modulation of calcium signaling by magnesium in calmodulin, troponin C and related EF-hand proteins.
|
| |
Biochim Biophys Acta,
1813,
913-921.
|
 |
|
|
|
|
 |
E.Kovacs,
J.Tóth,
B.G.Vértessy,
and
K.Liliom
(2010).
Dissociation of calmodulin-target peptide complexes by the lipid mediator sphingosylphosphorylcholine: implications in calcium signaling.
|
| |
J Biol Chem,
285,
1799-1808.
|
 |
|
|
|
|
 |
E.Y.Kim,
C.H.Rumpf,
F.Van Petegem,
R.J.Arant,
F.Findeisen,
E.S.Cooley,
E.Y.Isacoff,
and
D.L.Minor
(2010).
Multiple C-terminal tail Ca(2+)/CaMs regulate Ca(V)1.2 function but do not mediate channel dimerization.
|
| |
EMBO J,
29,
3924-3938.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
G.K.Feld,
K.L.Thoren,
A.F.Kintzer,
H.J.Sterling,
I.I.Tang,
S.G.Greenberg,
E.R.Williams,
and
B.A.Krantz
(2010).
Structural basis for the unfolding of anthrax lethal factor by protective antigen oligomers.
|
| |
Nat Struct Mol Biol,
17,
1383-1390.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Huang,
H.Ishida,
and
H.J.Vogel
(2010).
The solution structure of the Mg2+ form of soybean calmodulin isoform 4 reveals unique features of plant calmodulins in resting cells.
|
| |
Protein Sci,
19,
475-485.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Shishido,
K.Nakazato,
E.Katayama,
S.Chaen,
and
S.Maruta
(2010).
Kinesin-Calmodulin fusion protein as a molecular shuttle.
|
| |
J Biochem,
147,
213-223.
|
 |
|
|
|
|
 |
H.Tidow,
K.L.Hein,
L.Baekgaard,
M.G.Palmgren,
and
P.Nissen
(2010).
Expression, purification, crystallization and preliminary X-ray analysis of calmodulin in complex with the regulatory domain of the plasma-membrane Ca2+-ATPase ACA8.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
66,
361-363.
|
 |
|
|
|
|
 |
H.Tokumitsu,
N.Hatano,
M.Tsuchiya,
S.Yurimoto,
T.Fujimoto,
N.Ohara,
R.Kobayashi,
and
H.Sakagami
(2010).
Identification and characterization of PRG-1 as a neuronal calmodulin-binding protein.
|
| |
Biochem J,
431,
81-91.
|
 |
|
|
|
|
 |
J.F.Xia,
X.M.Zhao,
J.Song,
and
D.S.Huang
(2010).
APIS: accurate prediction of hot spots in protein interfaces by combining protrusion index with solvent accessibility.
|
| |
BMC Bioinformatics,
11,
174.
|
 |
|
|
|
|
 |
K.G.Neumüller,
K.Elsayad,
J.M.Reisecker,
M.N.Waxham,
and
K.G.Heinze
(2010).
Photounbinding of calmodulin from a family of CaM binding peptides.
|
| |
PLoS One,
5,
e14050.
|
 |
|
|
|
|
 |
M.D.Feldkamp,
S.E.O'Donnell,
L.Yu,
and
M.A.Shea
(2010).
Allosteric effects of the antipsychotic drug trifluoperazine on the energetics of calcium binding by calmodulin.
|
| |
Proteins,
78,
2265-2282.
|
 |
|
|
|
|
 |
M.S.Marlow,
J.Dogan,
K.K.Frederick,
K.G.Valentine,
and
A.J.Wand
(2010).
The role of conformational entropy in molecular recognition by calmodulin.
|
| |
Nat Chem Biol,
6,
352-358.
|
 |
|
|
|
|
 |
N.Hayashi,
and
K.Titani
(2010).
N-myristoylated proteins, key components in intracellular signal transduction systems enabling rapid and flexible cell responses.
|
| |
Proc Jpn Acad Ser B Phys Biol Sci,
86,
494-508.
|
 |
|
|
|
|
 |
N.Juranic,
E.Atanasova,
A.G.Filoteo,
S.Macura,
F.G.Prendergast,
J.T.Penniston,
and
E.E.Strehler
(2010).
Calmodulin wraps around its binding domain in the plasma membrane Ca2+ pump anchored by a novel 18-1 motif.
|
| |
J Biol Chem,
285,
4015-4024.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Fuchigami,
S.Omori,
M.Ikeguchi,
and
A.Kidera
(2010).
Normal mode analysis of protein dynamics in a non-Eckart frame.
|
| |
J Chem Phys,
132,
104109.
|
 |
|
|
|
|
 |
S.Pepke,
T.Kinzer-Ursem,
S.Mihalas,
and
M.B.Kennedy
(2010).
A dynamic model of interactions of Ca2+, calmodulin, and catalytic subunits of Ca2+/calmodulin-dependent protein kinase II.
|
| |
PLoS Comput Biol,
6,
e1000675.
|
 |
|
|
|
|
 |
Y.Zhang,
H.Tan,
G.Chen,
and
Z.Jia
(2010).
Investigating the disorder-order transition of calmodulin binding domain upon binding calmodulin using molecular dynamics simulation.
|
| |
J Mol Recognit,
23,
360-368.
|
 |
|
|
|
|
 |
A.Filatova,
M.Leyerer,
V.Gorboulev,
C.Chintalapati,
Y.Reinders,
T.D.Müller,
A.Srinivasan,
S.Hübner,
and
H.Koepsell
(2009).
Novel shuttling domain in a regulator (RSC1A1) of transporter SGLT1 steers cell cycle-dependent nuclear location.
|
| |
Traffic,
10,
1599-1618.
|
 |
|
|
|
|
 |
A.M.Jama,
J.Fenton,
S.D.Robertson,
and
K.Török
(2009).
Time-dependent autoinactivation of phospho-Thr286-alphaCa2+/calmodulin-dependent protein kinase II.
|
| |
J Biol Chem,
284,
28146-28155.
|
 |
|
|
|
|
 |
A.P.Yamniuk,
H.Ishida,
D.Lippert,
and
H.J.Vogel
(2009).
Thermodynamic effects of noncoded and coded methionine substitutions in calmodulin.
|
| |
Biophys J,
96,
1495-1507.
|
 |
|
|
|
|
 |
C.Xia,
I.Misra,
T.Iyanagi,
and
J.J.Kim
(2009).
Regulation of interdomain interactions by calmodulin in inducible nitric-oxide synthase.
|
| |
J Biol Chem,
284,
30708-30717.
|
 |
|
|
|
|
 |
D.A.Macdougall,
S.Wachten,
A.Ciruela,
A.Sinz,
and
D.M.Cooper
(2009).
Separate elements within a single IQ-like motif in adenylyl cyclase type 8 impart ca2+/calmodulin binding and autoinhibition.
|
| |
J Biol Chem,
284,
15573-15588.
|
 |
|
|
|
|
 |
D.B.Halling,
D.K.Georgiou,
D.J.Black,
G.Yang,
J.L.Fallon,
F.A.Quiocho,
S.E.Pedersen,
and
S.L.Hamilton
(2009).
Determinants in CaV1 channels that regulate the Ca2+ sensitivity of bound calmodulin.
|
| |
J Biol Chem,
284,
20041-20051.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Ishida,
M.Rainaldi,
and
H.J.Vogel
(2009).
Structural studies of soybean calmodulin isoform 4 bound to the calmodulin-binding domain of tobacco mitogen-activated protein kinase phosphatase-1 provide insights into a sequential target binding mode.
|
| |
J Biol Chem,
284,
28292-28305.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Akerboom,
J.D.Rivera,
M.M.Guilbe,
E.C.Malavé,
H.H.Hernandez,
L.Tian,
S.A.Hires,
J.S.Marvin,
L.L.Looger,
and
E.R.Schreiter
(2009).
Crystal structures of the GCaMP calcium sensor reveal the mechanism of fluorescence signal change and aid rational design.
|
| |
J Biol Chem,
284,
6455-6464.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.S.Keating,
S.C.Flores,
M.B.Gerstein,
and
L.A.Kuhn
(2009).
StoneHinge: hinge prediction by network analysis of individual protein structures.
|
| |
Protein Sci,
18,
359-371.
|
 |
|
|
|
|
 |
K.Teilum,
J.G.Olsen,
and
B.B.Kragelund
(2009).
Functional aspects of protein flexibility.
|
| |
Cell Mol Life Sci,
66,
2231-2247.
|
 |
|
|
|
|
 |
M.Fromer,
and
C.Yanover
(2009).
Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
|
| |
Proteins,
75,
682-705.
|
 |
|
|
|
|
 |
M.Fromer,
and
J.M.Shifman
(2009).
Tradeoff between stability and multispecificity in the design of promiscuous proteins.
|
| |
PLoS Comput Biol,
5,
e1000627.
|
 |
|
|
|
|
 |
P.B.Stathopulos,
and
M.Ikura
(2009).
Structurally delineating stromal interaction molecules as the endoplasmic reticulum calcium sensors and regulators of calcium release-activated calcium entry.
|
| |
Immunol Rev,
231,
113-131.
|
 |
|
|
|
|
 |
P.F.Chen,
and
K.K.Wu
(2009).
Two synthetic peptides corresponding to the proximal heme-binding domain and CD1 domain of human endothelial nitric-oxide synthase inhibit the oxygenase activity by interacting with CaM.
|
| |
Arch Biochem Biophys,
486,
132-140.
|
 |
|
|
|
|
 |
P.Yan,
T.Wang,
G.J.Newton,
T.V.Knyushko,
Y.Xiong,
D.J.Bigelow,
T.C.Squier,
and
M.U.Mayer
(2009).
A targeted releasable affinity probe (TRAP) for in vivo photocrosslinking.
|
| |
Chembiochem,
10,
1507-1518.
|
 |
|
|
|
|
 |
S.Yang,
S.Park,
L.Makowski,
and
B.Roux
(2009).
A rapid coarse residue-based computational method for x-ray solution scattering characterization of protein folds and multiple conformational states of large protein complexes.
|
| |
Biophys J,
96,
4449-4463.
|
 |
|
|
|
|
 |
T.I.Evans,
and
M.A.Shea
(2009).
Energetics of calmodulin domain interactions with the calmodulin binding domain of CaMKII.
|
| |
Proteins,
76,
47-61.
|
 |
|
|
|
|
 |
V.Majava,
and
P.Kursula
(2009).
Domain swapping and different oligomeric States for the complex between calmodulin and the calmodulin-binding domain of calcineurin a.
|
| |
PLoS ONE,
4,
e5402.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Y.Zhou,
W.Yang,
M.M.Lurtz,
Y.Chen,
J.Jiang,
Y.Huang,
C.F.Louis,
and
J.J.Yang
(2009).
Calmodulin mediates the Ca2+-dependent regulation of Cx44 gap junctions.
|
| |
Biophys J,
96,
2832-2848.
|
 |
|
|
|
|
 |
D.Fan,
R.Lakshminarayanan,
and
J.Moradian-Oldak
(2008).
The 32kDa enamelin undergoes conformational transitions upon calcium binding.
|
| |
J Struct Biol,
163,
109-115.
|
 |
|
|
|
|
 |
E.Laine,
J.D.Yoneda,
A.Blondel,
and
T.E.Malliavin
(2008).
The conformational plasticity of calmodulin upon calcium complexation gives a model of its interaction with the oedema factor of Bacillus anthracis.
|
| |
Proteins,
71,
1813-1829.
|
 |
|
|
|
|
 |
J.Gsponer,
J.Christodoulou,
A.Cavalli,
J.M.Bui,
B.Richter,
C.M.Dobson,
and
M.Vendruscolo
(2008).
A coupled equilibrium shift mechanism in calmodulin-mediated signal transduction.
|
| |
Structure,
16,
736-746.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.I.Stefan,
S.J.Edelstein,
and
N.Le Novère
(2008).
An allosteric model of calmodulin explains differential activation of PP2B and CaMKII.
|
| |
Proc Natl Acad Sci U S A,
105,
10768-10773.
|
 |
|
|
|
|
 |
N.V.Valeyev,
D.G.Bates,
P.Heslop-Harrison,
I.Postlethwaite,
and
N.V.Kotov
(2008).
Elucidating the mechanisms of cooperative calcium-calmodulin interactions: a structural systems biology approach.
|
| |
BMC Syst Biol,
2,
48.
|
 |
|
|
|
|
 |
P.Lijnzaad,
K.A.Feenstra,
J.Heringa,
and
F.C.Holstege
(2008).
On defining the dynamics of hydrophobic patches on protein surfaces.
|
| |
Proteins,
72,
105-114.
|
 |
|
|
|
|
 |
Q.Guo,
J.E.Jureller,
J.T.Warren,
E.Solomaha,
J.Florián,
and
W.J.Tang
(2008).
Protein-protein docking and analysis reveal that two homologous bacterial adenylyl cyclase toxins interact with calmodulin differently.
|
| |
J Biol Chem,
283,
23836-23845.
|
 |
|
|
|
|
 |
Q.Ye,
H.Wang,
J.Zheng,
Q.Wei,
and
Z.Jia
(2008).
The complex structure of calmodulin bound to a calcineurin peptide.
|
| |
Proteins,
73,
19-27.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.J.Abraham,
S.Hoheisel,
and
V.Gaponenko
(2008).
Detection of protein-ligand interactions by NMR using reductive methylation of lysine residues.
|
| |
J Biomol NMR,
42,
143-148.
|
 |
|
|
|
|
 |
T.L.Pukala,
T.Urathamakul,
S.J.Watt,
J.L.Beck,
R.J.Jackway,
and
J.H.Bowie
(2008).
Binding studies of nNOS-active amphibian peptides and Ca(2+) calmodulin, using negative ion electrospray ionisation mass spectrometry.
|
| |
Rapid Commun Mass Spectrom,
22,
3501-3509.
|
 |
|
|
|
|
 |
V.Majava,
M.V.Petoukhov,
N.Hayashi,
P.Pirilä,
D.I.Svergun,
and
P.Kursula
(2008).
Interaction between the C-terminal region of human myelin basic protein and calmodulin: analysis of complex formation and solution structure.
|
| |
BMC Struct Biol,
8,
10.
|
 |
|
|
|
|
 |
Y.Zhang,
H.Tan,
Z.Jia,
and
G.Chen
(2008).
Ligand-induced dimer formation of calmodulin.
|
| |
J Mol Recognit,
21,
267-274.
|
 |
|
|
|
|
 |
A.Isvoran,
C.T.Craescu,
and
E.Alexov
(2007).
Electrostatic control of the overall shape of calmodulin: numerical calculations.
|
| |
Eur Biophys J,
36,
225-237.
|
 |
|
|
|
|
 |
A.Uttenweiler,
H.Schwarz,
H.Neumann,
and
A.Mayer
(2007).
The vacuolar transporter chaperone (VTC) complex is required for microautophagy.
|
| |
Mol Biol Cell,
18,
166-175.
|
 |
|
|
|
|
 |
C.Yanover,
M.Fromer,
and
J.M.Shifman
(2007).
Dead-end elimination for multistate protein design.
|
| |
J Comput Chem,
28,
2122-2129.
|
 |
|
|
|
|
 |
D.E.Clapham
(2007).
Calcium signaling.
|
| |
Cell,
131,
1047-1058.
|
 |
|
|
|
|
 |
J.M.Davis,
L.K.Tsou,
and
A.D.Hamilton
(2007).
Synthetic non-peptide mimetics of alpha-helices.
|
| |
Chem Soc Rev,
36,
326-334.
|
 |
|
|
|
|
 |
J.R.Horton,
S.J.Elgar,
S.I.Khan,
X.Zhang,
P.A.Wade,
and
X.Cheng
(2007).
Structure of the SANT domain from the Xenopus chromatin remodeling factor ISWI.
|
| |
Proteins,
67,
1198-1202.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.Henzler-Wildman,
and
D.Kern
(2007).
Dynamic personalities of proteins.
|
| |
Nature,
450,
964-972.
|
 |
|
|
|
|
 |
L.Settimo,
S.Donnini,
A.H.Juffer,
R.W.Woody,
and
O.Marin
(2007).
Conformational changes upon calcium binding and phosphorylation in a synthetic fragment of calmodulin.
|
| |
Biopolymers,
88,
373-385.
|
 |
|
|
|
|
 |
S.L.Russell,
N.V.McFerran,
E.M.Hoey,
A.Trudgett,
and
D.J.Timson
(2007).
Characterisation of two calmodulin-like proteins from the liver fluke, Fasciola hepatica.
|
| |
Biol Chem,
388,
593-599.
|
 |
|
|
|
|
 |
T.L.Pukala,
J.R.Doyle,
L.E.Llewellyn,
L.Kuhn-Nentwig,
M.A.Apponyi,
F.Separovic,
and
J.H.Bowie
(2007).
Cupiennin 1a, an antimicrobial peptide from the venom of the neotropical wandering spider Cupiennius salei, also inhibits the formation of nitric oxide by neuronal nitric oxide synthase.
|
| |
FEBS J,
274,
1778-1784.
|
 |
|
|
|
|
 |
A.A.Maximciuc,
J.A.Putkey,
Y.Shamoo,
and
K.R.Mackenzie
(2006).
Complex of calmodulin with a ryanodine receptor target reveals a novel, flexible binding mode.
|
| |
Structure,
14,
1547-1556.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.E.Palmer,
M.Giacomello,
T.Kortemme,
S.A.Hires,
V.Lev-Ram,
D.Baker,
and
R.Y.Tsien
(2006).
Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs.
|
| |
Chem Biol,
13,
521-530.
|
 |
|
|
|
|
 |
A.Ganoth,
E.Nachliel,
R.Friedman,
and
M.Gutman
(2006).
Molecular dynamics study of a calmodulin-like protein with an IQ peptide: spontaneous refolding of the protein around the peptide.
|
| |
Proteins,
64,
133-146.
|
 |
|
|
|
|
 |
A.Ganoth,
R.Friedman,
E.Nachliel,
and
M.Gutman
(2006).
A molecular dynamics study and free energy analysis of complexes between the Mlc1p protein and two IQ motif peptides.
|
| |
Biophys J,
91,
2436-2450.
|
 |
|
|
|
|
 |
A.Houdusse,
J.F.Gaucher,
E.Krementsova,
S.Mui,
K.M.Trybus,
and
C.Cohen
(2006).
Crystal structure of apo-calmodulin bound to the first two IQ motifs of myosin V reveals essential recognition features.
|
| |
Proc Natl Acad Sci U S A,
103,
19326-19331.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.E.Spratt,
E.Newman,
J.Mosher,
D.K.Ghosh,
J.C.Salerno,
and
J.G.Guillemette
(2006).
Binding and activation of nitric oxide synthase isozymes by calmodulin EF hand pairs.
|
| |
FEBS J,
273,
1759-1771.
|
 |
|
|
|
|
 |
E.Haag Breese,
V.N.Uversky,
M.M.Georgiadis,
and
M.A.Harrington
(2006).
The disordered amino-terminus of SIMPL interacts with members of the 70-kDa heat-shock protein family.
|
| |
DNA Cell Biol,
25,
704-714.
|
 |
|
|
|
|
 |
F.Capozzi,
F.Casadei,
and
C.Luchinat
(2006).
EF-hand protein dynamics and evolution of calcium signal transduction: an NMR view.
|
| |
J Biol Inorg Chem,
11,
949-962.
|
 |
|
|
|
|
 |
G.Fiorin,
A.Pastore,
P.Carloni,
and
M.Parrinello
(2006).
Using metadynamics to understand the mechanism of calmodulin/target recognition at atomic detail.
|
| |
Biophys J,
91,
2768-2777.
|
 |
|
|
|
|
 |
I.André,
T.Kesvatera,
B.Jönsson,
and
S.Linse
(2006).
Salt enhances calmodulin-target interaction.
|
| |
Biophys J,
90,
2903-2910.
|
 |
|
|
|
|
 |
J.Gu,
M.Gribskov,
and
P.E.Bourne
(2006).
Wiggle-predicting functionally flexible regions from primary sequence.
|
| |
PLoS Comput Biol,
2,
e90.
|
 |
|
|
|
|
 |
J.Liu,
N.B.Perumal,
C.J.Oldfield,
E.W.Su,
V.N.Uversky,
and
A.K.Dunker
(2006).
Intrinsic disorder in transcription factors.
|
| |
Biochemistry,
45,
6873-6888.
|
 |
|
|
|
|
 |
J.M.Shifman,
M.H.Choi,
S.Mihalas,
S.L.Mayo,
and
M.B.Kennedy
(2006).
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated by calmodulin with two bound calciums.
|
| |
Proc Natl Acad Sci U S A,
103,
13968-13973.
|
 |
|
|
|
|
 |
J.Ruan,
K.Chen,
J.A.Tuszynski,
and
L.A.Kurgan
(2006).
Quantitative analysis of the conservation of the tertiary structure of protein segments.
|
| |
Protein J,
25,
301-315.
|
 |
|
|
|
|
 |
K.Chen,
J.Ruan,
and
L.A.Kurgan
(2006).
Prediction of three dimensional structure of calmodulin.
|
| |
Protein J,
25,
57-70.
|
 |
|
|
|
|
 |
K.Sharp,
and
J.J.Skinner
(2006).
Pump-probe molecular dynamics as a tool for studying protein motion and long range coupling.
|
| |
Proteins,
65,
347-361.
|
 |
|
|
|
|
 |
L.Milanesi,
C.A.Hunter,
S.E.Sedelnikova,
and
J.P.Waltho
(2006).
Amplification of bifunctional ligands for calmodulin from a dynamic combinatorial library.
|
| |
Chemistry,
12,
1081-1087.
|
 |
|
|
|
|
 |
M.Ikura,
and
J.B.Ames
(2006).
Genetic polymorphism and protein conformational plasticity in the calmodulin superfamily: two ways to promote multifunctionality.
|
| |
Proc Natl Acad Sci U S A,
103,
1159-1164.
|
 |
|
|
|
|
 |
M.S.Marlow,
and
A.J.Wand
(2006).
Conformational dynamics of calmodulin in complex with the calmodulin-dependent kinase kinase alpha calmodulin-binding domain.
|
| |
Biochemistry,
45,
8732-8741.
|
 |
|
|
|
|
 |
S.K.Gerega,
and
K.M.Downard
(2006).
PROXIMO--a new docking algorithm to model protein complexes using data from radical probe mass spectrometry (RP-MS).
|
| |
Bioinformatics,
22,
1702-1709.
|
 |
|
|
|
|
 |
T.I.Igumenova,
K.K.Frederick,
and
A.J.Wand
(2006).
Characterization of the fast dynamics of protein amino acid side chains using NMR relaxation in solution.
|
| |
Chem Rev,
106,
1672-1699.
|
 |
|
|
|
|
 |
T.Q.Le,
M.Gochin,
J.D.Featherstone,
W.Li,
and
P.K.DenBesten
(2006).
Comparative calcium binding of leucine-rich amelogenin peptide and full-length amelogenin.
|
| |
Eur J Oral Sci,
114,
320.
|
 |
|
|
|
|
 |
X.Zhang,
T.Zou,
Y.Liu,
and
Y.Qi
(2006).
The gating effect of calmodulin and calcium on the connexin50 hemichannel.
|
| |
Biol Chem,
387,
595-601.
|
 |
|
|
|
|
 |
A.Di Tullio,
S.Reale,
and
F.De Angelis
(2005).
Molecular recognition by mass spectrometry.
|
| |
J Mass Spectrom,
40,
845-865.
|
 |
|
|
|
|
 |
A.G.Cook,
L.N.Johnson,
and
J.M.McDonnell
(2005).
Structural characterization of Ca2+/CaM in complex with the phosphorylase kinase PhK5 peptide.
|
| |
FEBS J,
272,
1511-1522.
|
 |
|
|
|
|
 |
G.Fiorin,
R.R.Biekofsky,
A.Pastore,
and
P.Carloni
(2005).
Unwinding the helical linker of calcium-loaded calmodulin: a molecular dynamics study.
|
| |
Proteins,
61,
829-839.
|
 |
|
|
|
|
 |
G.Larsson,
J.Schleucher,
J.Onions,
S.Hermann,
T.Grundström,
and
S.S.Wijmenga
(2005).
Backbone dynamics of a symmetric calmodulin dimer in complex with the calmodulin-binding domain of the basic-helix-loop-helix transcription factor SEF2-1/E2-2: a highly dynamic complex.
|
| |
Biophys J,
89,
1214-1226.
|
 |
|
|
|
|
 |
H.Jin,
D.Sha,
J.Wei,
K.M.Davis,
H.Wu,
Y.Jin,
and
J.Y.Wu
(2005).
Effect of apocalmodulin on recombinant human brain glutamic acid decarboxylase.
|
| |
J Neurochem,
92,
739-748.
|
 |
|
|
|
|
 |
H.Yin,
and
A.D.Hamilton
(2005).
Strategies for targeting protein-protein interactions with synthetic agents.
|
| |
Angew Chem Int Ed Engl,
44,
4130-4163.
|
 |
|
|
|
|
 |
J.L.Fallon,
D.B.Halling,
S.L.Hamilton,
and
F.A.Quiocho
(2005).
Structure of calmodulin bound to the hydrophobic IQ domain of the cardiac Ca(v)1.2 calcium channel.
|
| |
Structure,
13,
1881-1886.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Ménétrey,
A.Bahloul,
A.L.Wells,
C.M.Yengo,
C.A.Morris,
H.L.Sweeney,
and
A.Houdusse
(2005).
The structure of the myosin VI motor reveals the mechanism of directionality reversal.
|
| |
Nature,
435,
779-785.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.W.Wong,
S.D.Maleknia,
and
K.M.Downard
(2005).
Hydroxyl radical probe of the calmodulin-melittin complex interface by electrospray ionization mass spectrometry.
|
| |
J Am Soc Mass Spectrom,
16,
225-233.
|
 |
|
|
|
|
 |
N.Uchikoga,
S.Y.Takahashi,
R.Ke,
M.Sonoyama,
and
S.Mitaku
(2005).
Electric charge balance mechanism of extended soluble proteins.
|
| |
Protein Sci,
14,
74-80.
|
 |
|
|
|
|
 |
Q.Guo,
Y.Shen,
Y.S.Lee,
C.S.Gibbs,
M.Mrksich,
and
W.J.Tang
(2005).
Structural basis for the interaction of Bordetella pertussis adenylyl cyclase toxin with calmodulin.
|
| |
EMBO J,
24,
3190-3201.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.Nishi,
Y.Okuda,
E.Watanabe,
T.Mori,
S.Iwai,
C.Masutani,
K.Sugasawa,
and
F.Hanaoka
(2005).
Centrin 2 stimulates nucleotide excision repair by interacting with xeroderma pigmentosum group C protein.
|
| |
Mol Cell Biol,
25,
5664-5674.
|
 |
|
|
|
|
 |
S.J.Watt,
A.Oakley,
M.M.Sheil,
and
J.L.Beck
(2005).
Comparison of negative and positive ion electrospray ionization mass spectra of calmodulin and its complex with trifluoperazine.
|
| |
Rapid Commun Mass Spectrom,
19,
2123-2130.
|
 |
|
|
|
|
 |
S.Shirran,
P.Garnaud,
S.Daff,
D.McMillan,
and
P.Barran
(2005).
The formation of a complex between calmodulin and neuronal nitric oxide synthase is determined by ESI-MS.
|
| |
J R Soc Interface,
2,
465-476.
|
 |
|
|
|
|
 |
T.I.Igumenova,
A.L.Lee,
and
A.J.Wand
(2005).
Backbone and side chain dynamics of mutant calmodulin-peptide complexes.
|
| |
Biochemistry,
44,
12627-12639.
|
 |
|
|
|
|
 |
V.N.Uversky,
C.J.Oldfield,
and
A.K.Dunker
(2005).
Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling.
|
| |
J Mol Recognit,
18,
343-384.
|
 |
|
|
|
|
 |
A.Blanc,
N.R.Pandey,
and
A.K.Srivastava
(2004).
Distinct roles of Ca2+, calmodulin, and protein kinase C in H2O2-induced activation of ERK1/2, p38 MAPK, and protein kinase B signaling in vascular smooth muscle cells.
|
| |
Antioxid Redox Signal,
6,
353-366.
|
 |
|
|
|
|
 |
A.G.Turjanski,
D.A.Estrin,
R.E.Rosenstein,
J.E.McCormick,
S.R.Martin,
A.Pastore,
R.R.Biekofsky,
and
V.Martorana
(2004).
NMR and molecular dynamics studies of the interaction of melatonin with calmodulin.
|
| |
Protein Sci,
13,
2925-2938.
|
 |
|
|
|
|
 |
B.B.Adhikari,
and
K.Wang
(2004).
Interplay of troponin- and Myosin-based pathways of calcium activation in skeletal and cardiac muscle: the use of W7 as an inhibitor of thin filament activation.
|
| |
Biophys J,
86,
359-370.
|
 |
|
|
|
|
 |
C.H.Yun,
J.Bai,
D.Y.Sun,
D.F.Cui,
W.R.Chang,
and
D.C.Liang
(2004).
Structure of potato calmodulin PCM6: the first report of the three-dimensional structure of a plant calmodulin.
|
| |
Acta Crystallogr D Biol Crystallogr,
60,
1214-1219.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.M.Shepherd,
and
H.J.Vogel
(2004).
A molecular dynamics study of Ca(2+)-calmodulin: evidence of interdomain coupling and structural collapse on the nanosecond timescale.
|
| |
Biophys J,
87,
780-791.
|
 |
|
|
|
|
 |
I.André,
T.Kesvatera,
B.Jönsson,
K.S.Akerfeldt,
and
S.Linse
(2004).
The role of electrostatic interactions in calmodulin-peptide complex formation.
|
| |
Biophys J,
87,
1929-1938.
|
 |
|
|
|
|
 |
I.Bertini,
C.Del Bianco,
I.Gelis,
N.Katsaros,
C.Luchinat,
G.Parigi,
M.Peana,
A.Provenzani,
and
M.A.Zoroddu
(2004).
Experimentally exploring the conformational space sampled by domain reorientation in calmodulin.
|
| |
Proc Natl Acad Sci U S A,
101,
6841-6846.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Gallay,
M.Vincent,
I.M.Li de la Sierra,
H.Munier-Lehmann,
M.Renouard,
H.Sakamoto,
O.Bârzu,
and
A.M.Gilles
(2004).
Insight into the activation mechanism of Bordetella pertussis adenylate cyclase by calmodulin using fluorescence spectroscopy.
|
| |
Eur J Biochem,
271,
821-833.
|
 |
|
|
|
|
 |
M.A.Schumacher,
M.Crum,
and
M.C.Miller
(2004).
Crystal structures of apocalmodulin and an apocalmodulin/SK potassium channel gating domain complex.
|
| |
Structure,
12,
849-860.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Matsubara,
T.Nakatsu,
H.Kato,
and
H.Taniguchi
(2004).
Crystal structure of a myristoylated CAP-23/NAP-22 N-terminal domain complexed with Ca2+/calmodulin.
|
| |
EMBO J,
23,
712-718.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
N.V.Prabhu,
P.Zhu,
and
K.A.Sharp
(2004).
Implementation and testing of stable, fast implicit solvation in molecular dynamics using the smooth-permittivity finite difference Poisson-Boltzmann method.
|
| |
J Comput Chem,
25,
2049-2064.
|
 |
|
|
|
|
 |
W.Zhou,
Y.Qian,
K.Kunjilwar,
P.J.Pfaffinger,
and
S.Choe
(2004).
Structural insights into the functional interaction of KChIP1 with Shal-type K(+) channels.
|
| |
Neuron,
41,
573-586.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Antonsson,
K.Hughes,
S.Edin,
and
T.Grundström
(2003).
Regulation of c-Rel nuclear localization by binding of Ca2+/calmodulin.
|
| |
Mol Cell Biol,
23,
1418-1427.
|
 |
|
|
|
|
 |
A.M.Weljie,
A.P.Yamniuk,
H.Yoshino,
Y.Izumi,
and
H.J.Vogel
(2003).
Protein conformational changes studied by diffusion NMR spectroscopy: application to helix-loop-helix calcium binding proteins.
|
| |
Protein Sci,
12,
228-236.
|
 |
|
|
|
|
 |
C.S.Brinkworth,
J.A.Carver,
K.L.Wegener,
J.Doyle,
L.E.Llewellyn,
and
J.H.Bowie
(2003).
The solution structure of frenatin 3, a neuronal nitric oxide synthase inhibitor from the giant tree frog, Litoria infrafrenata.
|
| |
Biopolymers,
70,
424-434.
|
 |
|
|
|
|
 |
D.B.Zimmer,
P.Wright Sadosky,
and
D.J.Weber
(2003).
Molecular mechanisms of S100-target protein interactions.
|
| |
Microsc Res Tech,
60,
552-559.
|
 |
|
|
|
|
 |
D.J.Rigden,
M.J.Jedrzejas,
and
M.Y.Galperin
(2003).
An extracellular calcium-binding domain in bacteria with a distant relationship to EF-hands.
|
| |
FEMS Microbiol Lett,
221,
103-110.
|
 |
|
|
|
|
 |
D.M.Casey,
K.Inaba,
G.J.Pazour,
S.Takada,
K.Wakabayashi,
C.G.Wilkerson,
R.Kamiya,
and
G.B.Witman
(2003).
DC3, the 21-kDa subunit of the outer dynein arm-docking complex (ODA-DC), is a novel EF-hand protein important for assembly of both the outer arm and the ODA-DC.
|
| |
Mol Biol Cell,
14,
3650-3663.
|
 |
|
|
|
|
 |
E.Yamauchi,
T.Nakatsu,
M.Matsubara,
H.Kato,
and
H.Taniguchi
(2003).
Crystal structure of a MARCKS peptide containing the calmodulin-binding domain in complex with Ca2+-calmodulin.
|
| |
Nat Struct Biol,
10,
226-231.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.M.Shifman,
and
S.L.Mayo
(2003).
Exploring the origins of binding specificity through the computational redesign of calmodulin.
|
| |
Proc Natl Acad Sci U S A,
100,
13274-13279.
|
 |
|
|
|
|
 |
J.Symersky,
G.Lin,
S.Li,
S.Qiu,
M.Carson,
N.Schormann,
and
M.Luo
(2003).
Structural genomics of caenorhabditis elegans: crystal structure of calmodulin.
|
| |
Proteins,
53,
947-949.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.A.Wilson,
and
A.T.Brunger
(2003).
Domain flexibility in the 1.75 A resolution structure of Pb2+-calmodulin.
|
| |
Acta Crystallogr D Biol Crystallogr,
59,
1782-1792.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Aoyagi,
A.S.Arvai,
J.A.Tainer,
and
E.D.Getzoff
(2003).
Structural basis for endothelial nitric oxide synthase binding to calmodulin.
|
| |
EMBO J,
22,
766-775.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Nousiainen,
P.J.Derrick,
D.Lafitte,
and
P.Vainiotalo
(2003).
Relative affinity constants by electrospray ionization and Fourier transform ion cyclotron resonance mass spectrometry: calmodulin binding to peptide analogs of myosin light chain kinase.
|
| |
Biophys J,
85,
491-500.
|
 |
|
|
|
|
 |
P.Prijatelj,
J.Sribar,
G.Ivanovski,
I.Krizaj,
F.Gubensek,
and
J.Pungercar
(2003).
Identification of a novel binding site for calmodulin in ammodytoxin A, a neurotoxic group IIA phospholipase A2.
|
| |
Eur J Biochem,
270,
3018-3025.
|
 |
|
|
|
|
 |
S.W.Vetter,
and
E.Leclerc
(2003).
Novel aspects of calmodulin target recognition and activation.
|
| |
Eur J Biochem,
270,
404-414.
|
 |
|
|
|
|
 |
W.Iwasaki,
H.Sasaki,
A.Nakamura,
K.Kohama,
and
M.Tanokura
(2003).
Metal-free and Ca2+-bound structures of a multidomain EF-hand protein, CBP40, from the lower eukaryote Physarum polycephalum.
|
| |
Structure,
11,
75-85.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.L.Papish,
L.W.Tari,
and
H.J.Vogel
(2002).
Dynamic light scattering study of calmodulin-target peptide complexes.
|
| |
Biophys J,
83,
1455-1464.
|
 |
|
|
|
|
 |
C.Lee,
J.H.Chang,
H.S.Lee,
and
Y.Cho
(2002).
Structural basis for the recognition of the E2F transactivation domain by the retinoblastoma tumor suppressor.
|
| |
Genes Dev,
16,
3199-3212.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
E.F.da Silva,
V.H.Oliveira,
M.M.Sorenson,
H.Barrabin,
and
H.M.Scofano
(2002).
Converting troponin C into calmodulin: effects of mutations in the central helix and of changes in temperature.
|
| |
Int J Biochem Cell Biol,
34,
657-667.
|
 |
|
|
|
|
 |
F.D.Duval,
M.Renard,
M.Jaquinod,
V.Biou,
F.Montrichard,
and
D.Macherel
(2002).
Differential expression and functional analysis of three calmodulin isoforms in germinating pea (Pisum sativum L.) seeds.
|
| |
Plant J,
32,
481-493.
|
 |
|
|
|
|
 |
G.S.Jas,
and
K.Kuczera
(2002).
Free-energy simulations of the oxidation of c-terminal methionines in calmodulin.
|
| |
Proteins,
48,
257-268.
|
 |
|
|
|
|
 |
J.D.Joseph,
and
A.R.Means
(2002).
Calcium binding is required for calmodulin function in Aspergillus nidulans.
|
| |
Eukaryot Cell,
1,
119-125.
|
 |
|
|
|
|
 |
K.Palo,
L.Brand,
C.Eggeling,
S.Jäger,
P.Kask,
and
K.Gall
(2002).
Fluorescence intensity and lifetime distribution analysis: toward higher accuracy in fluorescence fluctuation spectroscopy.
|
| |
Biophys J,
83,
605-618.
|
 |
|
|
|
|
 |
M.Ikura,
M.Osawa,
and
J.B.Ames
(2002).
The role of calcium-binding proteins in the control of transcription: structure to function.
|
| |
Bioessays,
24,
625-636.
|
 |
|
|
|
|
 |
M.L.Mattinen,
K.Pääkkönen,
T.Ikonen,
J.Craven,
T.Drakenberg,
R.Serimaa,
J.Waltho,
and
A.Annila
(2002).
Quaternary structure built from subunits combining NMR and small-angle x-ray scattering data.
|
| |
Biophys J,
83,
1177-1183.
|
 |
|
|
|
|
 |
N.Hayashi,
M.Matsubara,
Y.Jinbo,
K.Titani,
Y.Izumi,
and
N.Matsushima
(2002).
Nef of HIV-1 interacts directly with calcium-bound calmodulin.
|
| |
Protein Sci,
11,
529-537.
|
 |
|
|
|
|
 |
S.Habuchi,
M.Cotlet,
J.Hofkens,
G.Dirix,
J.Michiels,
J.Vanderleyden,
V.Subramaniam,
and
F.C.De Schryver
(2002).
Resonance energy transfer in a calcium concentration-dependent cameleon protein.
|
| |
Biophys J,
83,
3499-3506.
|
 |
|
|
|
|
 |
V.N.Uversky
(2002).
Natively unfolded proteins: a point where biology waits for physics.
|
| |
Protein Sci,
11,
739-756.
|
 |
|
|
|
|
 |
Y.Saimi,
and
C.Kung
(2002).
Calmodulin as an ion channel subunit.
|
| |
Annu Rev Physiol,
64,
289-311.
|
 |
|
|
|
|
 |
B.R.Sorensen,
J.T.Eppel,
and
M.A.Shea
(2001).
Paramecium calmodulin mutants defective in ion channel regulation associate with melittin in the absence of calcium but require it for tertiary collapse.
|
| |
Biochemistry,
40,
896-903.
|
 |
|
|
|
|
 |
D.Vigil,
S.C.Gallagher,
J.Trewhella,
and
A.E.García
(2001).
Functional dynamics of the hydrophobic cleft in the N-domain of calmodulin.
|
| |
Biophys J,
80,
2082-2092.
|
 |
|
|
|
|
 |
G.A.Tavares,
E.H.Panepucci,
and
A.T.Brunger
(2001).
Structural characterization of the intramolecular interaction between the SH3 and guanylate kinase domains of PSD-95.
|
| |
Mol Cell,
8,
1313-1325.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
G.Larsson,
J.Schleucher,
J.Onions,
S.Hermann,
T.Grundström,
and
S.S.Wijmenga
(2001).
A novel target recognition revealed by calmodulin in complex with the basic helix--loop--helix transcription factor SEF2-1/E2-2.
|
| |
Protein Sci,
10,
169-186.
|
 |
|
|
|
|
 |
G.R.Marshall
(2001).
Peptide interactions with G-protein coupled receptors.
|
| |
Biopolymers,
60,
246-277.
|
 |
|
|
|
|
 |
I.Ivanovska,
and
M.D.Rose
(2001).
Fine structure analysis of the yeast centrin, Cdc31p, identifies residues specific for cell morphology and spindle pole body duplication.
|
| |
Genetics,
157,
503-518.
|
 |
|
|
|
|
 |
J.Gao,
Y.Yao,
and
T.C.Squier
(2001).
Oxidatively modified calmodulin binds to the plasma membrane Ca-ATPase in a nonproductive and conformationally disordered complex.
|
| |
Biophys J,
80,
1791-1801.
|
 |
|
|
|
|
 |
J.J.Chou,
S.Li,
C.B.Klee,
and
A.Bax
(2001).
Solution structure of Ca(2+)-calmodulin reveals flexible hand-like properties of its domains.
|
| |
Nat Struct Biol,
8,
990-997.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.W.Chin,
and
A.Schepartz
(2001).
Design and Evolution of a Miniature Bcl-2 Binding Protein We thank the HHMI Biopolymer/Keck Foundation Biotechnology Resource Laboratory (Yale University School of Medicine, New Haven, CT) for oligonucleotide and peptide synthesis and amino acid analysis and Professor Jennifer Doudna (Yale University) for use of a Perseptive Voyager-DE (MALDI-TOF) mass spectrometer. We are grateful also to Dr. Junying Yuan and Dr. Alexi Degterev (Harvard Medical School) for a generous gift of Bcl-X(L)-His(6) and Stacey E. Rutledge for helpful comments. This work was supported by the National Institutes of Health.
|
| |
Angew Chem Int Ed Engl,
40,
3806-3809.
|
 |
|
|
|
|
 |
K.Truong,
A.Sawano,
H.Mizuno,
H.Hama,
K.I.Tong,
T.K.Mal,
A.Miyawaki,
and
M.Ikura
(2001).
FRET-based in vivo Ca2+ imaging by a new calmodulin-GFP fusion molecule.
|
| |
Nat Struct Biol,
8,
1069-1073.
|
 |
|
|
|
|
 |
N.Yamaotsu,
M.Suga,
and
S.Hirono
(2001).
Molecular dynamics simulation of the calmodulin-trifluoperazine complex in aqueous solution.
|
| |
Biopolymers,
58,
410-421.
|
 |
|
|
|
|
 |
O.Carugo
(2001).
Detection of breaking points in helices linking separate domains.
|
| |
Proteins,
42,
390-398.
|
 |
|
|
|
|
 |
R.Donato
(2001).
S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles.
|
| |
Int J Biochem Cell Biol,
33,
637-668.
|
 |
|
|
|
|
 |
S.S.Hook,
and
A.R.Means
(2001).
Ca(2+)/CaM-dependent kinases: from activation to function.
|
| |
Annu Rev Pharmacol Toxicol,
41,
471-505.
|
 |
|
|
|
|
 |
S.W.Vetter,
and
E.Leclerc
(2001).
Phosphorylation of serine residues affects the conformation of the calmodulin binding domain of human protein 4.1.
|
| |
Eur J Biochem,
268,
4292-4299.
|
 |
|
|
|
|
 |
T.Yuan,
S.Tencza,
T.A.Mietzner,
R.C.Montelaro,
and
H.J.Vogel
(2001).
Calmodulin binding properties of peptide analogues and fragments of the calmodulin-binding domain of simian immunodeficiency virus transmembrane glycoprotein 41.
|
| |
Biopolymers,
58,
50-62.
|
 |
|
|
|
|
 |
Z.Qin,
and
T.C.Squier
(2001).
Calcium-dependent stabilization of the central sequence between Met(76) and Ser(81) in vertebrate calmodulin.
|
| |
Biophys J,
81,
2908-2918.
|
 |
|
|
|
|
 |
A.Lewit-Bentley,
and
S.Réty
(2000).
EF-hand calcium-binding proteins.
|
| |
Curr Opin Struct Biol,
10,
637-643.
|
 |
|
|
|
|
 |
A.Nakamura,
T.Okagaki,
T.Takagi,
K.Nakashima,
M.Yazawa,
and
K.Kohama
(2000).
Calcium binding properties of recombinant calcium binding protein 40, a major calcium binding protein of lower eukaryote Physarum polycephalum.
|
| |
Biochemistry,
39,
3827-3834.
|
 |
|
|
|
|
 |
A.Ulrich,
A.A.Schmitz,
T.Braun,
T.Yuan,
H.J.Vogel,
and
G.Vergères
(2000).
Mapping the interface between calmodulin and MARCKS-related protein by fluorescence spectroscopy.
|
| |
Proc Natl Acad Sci U S A,
97,
5191-5196.
|
 |
|
|
|
|
 |
D.Chin,
and
A.R.Means
(2000).
Calmodulin: a prototypical calcium sensor.
|
| |
Trends Cell Biol,
10,
322-328.
|
 |
|
|
|
|
 |
D.Yin,
H.Sun,
D.A.Ferrington,
and
T.C.Squier
(2000).
Closer proximity between opposing domains of vertebrate calmodulin following deletion of Met(145)-Lys(148).
|
| |
Biochemistry,
39,
10255-10268.
|
 |
|
|
|
|
 |
H.Ishida,
K.Takahashi,
K.Nakashima,
Y.Kumaki,
M.Nakata,
K.Hikichi,
and
M.Yazawa
(2000).
Solution structures of the N-terminal domain of yeast calmodulin: Ca2+-dependent conformational change and its functional implication.
|
| |
Biochemistry,
39,
13660-13668.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.K.Krueger,
S.C.Gallagher,
C.A.Wang,
and
J.Trewhella
(2000).
Calmodulin remains extended upon binding to smooth muscle caldesmon: a combined small-angle scattering and fourier transform infrared spectroscopy study.
|
| |
Biochemistry,
39,
3979-3987.
|
 |
|
|
|
|
 |
J.Onions,
S.Hermann,
and
T.Grundström
(2000).
A novel type of calmodulin interaction in the inhibition of basic helix-loop-helix transcription factors.
|
| |
Biochemistry,
39,
4366-4374.
|
 |
|
|
|
|
 |
M.E.Wall,
S.C.Gallagher,
and
J.Trewhella
(2000).
Large-scale shape changes in proteins and macromolecular complexes.
|
| |
Annu Rev Phys Chem,
51,
355-380.
|
 |
|
|
|
|
 |
N.Hayashi,
Y.Izumi,
K.Titani,
and
N.Matsushima
(2000).
The binding of myristoylated N-terminal nonapeptide from neuro-specific protein CAP-23/NAP-22 to calmodulin does not induce the globular structure observed for the calmodulin-nonmyristylated peptide complex.
|
| |
Protein Sci,
9,
1905-1913.
|
 |
|
|
|
|
 |
P.M.Hwang,
and
H.J.Vogel
(2000).
Structures of the platelet calcium- and integrin-binding protein and the alphaIIb-integrin cytoplasmic domain suggest a mechanism for calcium-regulated recognition; homology modelling and NMR studies.
|
| |
J Mol Recognit,
13,
83-92.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.A.Atkinson,
C.Joseph,
F.Dal Piaz,
L.Birolo,
G.Stier,
P.Pucci,
and
A.Pastore
(2000).
Binding of alpha-actinin to titin: implications for Z-disk assembly.
|
| |
Biochemistry,
39,
5255-5264.
|
 |
|
|
|
|
 |
R.D.Brokx,
and
H.J.Vogel
(2000).
Peptide and metal ion-dependent association of isolated helix-loop-helix calcium binding domains: studies of thrombic fragments of calmodulin.
|
| |
Protein Sci,
9,
964-975.
|
 |
|
|
|
|
 |
R.Oliva,
L.Falcigno,
G.D'Auria,
M.Saviano,
L.Paolillo,
G.Ansanelli,
and
G.Zanotti
(2000).
Bicyclic peptides as models of calcium binding sites: synthesis and conformation of a homodetic undecapeptide.
|
| |
Biopolymers,
53,
581-595.
|
 |
|
|
|
|
 |
Y.Li,
M.L.Love,
J.A.Putkey,
and
C.Cohen
(2000).
Bepridil opens the regulatory N-terminal lobe of cardiac troponin C.
|
| |
Proc Natl Acad Sci U S A,
97,
5140-5145.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Y.Luo,
J.Leszyk,
B.Li,
J.Gergely,
and
T.Tao
(2000).
Proximity relationships between residue 6 of troponin I and residues in troponin C: further evidence for extended conformation of troponin C in the troponin complex.
|
| |
Biochemistry,
39,
15306-15315.
|
 |
|
|
|
|
 |
D.Chin,
J.L.Schreiber,
and
A.R.Means
(1999).
Calmodulin kinase II chimeras used to investigate the structural requirements for smooth muscle myosin light chain kinase autoinhibition and calmodulin-dependent activation.
|
| |
Biochemistry,
38,
15061-15069.
|
 |
|
|
|
|
 |
H.Aitio,
A.Annila,
S.Heikkinen,
E.Thulin,
T.Drakenberg,
and
I.Kilpeläinen
(1999).
NMR assignments, secondary structure, and global fold of calerythrin, an EF-hand calcium-binding protein from Saccharopolyspora erythraea.
|
| |
Protein Sci,
8,
2580-2588.
|
 |
|
|
|
|
 |
J.M.van Den Elsen,
D.A.Kuntz,
F.J.Hoedemaeker,
and
D.R.Rose
(1999).
Antibody C219 recognizes an alpha-helical epitope on P-glycoprotein.
|
| |
Proc Natl Acad Sci U S A,
96,
13679-13684.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.Nakashima,
H.Ishida,
S.Y.Ohki,
K.Hikichi,
and
M.Yazawa
(1999).
Calcium binding induces interaction between the N- and C-terminal domains of yeast calmodulin and modulates its overall conformation.
|
| |
Biochemistry,
38,
98.
|
 |
|
|
|
|
 |
L.P.Weber,
J.E.Van Lierop,
and
M.P.Walsh
(1999).
Ca2+-independent phosphorylation of myosin in rat caudal artery and chicken gizzard myofilaments.
|
| |
J Physiol,
516,
805-824.
|
 |
|
|
|
|
 |
M.E.Grunwald,
H.Zhong,
J.Lai,
and
K.W.Yau
(1999).
Molecular determinants of the modulation of cyclic nucleotide-activated channels by calmodulin.
|
| |
Proc Natl Acad Sci U S A,
96,
13444-13449.
|
 |
|
|
|
|
 |
R.Donato
(1999).
Functional roles of S100 proteins, calcium-binding proteins of the EF-hand type.
|
| |
Biochim Biophys Acta,
1450,
191-231.
|
 |
|
|
|
|
 |
R.T.McKay,
B.P.Tripet,
J.R.Pearlstone,
L.B.Smillie,
and
B.D.Sykes
(1999).
Defining the region of troponin-I that binds to troponin-C.
|
| |
Biochemistry,
38,
5478-5489.
|
 |
|
|
|
|
 |
S.Hayward
(1999).
Structural principles governing domain motions in proteins.
|
| |
Proteins,
36,
425-435.
|
 |
|
|
|
|
 |
S.Mirzoeva,
S.Weigand,
T.J.Lukas,
L.Shuvalova,
W.F.Anderson,
and
D.M.Watterson
(1999).
Analysis of the functional coupling between calmodulin's calcium binding and peptide recognition properties.
|
| |
Biochemistry,
38,
3936-3947.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.R.Martin,
A.Q.Lu,
J.Xiao,
J.Kleinjung,
K.Beckingham,
and
P.M.Bayley
(1999).
Conformational and metal-binding properties of androcam, a testis-specific, calmodulin-related protein from Drosophila.
|
| |
Protein Sci,
8,
2444-2454.
|
 |
|
|
|
|
 |
S.Rentschler,
H.Linn,
K.Deininger,
M.T.Bedford,
X.Espanel,
and
M.Sudol
(1999).
The WW domain of dystrophin requires EF-hands region to interact with beta-dystroglycan.
|
| |
Biol Chem,
380,
431-442.
|
 |
|
|
|
|
 |
T.Kobayashi,
X.Zhao,
R.Wade,
and
J.H.Collins
(1999).
Ca2+-dependent interaction of the inhibitory region of troponin I with acidic residues in the N-terminal domain of troponin C.
|
| |
Biochim Biophys Acta,
1430,
214-221.
|
 |
|
|
|
|
 |
T.Yuan,
and
H.J.Vogel
(1999).
Substitution of the methionine residues of calmodulin with the unnatural amino acid analogs ethionine and norleucine: biochemical and spectroscopic studies.
|
| |
Protein Sci,
8,
113-121.
|
 |
|
|
|
|
 |
T.Yuan,
M.P.Walsh,
C.Sutherland,
H.Fabian,
and
H.J.Vogel
(1999).
Calcium-dependent and -independent interactions of the calmodulin-binding domain of cyclic nucleotide phosphodiesterase with calmodulin.
|
| |
Biochemistry,
38,
1446-1455.
|
 |
|
|
|
|
 |
B.G.Vertessy,
V.Harmat,
Z.Böcskei,
G.Náray-Szabó,
F.Orosz,
and
J.Ovádi
(1998).
Simultaneous binding of drugs with different chemical structures to Ca2+-calmodulin: crystallographic and spectroscopic studies.
|
| |
Biochemistry,
37,
15300-15310.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
F.Hayashi,
R.Ishima,
D.Liu,
K.I.Tong,
S.Kim,
D.Reinberg,
S.Bagby,
and
M.Ikura
(1998).
Human general transcription factor TFIIB: conformational variability and interaction with VP16 activation domain.
|
| |
Biochemistry,
37,
7941-7951.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.D.Bernstein
(1998).
Protein targeting: getting into the groove.
|
| |
Curr Biol,
8,
R715-R718.
|
 |
|
|
|
|
 |
H.Matsumura,
T.Shiba,
T.Inoue,
S.Harada,
and
Y.Kai
(1998).
A novel mode of target recognition suggested by the 2.0 A structure of holo S100B from bovine brain.
|
| |
Structure,
6,
233-241.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Qian,
M.S.Rogers,
J.Schleucher,
U.Edlund,
E.E.Strehler,
and
I.Sethson
(1998).
Sequential assignment of 1H, 15N, 13C resonances and secondary structure of human calmodulin-like protein determined by NMR spectroscopy.
|
| |
Protein Sci,
7,
2421-2430.
|
 |
|
|
|
|
 |
J.Gao,
D.H.Yin,
Y.Yao,
H.Sun,
Z.Qin,
C.Schöneich,
T.D.Williams,
and
T.C.Squier
(1998).
Loss of conformational stability in calmodulin upon methionine oxidation.
|
| |
Biophys J,
74,
1115-1134.
|
 |
|
|
|
|
 |
J.Gao,
D.Yin,
Y.Yao,
T.D.Williams,
and
T.C.Squier
(1998).
Progressive decline in the ability of calmodulin isolated from aged brain to activate the plasma membrane Ca-ATPase.
|
| |
Biochemistry,
37,
9536-9548.
|
 |
|
|
|
|
 |
J.K.Krueger,
G.Zhi,
J.T.Stull,
and
J.Trewhella
(1998).
Neutron-scattering studies reveal further details of the Ca2+/calmodulin-dependent activation mechanism of myosin light chain kinase.
|
| |
Biochemistry,
37,
13997-14004.
|
 |
|
|
|
|
 |
J.K.Krueger,
N.A.Bishop,
D.K.Blumenthal,
G.Zhi,
K.Beckingham,
J.T.Stull,
and
J.Trewhella
(1998).
Calmodulin binding to myosin light chain kinase begins at substoichiometric Ca2+ concentrations: a small-angle scattering study of binding and conformational transitions.
|
| |
Biochemistry,
37,
17810-17817.
|
 |
|
|
|
|
 |
J.Krebs
(1998).
Calmodulin-dependent protein kinase IV: regulation of function and expression.
|
| |
Biochim Biophys Acta,
1448,
183-189.
|
 |
|
|
|
|
 |
K.G.Birukov,
J.P.Schavocky,
V.P.Shirinsky,
M.V.Chibalina,
L.J.Van Eldik,
and
D.M.Watterson
(1998).
Organization of the genetic locus for chicken myosin light chain kinase is complex: multiple proteins are encoded and exhibit differential expression and localization.
|
| |
J Cell Biochem,
70,
402-413.
|
 |
|
|
|
|
 |
K.Török,
M.Wilding,
L.Groigno,
R.Patel,
and
M.Whitaker
(1998).
Imaging the spatial dynamics of calmodulin activation during mitosis.
|
| |
Curr Biol,
8,
692-699.
|
 |
|
|
|
|
 |
M.Gerstein,
and
W.Krebs
(1998).
A database of macromolecular motions.
|
| |
Nucleic Acids Res,
26,
4280-4290.
|
 |
|
|
|
|
 |
M.R.Nelson,
and
W.J.Chazin
(1998).
An interaction-based analysis of calcium-induced conformational changes in Ca2+ sensor proteins.
|
| |
Protein Sci,
7,
270-282.
|
 |
|
|
|
|
 |
M.Sastry,
R.R.Ketchem,
O.Crescenzi,
C.Weber,
M.J.Lubienski,
H.Hidaka,
and
W.J.Chazin
(1998).
The three-dimensional structure of Ca(2+)-bound calcyclin: implications for Ca(2+)-signal transduction by S100 proteins.
|
| |
Structure,
6,
223-231.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.Gilli,
D.Lafitte,
C.Lopez,
M.Kilhoffer,
A.Makarov,
C.Briand,
and
J.Haiech
(1998).
Thermodynamic analysis of calcium and magnesium binding to calmodulin.
|
| |
Biochemistry,
37,
5450-5456.
|
 |
|
|
|
|
 |
R.J.Keenan,
D.M.Freymann,
P.Walter,
and
R.M.Stroud
(1998).
Crystal structure of the signal sequence binding subunit of the signal recognition particle.
|
| |
Cell,
94,
181-191.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Paoluzi,
L.Castagnoli,
I.Lauro,
A.E.Salcini,
L.Coda,
S.Fre',
S.Confalonieri,
P.G.Pelicci,
P.P.Di Fiore,
and
G.Cesareni
(1998).
Recognition specificity of individual EH domains of mammals and yeast.
|
| |
EMBO J,
17,
6541-6550.
|
 |
|
|
|
|
 |
S.Wang,
W.R.Trumble,
H.Liao,
C.R.Wesson,
A.K.Dunker,
and
C.H.Kang
(1998).
Crystal structure of calsequestrin from rabbit skeletal muscle sarcoplasmic reticulum.
|
| |
Nat Struct Biol,
5,
476-483.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.Wolf,
B.Solomon,
D.Ivnitski,
J.Rishpon,
and
G.Fleminger
(1998).
Interactions of calmodulin with metal ions and with its target proteins revealed by conformation-sensitive monoclonal antibodies.
|
| |
J Mol Recognit,
11,
14-19.
|
 |
|
|
|
|
 |
T.Yuan,
A.M.Weljie,
and
H.J.Vogel
(1998).
Tryptophan fluorescence quenching by methionine and selenomethionine residues of calmodulin: orientation of peptide and protein binding.
|
| |
Biochemistry,
37,
3187-3195.
|
 |
|
|
|
|
 |
W.Wriggers,
E.Mehler,
F.Pitici,
H.Weinstein,
and
K.Schulten
(1998).
Structure and dynamics of calmodulin in solution.
|
| |
Biophys J,
74,
1622-1639.
|
 |
|
|
|
|
 |
Y.Luo,
J.L.Wu,
J.Gergely,
and
T.Tao
(1998).
Localization of Cys133 of rabbit skeletal troponin-I with respect to troponin-C by resonance energy transfer.
|
| |
Biophys J,
74,
3111-3119.
|
 |
|
|
|
|
 |
A.M.Filenko,
V.M.Danilova,
and
A.Sobieszek
(1997).
Smooth muscle myosin light chain kinase, supramolecular organization, modulation of activity, and related conformational changes.
|
| |
Biophys J,
73,
1593-1606.
|
 |
|
|
|
|
 |
A.R.Khan,
K.A.Johnson,
J.Braam,
and
M.N.James
(1997).
Comparative modeling of the three-dimensional structure of the calmodulin-related TCH2 protein from Arabidopsis.
|
| |
Proteins,
27,
144-153.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
B.G.Vertessy,
Z.Böcskei,
V.Harmath,
G.Náray-Szabó,
and
J.Ovádi
(1997).
Crystallization and preliminary diffraction analysis of Ca(2+)-calmodulin-drug and apocalmodulin-drug complexes.
|
| |
Proteins,
28,
131-134.
|
 |
|
|
|
|
 |
B.J.Newbell,
J.T.Anderson,
and
H.W.Jarrett
(1997).
Ca2+-calmodulin binding to mouse alpha1 syntrophin: syntrophin is also a Ca2+-binding protein.
|
| |
Biochemistry,
36,
1295-1305.
|
 |
|
|
|
|
 |
H.Blanchard,
P.Grochulski,
Y.Li,
J.S.Arthur,
P.L.Davies,
J.S.Elce,
and
M.Cygler
(1997).
Structure of a calpain Ca(2+)-binding domain reveals a novel EF-hand and Ca(2+)-induced conformational changes.
|
| |
Nat Struct Biol,
4,
532-538.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.Duewel,
E.Daub,
V.Robinson,
and
J.F.Honek
(1997).
Incorporation of trifluoromethionine into a phage lysozyme: implications and a new marker for use in protein 19F NMR.
|
| |
Biochemistry,
36,
3404-3416.
|
 |
|
|
|
|
 |
J.D.Jontes,
and
R.A.Milligan
(1997).
Brush border myosin-I structure and ADP-dependent conformational changes revealed by cryoelectron microscopy and image analysis.
|
| |
J Cell Biol,
139,
683-693.
|
 |
|
|
|
|
 |
J.K.Krueger,
G.A.Olah,
S.E.Rokop,
G.Zhi,
J.T.Stull,
and
J.Trewhella
(1997).
Structures of calmodulin and a functional myosin light chain kinase in the activated complex: a neutron scattering study.
|
| |
Biochemistry,
36,
6017-6023.
|
 |
|
|
|
|
 |
J.P.Browne,
M.Strom,
S.R.Martin,
and
P.M.Bayley
(1997).
The role of beta-sheet interactions in domain stability, folding, and target recognition reactions of calmodulin.
|
| |
Biochemistry,
36,
9550-9561.
|
 |
|
|
|
|
 |
L.Tabernero,
D.A.Taylor,
R.J.Chandross,
M.F.VanBerkum,
A.R.Means,
F.A.Quiocho,
and
J.S.Sack
(1997).
The structure of a calmodulin mutant with a deletion in the central helix: implications for molecular recognition and protein binding.
|
| |
Structure,
5,
613-622.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Bendahmane,
J.H.Fitchen,
G.Zhang,
and
R.N.Beachy
(1997).
Studies of coat protein-mediated resistance to tobacco mosaic tobamovirus: correlation between assembly of mutant coat proteins and resistance.
|
| |
J Virol,
71,
7942-7950.
|
 |
|
|
|
|
 |
N.Zhou,
T.Yuan,
A.S.Mak,
and
H.J.Vogel
(1997).
NMR studies of caldesmon-calmodulin interactions.
|
| |
Biochemistry,
36,
2817-2825.
|
 |
|
|
|
|
 |
O.B.Peersen,
T.S.Madsen,
and
J.J.Falke
(1997).
Intermolecular tuning of calmodulin by target peptides and proteins: differential effects on Ca2+ binding and implications for kinase activation.
|
| |
Protein Sci,
6,
794-807.
|
 |
|
|
|
|
 |
P.Groves,
S.Linse,
E.Thulin,
and
S.Forsén
(1997).
A calbindin D9k mutant containing a novel structural extension: 1H nuclear magnetic resonance studies.
|
| |
Protein Sci,
6,
323-330.
|
 |
|
|
|
|
 |
R.Stevens-Truss,
K.Beckingham,
and
M.A.Marletta
(1997).
Calcium binding sites of calmodulin and electron transfer by neuronal nitric oxide synthase.
|
| |
Biochemistry,
36,
12337-12345.
|
 |
|
|
|
|
 |
S.Ohki,
M.Ikura,
and
M.Zhang
(1997).
Identification of Mg2+-binding sites and the role of Mg2+ on target recognition by calmodulin.
|
| |
Biochemistry,
36,
4309-4316.
|
 |
|
|
|
|
 |
X.Wu,
and
R.E.Reid
(1997).
Conservative D133E mutation of calmodulin site IV drastically alters calcium binding and phosphodiesterase regulation.
|
| |
Biochemistry,
36,
3608-3616.
|
 |
|
|
|
|
 |
A.Bouhss,
M.Vincent,
H.Munier,
A.M.Gilles,
M.Takahashi,
O.Bârzu,
A.Danchin,
and
J.Gallay
(1996).
Conformational transitions within the calmodulin-binding site of Bordetella pertussis adenylate cyclase studied by time-resolved fluorescence of Trp242 and circular dichroism.
|
| |
Eur J Biochem,
237,
619-628.
|
 |
|
|
|
|
 |
A.Houdusse,
M.Silver,
and
C.Cohen
(1996).
A model of Ca(2+)-free calmodulin binding to unconventional myosins reveals how calmodulin acts as a regulatory switch.
|
| |
Structure,
4,
1475-1490.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Persechini,
K.J.Gansz,
and
R.J.Paresi
(1996).
Activation of myosin light chain kinase and nitric oxide synthase activities by engineered calmodulins with duplicated or exchanged EF hand pairs.
|
| |
Biochemistry,
35,
224-228.
|
 |
|
|
|
|
 |
B.Kobe,
J.Heierhorst,
S.C.Feil,
M.W.Parker,
G.M.Benian,
K.R.Weiss,
and
B.E.Kemp
(1996).
Giant protein kinases: domain interactions and structural basis of autoregulation.
|
| |
EMBO J,
15,
6810-6821.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
B.L.Stoddard,
and
K.E.Flick
(1996).
Calcineurin-immunosuppressor complexes.
|
| |
Curr Opin Struct Biol,
6,
770-775.
|
 |
|
|
|
|
 |
D.B.Sacks,
M.M.Lopez,
Z.Li,
and
D.Kosk-Kosicka
(1996).
Analysis of phosphorylation and mutation of tyrosine residues of calmodulin on its activation of the erythrocyte Ca(2+)-transporting ATPase.
|
| |
Eur J Biochem,
239,
98.
|
 |
|
|
|
|
 |
D.van der Spoel,
B.L.de Groot,
S.Hayward,
H.J.Berendsen,
and
H.J.Vogel
(1996).
Bending of the calmodulin central helix: a theoretical study.
|
| |
Protein Sci,
5,
2044-2053.
|
 |
|
|
|
|
 |
E.Hohenester,
P.Maurer,
C.Hohenadl,
R.Timpl,
J.N.Jansonius,
and
J.Engel
(1996).
Structure of a novel extracellular Ca(2+)-binding module in BM-40.
|
| |
Nat Struct Biol,
3,
67-73.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
G.Polekhina,
S.Thirup,
M.Kjeldgaard,
P.Nissen,
C.Lippmann,
and
J.Nyborg
(1996).
Helix unwinding in the effector region of elongation factor EF-Tu-GDP.
|
| |
Structure,
4,
1141-1151.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.A.Sundberg,
L.Goetsch,
B.Byers,
and
T.N.Davis
(1996).
Role of calmodulin and Spc110p interaction in the proper assembly of spindle pole body compenents.
|
| |
J Cell Biol,
133,
111-124.
|
 |
|
|
|
|
 |
H.G.Munshi,
D.J.Burks,
J.L.Joyal,
M.F.White,
and
D.B.Sacks
(1996).
Ca2+ regulates calmodulin binding to IQ motifs in IRS-1.
|
| |
Biochemistry,
35,
15883-15889.
|
 |
|
|
|
|
 |
H.H.Pierce,
N.Adey,
and
B.K.Kay
(1996).
Identification of cyclized calmodulin antagonists from a phage display random peptide library.
|
| |
Mol Divers,
1,
259-265.
|
 |
|
|
|
|
 |
H.Yoshino,
Y.Izumi,
K.Sakai,
H.Takezawa,
I.Matsuura,
H.Maekawa,
and
M.Yazawa
(1996).
Solution X-ray scattering data show structural differences between yeast and vertebrate calmodulin: implications for structure/function.
|
| |
Biochemistry,
35,
2388-2393.
|
 |
|
|
|
|
 |
J.F.Huang,
L.Teyton,
J.F.Harper,
and
M.L.Evans
(1996).
Activation of a Ca(2+)-dependent protein kinase involves intramolecular binding of a calmodulin-like regulatory domain.
|
| |
Biochemistry,
35,
13222-13230.
|
 |
|
|
|
|
 |
J.Goldberg,
A.C.Nairn,
and
J.Kuriyan
(1996).
Structural basis for the autoinhibition of calcium/calmodulin-dependent protein kinase I.
|
| |
Cell,
84,
875-887.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.Nakashima,
H.Maekawa,
and
M.Yazawa
(1996).
Chimeras of yeast and chicken calmodulin demonstrate differences in activation mechanisms of target enzymes.
|
| |
Biochemistry,
35,
5602-5610.
|
 |
|
|
|
|
 |
M.A.Shea,
A.S.Verhoeven,
and
S.Pedigo
(1996).
Calcium-induced interactions of calmodulin domains revealed by quantitative thrombin footprinting of Arg37 and Arg106.
|
| |
Biochemistry,
35,
2943-2957.
|
 |
|
|
|
|
 |
M.B.Swindells,
and
M.Ikura
(1996).
Pre-formation of the semi-open conformation by the apo-calmodulin C-terminal domain and implications binding IQ-motifs.
|
| |
Nat Struct Biol,
3,
501-504.
|
 |
|
|
|
|
 |
M.Ikura
(1996).
Calcium binding and conformational response in EF-hand proteins.
|
| |
Trends Biochem Sci,
21,
14-17.
|
 |
|
|
|
|
 |
M.Kekic,
W.Huang,
P.D.Moens,
B.D.Hambly,
and
C.G.dos Remedios
(1996).
Distance measurements near the myosin head-rod junction using fluorescence spectroscopy.
|
| |
Biophys J,
71,
40-47.
|
 |
|
|
|
|
 |
M.Matsubara,
K.Titani,
and
H.Taniguchi
(1996).
Interaction of calmodulin-binding domain peptides of nitric oxide synthase with membrane phospholipids: regulation by protein phosphorylation and Ca(2+)-calmodulin.
|
| |
Biochemistry,
35,
14651-14658.
|
 |
|
|
|
|
 |
M.R.Ehrhardt,
L.Erijman,
G.Weber,
and
A.J.Wand
(1996).
Molecular recognition by calmodulin: pressure-induced reorganization of a novel calmodulin-peptide complex.
|
| |
Biochemistry,
35,
1599-1605.
|
 |
|
|
|
|
 |
P.M.Bayley,
W.A.Findlay,
and
S.R.Martin
(1996).
Target recognition by calmodulin: dissecting the kinetics and affinity of interaction using short peptide sequences.
|
| |
Protein Sci,
5,
1215-1228.
|
 |
|
|
|
|
 |
R.A.Milligan
(1996).
Protein-protein interactions in the rigor actomyosin complex.
|
| |
Proc Natl Acad Sci U S A,
93,
21-26.
|
 |
|
|
|
|
 |
S.R.Martin,
P.M.Bayley,
S.E.Brown,
T.Porumb,
M.Zhang,
and
M.Ikura
(1996).
Spectroscopic characterization of a high-affinity calmodulin-target peptide hybrid molecule.
|
| |
Biochemistry,
35,
3508-3517.
|
 |
|
|
|
|
 |
Y.Yao,
D.Yin,
G.S.Jas,
K.Kuczer,
T.D.Williams,
C.Schöneich,
and
T.C.Squier
(1996).
Oxidative modification of a carboxyl-terminal vicinal methionine in calmodulin by hydrogen peroxide inhibits calmodulin-dependent activation of the plasma membrane Ca-ATPase.
|
| |
Biochemistry,
35,
2767-2787.
|
 |
|
|
|
|
 |
Y.Yao,
and
T.C.Squier
(1996).
Variable conformation and dynamics of calmodulin complexed with peptides derived from the autoinhibitory domains of target proteins.
|
| |
Biochemistry,
35,
6815-6827.
|
 |
|
|
|
|
 |
Z.Qin,
S.L.Wertz,
J.Jacob,
Y.Savino,
and
D.S.Cafiso
(1996).
Defining protein-protein interactions using site-directed spin-labeling: the binding of protein kinase C substrates to calmodulin.
|
| |
Biochemistry,
35,
13272-13276.
|
 |
|
|
|
|
 |
A.M.Gronenborn,
and
G.M.Clore
(1995).
Structures of protein complexes by multidimensional heteronuclear magnetic resonance spectroscopy.
|
| |
Crit Rev Biochem Mol Biol,
30,
351-385.
|
 |
|
|
|
|
 |
B.E.Finn,
J.Evenäs,
T.Drakenberg,
J.P.Waltho,
E.Thulin,
and
S.Forsén
(1995).
Calcium-induced structural changes and domain autonomy in calmodulin.
|
| |
Nat Struct Biol,
2,
777-783.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
B.E.Finn,
and
S.Forsén
(1995).
The evolving model of calmodulin structure, function and activation.
|
| |
Structure,
3,
7.
|
 |
|
|
|
|
 |
C.M.Dobson
(1995).
Finding the right fold.
|
| |
Nat Struct Biol,
2,
513-517.
|
 |
|
|
|
|
 |
G.Travé,
A.Pastore,
M.Hyvönen,
and
M.Saraste
(1995).
The C-terminal domain of alpha-spectrin is structurally related to calmodulin.
|
| |
Eur J Biochem,
227,
35-42.
|
 |
|
|
|
|
 |
G.Travé,
P.J.Lacombe,
M.Pfuhl,
M.Saraste,
and
A.Pastore
(1995).
Molecular mechanism of the calcium-induced conformational change in the spectrin EF-hands.
|
| |
EMBO J,
14,
4922-4931.
|
 |
|
|
|
|
 |
H.J.Vogel,
and
M.Zhang
(1995).
Protein engineering and NMR studies of calmodulin.
|
| |
Mol Cell Biochem,
149,
3.
|
 |
|
|
|
|
 |
J.Anagli,
F.Hofmann,
M.Quadroni,
T.Vorherr,
and
E.Carafoli
(1995).
The calmodulin-binding domain of the inducible (macrophage) nitric oxide synthase.
|
| |
Eur J Biochem,
233,
701-708.
|
 |
|
|
|
|
 |
J.W.Howarth,
G.A.Krudy,
X.Lin,
J.A.Putkey,
and
P.R.Rosevear
(1995).
An NMR and spin label study of the effects of binding calcium and troponin I inhibitory peptide to cardiac troponin C.
|
| |
Protein Sci,
4,
671-680.
|
 |
|
|
|
|
 |
M.F.VanBerkum,
and
C.S.Goodman
(1995).
Targeted disruption of Ca(2+)-calmodulin signaling in Drosophila growth cones leads to stalls in axon extension and errors in axon guidance.
|
| |
Neuron,
14,
43-56.
|
 |
|
|
|
|
 |
M.Gautel,
M.A.Castiglione Morelli,
M.Pfuhl,
A.Motta,
and
A.Pastore
(1995).
A calmodulin-binding sequence in the C-terminus of human cardiac titin kinase.
|
| |
Eur J Biochem,
230,
752-759.
|
 |
|
|
|
|
 |
M.Tanaka,
R.Ikebe,
M.Matsuura,
and
M.Ikebe
(1995).
Pseudosubstrate sequence may not be critical for autoinhibition of smooth muscle myosin light chain kinase.
|
| |
EMBO J,
14,
2839-2846.
|
 |
|
|
|
|
 |
M.Zhang,
T.Tanaka,
and
M.Ikura
(1995).
Calcium-induced conformational transition revealed by the solution structure of apo calmodulin.
|
| |
Nat Struct Biol,
2,
758-767.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
N.M.el-Sayed,
P.C.Harkins,
R.O.Fox,
K.Anderson,
and
C.L.Patton
(1995).
Crystallization and preliminary X-ray investigation of the recombinant Trypanosoma brucei rhodesiense calmodulin.
|
| |
Proteins,
21,
354-357.
|
 |
|
|
|
|
 |
N.Tjandra,
H.Kuboniwa,
H.Ren,
and
A.Bax
(1995).
Rotational dynamics of calcium-free calmodulin studied by 15N-NMR relaxation measurements.
|
| |
Eur J Biochem,
230,
1014-1024.
|
 |
|
|
|
|
 |
P.James,
T.Vorherr,
and
E.Carafoli
(1995).
Calmodulin-binding domains: just two faced or multi-faceted?
|
| |
Trends Biochem Sci,
20,
38-42.
|
 |
|
|
|
|
 |
R.B.Sutton,
B.A.Davletov,
A.M.Berghuis,
T.C.Südhof,
and
S.R.Sprang
(1995).
Structure of the first C2 domain of synaptotagmin I: a novel Ca2+/phospholipid-binding fold.
|
| |
Cell,
80,
929-938.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.L.Stanfield,
and
I.A.Wilson
(1995).
Protein-peptide interactions.
|
| |
Curr Opin Struct Biol,
5,
103-113.
|
 |
|
|
|
|
 |
S.B.Tencza,
M.A.Miller,
K.Islam,
T.A.Mietzner,
and
R.C.Montelaro
(1995).
Effect of amino acid substitutions on calmodulin binding and cytolytic properties of the LLP-1 peptide segment of human immunodeficiency virus type 1 transmembrane protein.
|
| |
J Virol,
69,
5199-5202.
|
 |
|
|
|
|
 |
W.A.Findlay,
M.J.Gradwell,
and
P.M.Bayley
(1995).
Role of the N-terminal region of the skeletal muscle myosin light chain kinase target sequence in its interaction with calmodulin.
|
| |
Protein Sci,
4,
2375-2382.
|
 |
|
|
|
|
 |
W.E.Meador,
S.E.George,
A.R.Means,
and
F.A.Quiocho
(1995).
X-ray analysis reveals conformational adaptation of the linker in functional calmodulin mutants.
|
| |
Nat Struct Biol,
2,
943-945.
|
 |
|
|
|
|
 |
A.Jancso,
and
A.G.Szent-Györgyi
(1994).
Regulation of scallop myosin by the regulatory light chain depends on a single glycine residue.
|
| |
Proc Natl Acad Sci U S A,
91,
8762-8766.
|
 |
|
|
|
|
 |
B.A.Seaton,
and
J.F.Head
(1994).
Shaking hands with yourself.
|
| |
Nat Struct Biol,
1,
350-351.
|
 |
|
|
|
|
 |
B.G.Allen,
and
M.P.Walsh
(1994).
The biochemical basis of the regulation of smooth-muscle contraction.
|
| |
Trends Biochem Sci,
19,
362-368.
|
 |
|
|
|
|
 |
D.Milan,
J.Griffith,
M.Su,
E.R.Price,
and
F.McKeon
(1994).
The latch region of calcineurin B is involved in both immunosuppressant-immunophilin complex docking and phosphatase activation.
|
| |
Cell,
79,
437-447.
|
 |
|
|
|
|
 |
F.Friedberg,
and
A.R.Rhoads
(1994).
Calmodulin's warm embrace.
|
| |
Bioessays,
16,
853-855.
|
 |
|
|
|
|
 |
G.Siligardi,
B.Samorí,
S.Melandri,
M.Visconti,
and
A.F.Drake
(1994).
Correlations between biological activities and conformational properties for human, salmon, eel, porcine calcitonins and Elcatonin elucidated by CD spectroscopy.
|
| |
Eur J Biochem,
221,
1117-1125.
|
 |
|
|
|
|
 |
I.Rayment,
and
H.M.Holden
(1994).
The three-dimensional structure of a molecular motor.
|
| |
Trends Biochem Sci,
19,
129-134.
|
 |
|
|
|
|
 |
J.Chant
(1994).
Multifunctional proteins. Calmodulin clarified.
|
| |
Curr Biol,
4,
433-435.
|
 |
|
|
|
|
 |
J.J.Falke,
S.K.Drake,
A.L.Hazard,
and
O.B.Peersen
(1994).
Molecular tuning of ion binding to calcium signaling proteins.
|
| |
Q Rev Biophys,
27,
219-290.
|
 |
|
|
|
|
 |
J.R.Lakowicz,
I.Gryczynski,
G.Laczko,
W.Wiczk,
and
M.L.Johnson
(1994).
Distribution of distances between the tryptophan and the N-terminal residue of melittin in its complex with calmodulin, troponin C, and phospholipids.
|
| |
Protein Sci,
3,
628-637.
|
 |
|
|
|
|
 |
K.M.Trybus
(1994).
Role of myosin light chains.
|
| |
J Muscle Res Cell Motil,
15,
587-594.
|
 |
|
|
|
|
 |
K.Török,
and
M.Whitaker
(1994).
Taking a long, hard look at calmodulin's warm embrace.
|
| |
Bioessays,
16,
221-224.
|
 |
|
|
|
|
 |
K.Y.Ling,
M.E.Maley,
R.R.Preston,
Y.Saimi,
and
C.Kung
(1994).
New non-lethal calmodulin mutations in Paramecium. A structural and functional bipartition hypothesis.
|
| |
Eur J Biochem,
222,
433-439.
|
 |
|
|
|
|
 |
M.P.Walsh
(1994).
Calmodulin and the regulation of smooth muscle contraction.
|
| |
Mol Cell Biochem,
135,
21-41.
|
 |
|
|
|
|
 |
M.Vandonselaar,
R.A.Hickie,
J.W.Quail,
and
L.T.Delbaere
(1994).
Trifluoperazine-induced conformational change in Ca(2+)-calmodulin.
|
| |
Nat Struct Biol,
1,
795-801.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
P.I.Hanson,
T.Meyer,
L.Stryer,
and
H.Schulman
(1994).
Dual role of calmodulin in autophosphorylation of multifunctional CaM kinase may underlie decoding of calcium signals.
|
| |
Neuron,
12,
943-956.
|
 |
|
|
|
|
 |
T.Wagenknecht,
J.Berkowitz,
R.Grassucci,
A.P.Timerman,
and
S.Fleischer
(1994).
Localization of calmodulin binding sites on the ryanodine receptor from skeletal muscle by electron microscopy.
|
| |
Biophys J,
67,
2286-2295.
|
 |
|
|
|
|
 |
W.Boey,
W.Huang,
B.Bennetts,
J.Sparrow,
C.Dos Remedios,
and
B.Hambly
(1994).
Fluorescence resonance energy transfer within the regulatory light chain of myosin.
|
| |
Eur J Biochem,
219,
603-610.
|
 |
|
|
|
|
 |
X.L.Ding,
A.B.Akella,
H.Su,
and
J.Gulati
(1994).
The role of glycine (residue 89) in the central helix of EF-hand protein troponin-C exposed following amino-terminal alpha-helix deletion.
|
| |
Protein Sci,
3,
2089-2096.
|
 |
|
|
|
|
 |
Y.Ohya,
and
D.Botstein
(1994).
Structure-based systematic isolation of conditional-lethal mutations in the single yeast calmodulin gene.
|
| |
Genetics,
138,
1041-1054.
|
 |
|
|
|
|
 |
C.Erneux,
C.Moreau,
A.Vandermeers,
and
K.Takazawa
(1993).
Interaction of calmodulin with a putative calmodulin-binding domain of inositol 1,4,5-triphosphate 3-kinase. Effects of synthetic peptides and site-directed mutagenesis of Trp165.
|
| |
Eur J Biochem,
214,
497-501.
|
 |
|
|
|
|
 |
C.Y.Sekharudu,
and
M.Sundaralingam
(1993).
A model for the calmodulin-peptide complex based on the troponin C crystal packing and its similarity to the NMR structure of the calmodulin-myosin light chain kinase peptide complex.
|
| |
Protein Sci,
2,
620-625.
|
 |
|
|
|
|
 |
D.A.Scaramuzzino,
and
J.S.Morrow
(1993).
Calmodulin-binding domain of recombinant erythrocyte beta-adducin.
|
| |
Proc Natl Acad Sci U S A,
90,
3398-3402.
|
 |
|
|
|
|
 |
D.K.Blumenthal
(1993).
Development and characterization of fluorescently-labeled myosin light chain kinase calmodulin-binding domain peptides.
|
| |
Mol Cell Biochem,
127,
45-50.
|
 |
|
|
|
|
 |
H.Schulman
(1993).
The multifunctional Ca2+/calmodulin-dependent protein kinases.
|
| |
Curr Opin Cell Biol,
5,
247-253.
|
 |
|
|
|
|
 |
J.S.Wolenski,
S.M.Hayden,
P.Forscher,
and
M.S.Mooseker
(1993).
Calcium-calmodulin and regulation of brush border myosin-I MgATPase and mechanochemistry.
|
| |
J Cell Biol,
122,
613-621.
|
 |
|
|
|
|
 |
L.M.Gordon,
C.C.Curtain,
V.McCloyn,
A.Kirkpatrick,
P.W.Mobley,
and
A.J.Waring
(1993).
The amino-terminal peptide of HIV-1 gp41 interacts with human serum albumin.
|
| |
AIDS Res Hum Retroviruses,
9,
1145-1156.
|
 |
|
|
|
|
 |
M.J.Zvelebil,
and
J.M.Thornton
(1993).
Peptide-protein interactions: an overview.
|
| |
Q Rev Biophys,
26,
333-363.
|
 |
|
|
|
|
 |
M.K.Reedy
(1993).
Myosin-actin motors: the partnership goes atomic.
|
| |
Structure,
1,
1-5.
|
 |
|
|
|
|
 |
M.Renner,
M.A.Danielson,
and
J.J.Falke
(1993).
Kinetic control of Ca(II) signaling: tuning the ion dissociation rates of EF-hand Ca(II) binding sites.
|
| |
Proc Natl Acad Sci U S A,
90,
6493-6497.
|
 |
|
|
|
|
 |
M.Zhang,
T.Yuan,
and
H.J.Vogel
(1993).
A peptide analog of the calmodulin-binding domain of myosin light chain kinase adopts an alpha-helical structure in aqueous trifluoroethanol.
|
| |
Protein Sci,
2,
1931-1937.
|
 |
|
|
|
|
 |
S.Raghunathan,
R.J.Chandross,
B.P.Cheng,
A.Persechini,
S.E.Sobottka,
and
R.H.Kretsinger
(1993).
The linker of des-Glu84-calmodulin is bent.
|
| |
Proc Natl Acad Sci U S A,
90,
6869-6873.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.T.Rao,
S.Wu,
K.A.Satyshur,
K.Y.Ling,
C.Kung,
and
M.Sundaralingam
(1993).
Structure of Paramecium tetraurelia calmodulin at 1.8 A resolution.
|
| |
Protein Sci,
2,
436-447.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.F.Head
(1992).
A better grip on calmodulin.
|
| |
Curr Biol,
2,
609-611.
|
 |
|
|
|
|
 |
T.N.Davis
(1992).
What's new with calcium?
|
| |
Cell,
71,
557-564.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
| |