 |
PDBsum entry 1cb3
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Molten globule state
|
PDB id
|
|
|
|
1cb3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
References listed in PDB file
|
 |
|
Key reference
|
 |
|
Title
|
 |
Local interactions drive the formation of nonnative structure in the denatured state of human alpha-Lactalbumin: a high resolution structural characterization of a peptide model in aqueous solution.
|
 |
|
Authors
|
 |
S.J.Demarest,
Y.Hua,
D.P.Raleigh.
|
 |
|
Ref.
|
 |
Biochemistry, 1999,
38,
7380-7387.
[DOI no: ]
|
 |
|
PubMed id
|
 |
|
 |
 |
|
Abstract
|
 |
|
There are a small number of peptides derived from proteins that have a
propensity to adopt structure in aqueous solution which is similar to the
structure they possess in the parent protein. There are far fewer examples of
protein fragments which adopt stable nonnative structures in isolation.
Understanding how nonnative interactions are involved in protein folding is
crucial to our understanding of the topic. Here we show that a small, 11 amino
acid peptide corresponding to residues 101-111 of the protein alpha-lactalbumin
is remarkably structured in isolation in aqueous solution. The peptide has been
characterized by 1H NMR, and 170 ROE-derived constraints were used to calculate
a structure. The calculations yielded a single, high-resolution structure for
residues 101-107 that is nonnative in both the backbone and side-chain
conformations. In the pH 6.5 crystal structure, residues 101-105 are in an
irregular turn-like conformation and residues 106-111 form an alpha-helix. In
the pH 4.2 crystal structure, residues 101-105 form an alpha-helix, and residues
106-111 form a loopike structure. Both of these structures are significantly
different from the conformation adopted by our peptide. The structure in the
peptide model is primarily the result of local side-chain interactions that
force the backbone to adopt a nonnative 310/turn-like structure in residues
103-106. The structure in aqueous solution was compared to the structure in 30%
trifluoroethanol (TFE), and clear differences were observed. In particular, one
of the side-chain interactions, a hydrophobic cluster involving residues
101-105, is different in the two solvents and residues 107-111 are considerably
more ordered in 30% TFE. The implications of the nonnative structure for the
folding of alpha-lactalbumin is discussed.
|
 |
|
|
|
|
 |