spacer
spacer

PDBsum entry 1byg

Go to PDB code: 
protein ligands links
Transferase PDB id
1byg

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
246 a.a. *
Ligands
STU
Waters ×152
* Residue conservation analysis
PDB id:
1byg
Name: Transferase
Title: Kinase domain of human c-terminal src kinase (csk) in complex with inhibitor staurosporine
Structure: Protein (c-terminal src kinase). Chain: a. Fragment: kinase domain. Synonym: csk. Engineered: yes. Other_details: thE C-terminal histidine tag was not observed in the density and is not present in the seqres.
Source: Homo sapiens. Human. Organism_taxid: 9606. Organ: lung. Cell: granulocyte. Expressed in: escherichia coli. Expression_system_taxid: 562. Other_details: the cdna for the catalytic domain of csk was isolated by polymerase chain reaction from granulocyte cdna obtained from
Biol. unit: Dimer (from PQS)
Resolution:
2.40Å     R-factor:   0.199     R-free:   0.287
Authors: A.A.Antson,M.B.A.C.Lamers,R.K.Scott,D.H.Williams,R.E.Hubbard
Key ref:
M.B.Lamers et al. (1999). Structure of the protein tyrosine kinase domain of C-terminal Src kinase (CSK) in complex with staurosporine. J Mol Biol, 285, 713-725. PubMed id: 9878439 DOI: 10.1006/jmbi.1998.2369
Date:
14-Oct-98     Release date:   14-Oct-99    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P41240  (CSK_HUMAN) -  Tyrosine-protein kinase CSK from Homo sapiens
Seq:
Struc:
450 a.a.
246 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.2.7.10.2  - non-specific protein-tyrosine kinase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: L-tyrosyl-[protein] + ATP = O-phospho-L-tyrosyl-[protein] + ADP + H+
L-tyrosyl-[protein]
+ ATP
= O-phospho-L-tyrosyl-[protein]
+ ADP
+ H(+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Added reference    
 
 
DOI no: 10.1006/jmbi.1998.2369 J Mol Biol 285:713-725 (1999)
PubMed id: 9878439  
 
 
Structure of the protein tyrosine kinase domain of C-terminal Src kinase (CSK) in complex with staurosporine.
M.B.Lamers, A.A.Antson, R.E.Hubbard, R.K.Scott, D.H.Williams.
 
  ABSTRACT  
 
The crystal structure of the kinase domain of C-terminal Src kinase (CSK) has been determined by molecular replacement, co-complexed with the protein kinase inhibitor staurosporine (crystals belong to the space group P21212 with a=44.5 A, b=120.6 A, c=48.3 A). The final model of CSK has been refined to an R-factor of 19.9 % (Rfree=28.7 %) at 2.4 A resolution. The structure consists of a small, N-terminal lobe made up mostly of a beta-sheet, and a larger C-terminal lobe made up mostly of alpha-helices. The structure reveals atomic details of interactions with staurosporine, which binds in a deep cleft between the lobes. The polypeptide chain fold of CSK is most similar to c-Src, Hck and fibroblast growth factor receptor 1 kinase (FGFR1K) and most dissimilar to insulin receptor kinase (IRK).Interactions between the N and C-terminal lobe are mediated by the bound staurosporine molecule and by hydrogen bonds. In addition, there are several water molecules forming lobe-bridging hydrogen bonds, which may be important for maintaining the catalytic integrity of the kinase. Furthermore, the conserved Lys328 and Glu267 residues utilise water in the formation of a molecular pivot which is essential in allowing relative movement of the N and C-terminal lobes. An analysis of the residues around the ATP-binding site reveals structural differences with other protein tyrosine kinases. Most notable of these are different orientations of the conserved residues Asp332 and Phe333, suggesting that inhibitor binding proceeds via an induced fit.These structural observations have implications for understanding protein tyrosine kinase catalytic mechanisms and for the design of ATP-mimicking inhibitors of protein kinases.
 
  Selected figure(s)  
 
Figure 4.
Figure 4. Overlay of the C-terminal domains of IRK and CSK. The IRK is shown in blue and the CSK in green; the helices are displayed as cylinders. The regulatory loop is displayed in purple and the catalytic loop in red. Residue numbers in blue indicate the IRK insertion loop and the residue numbers in green indicate the divergence in the CSK hot loop.
Figure 6.
Figure 6. C^a trace of CSK with the key water molecules and residues at the lobe junction. Side-by-side stereo image generated using the smm external display utility in Quanta97. The side-chain atom colours are: green, carbon; blue, nitrogen; red, oxygen; the solvent atoms are displayed as red spheres. Potential hydrogen bonds are displayed as broken white lines.
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (1999, 285, 713-725) copyright 1999.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20938978 M.Mustafa, A.Mirza, and N.Kannan (2011).
Conformational regulation of the EGFR kinase core by the juxtamembrane and C-terminal tail: a molecular dynamics study.
  Proteins, 79, 99.  
19603203 C.E.Cassidy, and W.N.Setzer (2010).
Cancer-relevant biochemical targets of cytotoxic Lonchocarpus flavonoids: a molecular docking analysis.
  J Mol Model, 16, 311-326.  
20370649 K.W.Pratz, and M.J.Levis (2010).
Bench to bedside targeting of FLT3 in acute leukemia.
  Curr Drug Targets, 11, 781-789.  
20336692 M.Rabiller, M.Getlik, S.Klüter, A.Richters, S.Tückmantel, J.R.Simard, and D.Rauh (2010).
Proteus in the world of proteins: conformational changes in protein kinases.
  Arch Pharm (Weinheim), 343, 193-206.  
21082990 A.T.Fathi, and M.Levis (2009).
Lestaurtinib: a multi-targeted FLT3 inhibitor.
  Expert Rev Hematol, 2, 17-26.  
19674907 C.D.Shomin, S.C.Meyer, and I.Ghosh (2009).
Staurosporine tethered peptide ligands that target cAMP-dependent protein kinase (PKA): optimization and selectivity profiling.
  Bioorg Med Chem, 17, 6196-6202.  
19244618 K.Huang, Y.H.Wang, A.Brown, and G.Sun (2009).
Identification of N-terminal lobe motifs that determine the kinase activity of the catalytic domains and regulatory strategies of Src and Csk protein tyrosine kinases.
  J Mol Biol, 386, 1066-1077.  
19290922 R.E.Joseph, and A.H.Andreotti (2009).
Conformational snapshots of Tec kinases during signaling.
  Immunol Rev, 228, 74-92.  
19030106 D.Lietha, and M.J.Eck (2008).
Crystal structures of the FAK kinase in complex with TAE226 and related bis-anilino pyrimidine inhibitors reveal a helical DFG conformation.
  PLoS ONE, 3, e3800.
PDB codes: 2jkk 2jkm 2jko 2jkq
18452067 K.Pratz, and M.Levis (2008).
Incorporating FLT3 inhibitors into acute myeloid leukemia treatment regimens.
  Leuk Lymphoma, 49, 852-863.  
17977811 N.Kannan, A.F.Neuwald, and S.S.Taylor (2008).
Analogous regulatory sites within the alphaC-beta4 loop regions of ZAP-70 tyrosine kinase and AGC kinases.
  Biochim Biophys Acta, 1784, 27-32.  
17937911 G.Bunkoczi, E.Salah, P.Filippakopoulos, O.Fedorov, S.Müller, F.Sobott, S.A.Parker, H.Zhang, W.Min, B.E.Turk, and S.Knapp (2007).
Structural and functional characterization of the human protein kinase ASK1.
  Structure, 15, 1215-1226.
PDB code: 2clq
17986339 J.H.Carra, C.A.McHugh, S.Mulligan, L.M.Machiesky, A.S.Soares, and C.B.Millard (2007).
Fragment-based identification of determinants of conformational and spectroscopic change at the ricin active site.
  BMC Struct Biol, 7, 72.
PDB codes: 2p8n 2pjn 2pjo 2r2x 2r3d
17227859 N.Kannan, N.Haste, S.S.Taylor, and A.F.Neuwald (2007).
The hallmark of AGC kinase functional divergence is its C-terminal tail, a cis-acting regulatory module.
  Proc Natl Acad Sci U S A, 104, 1272-1277.  
17119643 C.Sánchez, C.Méndez, and J.A.Salas (2006).
Indolocarbazole natural products: occurrence, biosynthesis, and biological activity.
  Nat Prod Rep, 23, 1007-1045.  
16640460 N.M.Levinson, O.Kuchment, K.Shen, M.A.Young, M.Koldobskiy, M.Karplus, P.A.Cole, and J.Kuriyan (2006).
A Src-like inactive conformation in the abl tyrosine kinase domain.
  PLoS Biol, 4, e144.
PDB codes: 2g1t 2g2f 2g2h 2g2i
16429265 P.Rudrabhatla, M.M.Reddy, and R.Rajasekharan (2006).
Genome-wide analysis and experimentation of plant serine/ threonine/tyrosine-specific protein kinases.
  Plant Mol Biol, 60, 293-319.  
15837627 R.L.Levine, M.Wadleigh, J.Cools, B.L.Ebert, G.Wernig, B.J.Huntly, T.J.Boggon, I.Wlodarska, J.J.Clark, S.Moore, J.Adelsperger, S.Koo, J.C.Lee, S.Gabriel, T.Mercher, A.D'Andrea, S.Fröhling, K.Döhner, P.Marynen, P.Vandenberghe, R.A.Mesa, A.Tefferi, J.D.Griffin, M.J.Eck, W.R.Sellers, M.Meyerson, T.R.Golub, S.J.Lee, and D.G.Gilliland (2005).
Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis.
  Cancer Cell, 7, 387-397.  
15572355 S.Yoshida, and M.Parniske (2005).
Regulation of plant symbiosis receptor kinase through serine and threonine phosphorylation.
  J Biol Chem, 280, 9203-9209.  
16243715 Y.P.Chong, T.D.Mulhern, and H.C.Cheng (2005).
C-terminal Src kinase (CSK) and CSK-homologous kinase (CHK)--endogenous negative regulators of Src-family protein kinases.
  Growth Factors, 23, 233-244.  
  15199413 J.Chen, N.R.Wall, K.Kocher, N.Duclos, D.Fabbro, D.Neuberg, J.D.Griffin, Y.Shi, and D.G.Gilliland (2004).
Stable expression of small interfering RNA sensitizes TEL-PDGFbetaR to inhibition with imatinib or rapamycin.
  J Clin Invest, 113, 1784-1791.  
15292186 L.Jin, S.Pluskey, E.C.Petrella, S.M.Cantin, J.C.Gorga, M.J.Rynkiewicz, P.Pandey, J.E.Strickler, R.E.Babine, D.T.Weaver, and K.J.Seidl (2004).
The three-dimensional structure of the ZAP-70 kinase domain in complex with staurosporine: implications for the design of selective inhibitors.
  J Biol Chem, 279, 42818-42825.
PDB code: 1u59
14996846 M.Gassel, C.B.Breitenlechner, N.König, R.Huber, R.A.Engh, and D.Bossemeyer (2004).
The protein kinase C inhibitor bisindolyl maleimide 2 binds with reversed orientations to different conformations of protein kinase A.
  J Biol Chem, 279, 23679-23690.
PDB code: 1szm
12512083 D.D.Clark, and B.R.Peterson (2003).
Analysis of protein tyrosine kinase inhibitors in recombinant yeast lacking the ERG6 gene.
  Chembiochem, 4, 101-107.  
12869192 E.De Moliner, N.R.Brown, and L.N.Johnson (2003).
Alternative binding modes of an inhibitor to two different kinases.
  Eur J Biochem, 270, 3174-3181.
PDB code: 1p5e
12711601 J.L.Hays, and S.J.Watowich (2003).
Oligomerization-induced modulation of TPR-MET tyrosine kinase activity.
  J Biol Chem, 278, 27456-27463.  
14640939 M.Levis, and D.Small (2003).
Novel FLT3 tyrosine kinase inhibitors.
  Expert Opin Investig Drugs, 12, 1951-1962.  
12551895 M.Ortiz-Lombardía, F.Pompeo, B.Boitel, and P.M.Alzari (2003).
Crystal structure of the catalytic domain of the PknB serine/threonine kinase from Mycobacterium tuberculosis.
  J Biol Chem, 278, 13094-13100.
PDB code: 1o6y
14559966 N.Schiering, S.Knapp, M.Marconi, M.M.Flocco, J.Cui, R.Perego, L.Rusconi, and C.Cristiani (2003).
Crystal structure of the tyrosine kinase domain of the hepatocyte growth factor receptor c-Met and its complex with the microbial alkaloid K-252a.
  Proc Natl Acad Sci U S A, 100, 12654-12659.
PDB codes: 1r0p 1r1w
14657361 S.Lee, X.Lin, N.H.Nam, K.Parang, and G.Sun (2003).
Determination of the substrate-docking site of protein tyrosine kinase C-terminal Src kinase.
  Proc Natl Acad Sci U S A, 100, 14707-14712.  
12686554 X.Lin, S.Lee, and G.Sun (2003).
Functions of the activation loop in Csk protein-tyrosine kinase.
  J Biol Chem, 278, 24072-24077.  
11884384 A.Ogawa, Y.Takayama, H.Sakai, K.T.Chong, S.Takeuchi, A.Nakagawa, S.Nada, M.Okada, and T.Tsukihara (2002).
Structure of the carboxyl-terminal Src kinase, Csk.
  J Biol Chem, 277, 14351-14354.
PDB code: 1k9a
12237287 G.M.Cheetham, R.M.Knegtel, J.T.Coll, S.B.Renwick, L.Swenson, P.Weber, J.A.Lippke, and D.A.Austen (2002).
Crystal structure of aurora-2, an oncogenic serine/threonine kinase.
  J Biol Chem, 277, 42419-42422.
PDB code: 1muo
12388555 P.P.Roux, G.Dorval, M.Boudreau, A.Angers-Loustau, S.J.Morris, J.Makkerh, and P.A.Barker (2002).
K252a and CEP1347 are neuroprotective compounds that inhibit mixed-lineage kinase-3 and induce activation of Akt and ERK.
  J Biol Chem, 277, 49473-49480.  
12191603 R.A.Engh, and D.Bossemeyer (2002).
Structural aspects of protein kinase control-role of conformational flexibility.
  Pharmacol Ther, 93, 99.  
12191608 S.Sarno, S.Moro, F.Meggio, G.Zagotto, D.Dal Ben, P.Ghisellini, R.Battistutta, G.Zanotti, and L.A.Pinna (2002).
Toward the rational design of protein kinase casein kinase-2 inhibitors.
  Pharmacol Ther, 93, 159-168.  
11551213 J.Shaffer, G.Sun, and J.A.Adams (2001).
Nucleotide release and associated conformational changes regulate function in the COOH-terminal Src kinase, Csk.
  Biochemistry, 40, 11149-11155.  
11470611 P.R.Caron, M.D.Mullican, R.D.Mashal, K.P.Wilson, M.S.Su, and M.A.Murcko (2001).
Chemogenomic approaches to drug discovery.
  Curr Opin Chem Biol, 5, 464-470.  
11604527 R.Battistutta, E.De Moliner, S.Sarno, G.Zanotti, and L.A.Pinna (2001).
Structural features underlying selective inhibition of protein kinase CK2 by ATP site-directed tetrabromo-2-benzotriazole.
  Protein Sci, 10, 2200-2206.
PDB codes: 1j91 1jam
11090628 E.H.Walker, M.E.Pacold, O.Perisic, L.Stephens, P.T.Hawkins, M.P.Wymann, and R.L.Williams (2000).
Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine.
  Mol Cell, 6, 909-919.
PDB codes: 1e7u 1e7v 1e8w 1e8x 1e8y 1e8z 1e90
10966463 S.R.Hubbard, and J.H.Till (2000).
Protein tyrosine kinase structure and function.
  Annu Rev Biochem, 69, 373-398.  
10593898 J.R.Burke, M.K.Wood, R.P.Ryseck, S.Walther, and C.A.Meyers (1999).
Peptides corresponding to the N and C termini of IkappaB-alpha, -beta, and -epsilon as probes of the two catalytic subunits of IkappaB kinase, IKK-1 and IKK-2.
  J Biol Chem, 274, 36146-36152.  
10404594 X.Zhu, J.L.Kim, J.R.Newcomb, P.E.Rose, D.R.Stover, L.M.Toledo, H.Zhao, and K.A.Morgenstern (1999).
Structural analysis of the lymphocyte-specific kinase Lck in complex with non-selective and Src family selective kinase inhibitors.
  Structure, 7, 651-661.
PDB codes: 1qpc 1qpd 1qpe 1qpj
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer