spacer
spacer

PDBsum entry 1by4

Go to PDB code: 
protein dna_rna metals Protein-protein interface(s) links
Gene regulation/DNA PDB id
1by4

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
79 a.a. *
82 a.a. *
DNA/RNA
Metals
_ZN ×8
Waters ×230
* Residue conservation analysis
PDB id:
1by4
Name: Gene regulation/DNA
Title: Structure and mechanism of the homodimeric assembly of the rxr on DNA
Structure: DNA (5'-d( C Tp Ap Gp Gp Tp Cp Ap Ap Ap Gp Gp Tp Cp Ap G)- 3'). Chain: e, g. Engineered: yes. DNA (5'-d( Cp Tp Gp Ap Cp Cp Tp Tp Tp Gp Ap Cp Cp Tp A)- 3'). Chain: f, h. Engineered: yes. Protein (retinoic acid receptor rxr-alpha).
Source: Synthetic: yes. Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli. Expression_system_taxid: 562
Biol. unit: Tetramer (from PQS)
Resolution:
2.10Å     R-factor:   0.234     R-free:   0.284
Authors: Q.Zhao,S.A.Chasse,S.Devarakonda,M.L.Sierk,B.Ahvazi,P.B.Sigler, F.Rastinejad
Key ref:
Q.Zhao et al. (2000). Structural basis of RXR-DNA interactions. J Mol Biol, 296, 509-520. PubMed id: 10669605 DOI: 10.1006/jmbi.1999.3457
Date:
22-Oct-98     Release date:   12-Jan-00    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P19793  (RXRA_HUMAN) -  Retinoic acid receptor RXR-alpha from Homo sapiens
Seq:
Struc:
462 a.a.
79 a.a.
Protein chains
Pfam   ArchSchema ?
P19793  (RXRA_HUMAN) -  Retinoic acid receptor RXR-alpha from Homo sapiens
Seq:
Struc:
462 a.a.
82 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

DNA/RNA chains
  T-A-G-G-T-C-A-A-A-G-G-T-C-A-G 15 bases
  C-T-G-A-C-C-T-T-T-G-A-C-C-T-A 15 bases
  C-T-A-G-G-T-C-A-A-A-G-G-T-C-A-G 16 bases
  C-T-G-A-C-C-T-T-T-G-A-C-C-T-A 15 bases

 

 
DOI no: 10.1006/jmbi.1999.3457 J Mol Biol 296:509-520 (2000)
PubMed id: 10669605  
 
 
Structural basis of RXR-DNA interactions.
Q.Zhao, S.A.Chasse, S.Devarakonda, M.L.Sierk, B.Ahvazi, F.Rastinejad.
 
  ABSTRACT  
 
The 9-cis retinoic acid receptor, RXR, binds DNA effectively as a homodimer or as a heterodimer with other nuclear receptors. The DNA-binding sites for these RXR complexes are direct repeats of a consensus sequence separated by one to five base-pairs of intervening space. Here, we report the 2.1 A crystal structure of the RXR-DNA-binding domain as a homodimer in complex with its idealized direct repeat DNA target. The structure shows how a gene-regulatory site can induce conformational changes in a transcription factor that promote homo-cooperative assembly. Specifically, an alpha-helix in the T-box is disrupted to allow efficient DNA-binding and subunit dimerization. RXR displays a relaxed mode of sequence recognition, interacting with only three base-pairs in each hexameric half-site. The structure illustrates how site selection is achieved in this large eukaryotic transcription factor family through discrete protein-protein interactions and the use of tandem DNA binding sites with characteristic spacings.
 
  Selected figure(s)  
 
Figure 3.
Figure 3. Protein-DNA and protein-protein interactions at the dimer interfaces. (a) Close-up view of the protein-protein contacts in the DR1 complex formed by subunits 1 and 2, and equivalently by subunits 3 and 4. The pink bars indicate the position of the spacer base-pair(s). Side-chains shown are only those making DNA or dimerization contacts. Hydrogen bonding between the side-chains of residues 49, 52 and 74, which form the dimerization contacts, are shown by broken lines. Figures were generated with Ribbons [Carson and Bugg 1986]. (b) The corresponding view at the "DR2" site. (c) Surface complementarity in the protein-protein interface on DR1, with subunit 1 shown in red and subunit 2 shown in white. The location of the DNA is shown for reference, with the 5' end pointing up [Nicholls et al 1991]. (d) The corresponding view at the "DR2" interface, with subunit 2 (white) and subunit 3 (blue). (e) Fluorescence anisotropy measurements showing the binding of RXR-DBD to DR1 (black circles) and DR2 (red squares). The maximal values for fluorescence aniostropy differ for the DR1 and DR2 plots, as expected from the different binding geometries and solution reorientation properties of these complexes.
Figure 6.
Figure 6. Similarities among the structurally characterized DBD-DNA complexes. Comparison of the (a) RXR DBD-DNA complex on DR1 with those of the (b) RXR-TR DBD on DR4 [Rastinejad et al 1995], (c) the RevErb homodimer on DR2 [Zhao et al 1998] and (d) the glucocorticoid DBD complex on a symmetric repeat Pal3 [Luisi et al 1991]. In each case, the DNA is shown with the 5' end at the top, and the spacer base-pairs are colored pink.
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (2000, 296, 509-520) copyright 2000.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21414284 H.Urushitani, Y.Katsu, Y.Ohta, H.Shiraishi, T.Iguchi, and T.Horiguchi (2011).
Cloning and characterization of retinoid X receptor (RXR) isoforms in the rock shell, Thais clavigera.
  Aquat Toxicol, 103, 101-111.  
20097575 C.Bich, C.Bovet, N.Rochel, C.Peluso-Iltis, A.Panagiotidis, A.Nazabal, D.Moras, and R.Zenobi (2010).
Detection of nucleic acid-nuclear hormone receptor complexes with mass spectrometry.
  J Am Soc Mass Spectrom, 21, 635-645.  
20466807 M.van Dijk, and A.M.Bonvin (2010).
Pushing the limits of what is achievable in protein-DNA docking: benchmarking HADDOCK's performance.
  Nucleic Acids Res, 38, 5634-5647.  
20139421 T.Krusiński, A.Ozyhar, and P.Dobryszycki (2010).
Dual FRET assay for detecting receptor protein interaction with DNA.
  Nucleic Acids Res, 38, e108.  
19553667 K.K.Hill, S.C.Roemer, D.N.Jones, M.E.Churchill, and D.P.Edwards (2009).
A progesterone receptor co-activator (JDP2) mediates activity through interaction with residues in the carboxyl-terminal extension of the DNA binding domain.
  J Biol Chem, 284, 24415-24424.  
20052392 L.S.Chan, and R.A.Wells (2009).
Cross-Talk between PPARs and the Partners of RXR: A Molecular Perspective.
  PPAR Res, 2009, 925309.  
18829458 P.Lu, G.B.Rha, M.Melikishvili, G.Wu, B.C.Adkins, M.G.Fried, and Y.I.Chi (2008).
Structural Basis of Natural Promoter Recognition by a Unique Nuclear Receptor, HNF4{alpha}: DIABETES GENE PRODUCT.
  J Biol Chem, 283, 33685-33697.
PDB code: 3cbb
18474528 S.C.Roemer, J.Adelman, M.E.Churchill, and D.P.Edwards (2008).
Mechanism of high-mobility group protein B enhancement of progesterone receptor sequence-specific DNA binding.
  Nucleic Acids Res, 36, 3655-3666.  
18049881 T.Krusiński, M.Wietrzych, I.Grad, A.Ozyhar, and P.Dobryszycki (2008).
Equilibrium Analysis of the DNA Binding Domain of the Ultraspiracle Protein Interaction with the Response Element from the hsp27 Gene Promoter-the Application of Molecular Beacon Technology.
  J Fluoresc, 18, 1.  
17214883 F.Spyrakis, P.Cozzini, C.Bertoli, A.Marabotti, G.E.Kellogg, and A.Mozzarelli (2007).
Energetics of the protein-DNA-water interaction.
  BMC Struct Biol, 7, 4.  
17600153 M.R.Calgaro, M.d.e. .O.Neto, A.C.Figueira, M.A.Santos, R.V.Portugal, C.A.Guzzi, D.M.Saidemberg, L.Bleicher, J.Vernal, P.Fernandez, H.Terenzi, M.S.Palma, and I.Polikarpov (2007).
Orphan nuclear receptor NGFI-B forms dimers with nonclassical interface.
  Protein Sci, 16, 1762-1772.  
17431400 O.Tanabe, D.McPhee, S.Kobayashi, Y.Shen, W.Brandt, X.Jiang, A.D.Campbell, Y.T.Chen, C.Chang, M.Yamamoto, K.Tanimoto, and J.D.Engel (2007).
Embryonic and fetal beta-globin gene repression by the orphan nuclear receptors, TR2 and TR4.
  EMBO J, 26, 2295-2306.  
16729120 D.L.Mohler, and G.Shen (2006).
The synthesis of tethered ligand dimers for PPARgamma-RXR protein heterodimers.
  Org Biomol Chem, 4, 2082-2087.  
16931575 S.C.Roemer, D.C.Donham, L.Sherman, V.H.Pon, D.P.Edwards, and M.E.Churchill (2006).
Structure of the progesterone receptor-deoxyribonucleic acid complex: novel interactions required for binding to half-site response elements.
  Mol Endocrinol, 20, 3042-3052.
PDB code: 2c7a
16085755 J.E.Donald, and E.I.Shakhnovich (2005).
Predicting specificity-determining residues in two large eukaryotic transcription factor families.
  Nucleic Acids Res, 33, 4455-4465.  
15572375 K.A.Temple, R.N.Cohen, S.R.Wondisford, C.Yu, D.Deplewski, and F.E.Wondisford (2005).
An intact DNA-binding domain is not required for peroxisome proliferator-activated receptor gamma (PPARgamma) binding and activation on some PPAR response elements.
  J Biol Chem, 280, 3529-3540.  
16204233 R.Yasmin, R.M.Williams, M.Xu, and N.Noy (2005).
Nuclear import of the retinoid X receptor, the vitamin D receptor, and their mutual heterodimer.
  J Biol Chem, 280, 40152-40160.  
15611047 Y.Shostak, and K.R.Yamamoto (2005).
Overlapping but separable determinants of DNA binding and nuclear localization map to the C-terminal end of the Caenorhabditis elegans DAF-12 DNA binding domain.
  J Biol Chem, 280, 6554-6560.  
15456909 L.J.Schwimmer, P.Rohatgi, B.Azizi, K.L.Seley, and D.F.Doyle (2004).
Creation and discovery of ligand-receptor pairs for transcriptional control with small molecules.
  Proc Natl Acad Sci U S A, 101, 14707-14712.  
15037741 P.L.Shaffer, A.Jivan, D.E.Dollins, F.Claessens, and D.T.Gewirth (2004).
Structural basis of androgen receptor binding to selective androgen response elements.
  Proc Natl Acad Sci U S A, 101, 4758-4763.
PDB code: 1r4i
12533536 H.Fischer, S.M.Dias, M.A.Santos, A.C.Alves, N.Zanchin, A.F.Craievich, J.W.Apriletti, J.D.Baxter, P.Webb, F.A.Neves, R.C.Ribeiro, and I.Polikarpov (2003).
Low resolution structures of the retinoid X receptor DNA-binding and ligand-binding domains revealed by synchrotron X-ray solution scattering.
  J Biol Chem, 278, 16030-16038.  
12637543 M.S.Wiebe, T.K.Nowling, and A.Rizzino (2003).
Identification of novel domains within Sox-2 and Sox-11 involved in autoinhibition of DNA binding and partnership specificity.
  J Biol Chem, 278, 17901-17911.  
12963727 N.Shaw, M.Elholm, and N.Noy (2003).
Retinoic acid is a high affinity selective ligand for the peroxisome proliferator-activated receptor beta/delta.
  J Biol Chem, 278, 41589-41592.  
14592980 S.Devarakonda, J.M.Harp, Y.Kim, A.Ozyhar, and F.Rastinejad (2003).
Structure of the heterodimeric ecdysone receptor DNA-binding complex.
  EMBO J, 22, 5827-5840.
PDB codes: 1r0n 1r0o
11970949 F.E.Chen-Park, D.B.Huang, B.Noro, D.Thanos, and G.Ghosh (2002).
The kappa B DNA sequence from the HIV long terminal repeat functions as an allosteric regulator of HIV transcription.
  J Biol Chem, 277, 24701-24708.
PDB code: 1lei
12176382 H.Zhao, T.Msadek, J.Zapf, Madhusudan, J.A.Hoch, and K.I.Varughese (2002).
DNA complexed structure of the key transcription factor initiating development in sporulating bacteria.
  Structure, 10, 1041-1050.
PDB code: 1lq1
11980721 P.L.Shaffer, and D.T.Gewirth (2002).
Structural basis of VDR-DNA interactions on direct repeat response elements.
  EMBO J, 21, 2242-2252.
PDB codes: 1kb2 1kb4 1kb6
12006575 V.S.Melvin, S.C.Roemer, M.E.Churchill, and D.P.Edwards (2002).
The C-terminal extension (CTE) of the nuclear hormone receptor DNA binding domain determines interactions and functional response to the HMGB-1/-2 co-regulatory proteins.
  J Biol Chem, 277, 25115-25124.  
11432742 I.Grad, A.Niedziela-Majka, M.Kochman, and A.Ozyhar (2001).
Analysis of Usp DNA binding domain targeting reveals critical determinants of the ecdysone receptor complex interaction with the response element.
  Eur J Biochem, 268, 3751-3758.  
11406412 S.Khorasanizadeh, and F.Rastinejad (2001).
Nuclear-receptor interactions on DNA-response elements.
  Trends Biochem Sci, 26, 384-390.  
10970886 R.T.Gampe, V.G.Montana, M.H.Lambert, G.B.Wisely, M.V.Milburn, and H.E.Xu (2000).
Structural basis for autorepression of retinoid X receptor by tetramer formation and the AF-2 helix.
  Genes Dev, 14, 2229-2241.
PDB codes: 1g1u 1g5y
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer