spacer
spacer

PDBsum entry 1bu1

Go to PDB code: 
protein Protein-protein interface(s) links
Transferase PDB id
1bu1

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
(+ 0 more) 57 a.a. *
Waters ×70
* Residue conservation analysis
PDB id:
1bu1
Name: Transferase
Title: Src family kinase hck sh3 domain
Structure: Protein (hemopoietic cell kinase). Chain: a, b, c, d, e, f. Fragment: sh3. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Cell_line: bl21 (de3). Gene: human hck. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
Resolution:
2.60Å     R-factor:   0.233     R-free:   0.297
Authors: S.Arold,P.Franken,C.Dumas
Key ref:
S.Arold et al. (1998). RT loop flexibility enhances the specificity of Src family SH3 domains for HIV-1 Nef. Biochemistry, 37, 14683-14691. PubMed id: 9778343 DOI: 10.1021/bi980989q
Date:
09-Sep-98     Release date:   11-Nov-98    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P08631  (HCK_HUMAN) -  Tyrosine-protein kinase HCK from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
526 a.a.
57 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.2.7.10.2  - non-specific protein-tyrosine kinase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: L-tyrosyl-[protein] + ATP = O-phospho-L-tyrosyl-[protein] + ADP + H+
L-tyrosyl-[protein]
+ ATP
= O-phospho-L-tyrosyl-[protein]
+ ADP
+ H(+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Added reference    
 
 
DOI no: 10.1021/bi980989q Biochemistry 37:14683-14691 (1998)
PubMed id: 9778343  
 
 
RT loop flexibility enhances the specificity of Src family SH3 domains for HIV-1 Nef.
S.Arold, R.O'Brien, P.Franken, M.P.Strub, F.Hoh, C.Dumas, J.E.Ladbury.
 
  ABSTRACT  
 
Understanding the issue of specificity imposed in the interactions of SH3 domains has largely been addressed in studies investigating the interaction of proline-rich amino acid sequences derived from potential ligands for these domains. Although the interaction with this motif forms an essential platform in the binding of SH3 domains, in many cases little specificity is observed and the difference in affinity for so-called specific and nonspecific proline-rich sequences is not great. Furthermore, the binding interface between an SH3 domain and a protein ligand appears to encompass more interactions than are represented by that involving the proline-rich motif. Here we investigate the issue of specificity from the opposite point of view; namely, how does a ligand recognize different SH3 domains? We present the crystal structure of the unbound SH3 domain from hemopoietic cell kinase (Hck) which is a member of the Src family of tyrosine kinases. This structure reveals that, unlike the structures of other Src kinase SH3 domains, the RT loop region is highly mobile and lacks a network of hydrogen bonds that is elsewhere apparent. The RT loop has been shown to form a major part of the binding interface between SH3 domains and HIV-1 Nef. Thermodynamic data, derived from isothermal titration calorimetry, for the binding of Hck SH3 to HIV-1 Nef show that the binding of Hck (KD = 1.5 microM) is approximately an order of magnitude tighter than those of other Src family kinases that were investigated (Fyn, Lck, and Src). This increase in affinity is attributed to, among other effects, the inherent flexibility in the RT loop which does not require breaking the network of hydrogen bonds to adopt the conformation required for binding.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
21213247 P.L.Kastritis, I.H.Moal, H.Hwang, Z.Weng, P.A.Bates, A.M.Bonvin, and J.Janin (2011).
A structure-based benchmark for protein-protein binding affinity.
  Protein Sci, 20, 482-491.  
19906645 A.Palencia, A.Camara-Artigas, M.T.Pisabarro, J.C.Martinez, and I.Luque (2010).
Role of interfacial water molecules in proline-rich ligand recognition by the Src homology 3 domain of Abl.
  J Biol Chem, 285, 2823-2833.
PDB codes: 3eg0 3eg1 3eg2 3eg3 3egu
20377428 K.C.Olivieri, K.A.Agopian, J.Mukerji, and D.Gabuzda (2010).
Evidence for adaptive evolution at the divergence between lymphoid and brain HIV-1 nef genes.
  AIDS Res Hum Retroviruses, 26, 495-500.  
20024074 S.Hoffmann, S.A.Funke, K.Wiesehan, S.Moedder, J.M.Glück, S.Feuerstein, M.Gerdts, J.Mötter, and D.Willbold (2010).
Competitively selected protein ligands pay their increase in specificity by a decrease in affinity.
  Mol Biosyst, 6, 116-123.  
19323566 C.B.McDonald, K.L.Seldeen, B.J.Deegan, and A.Farooq (2009).
SH3 domains of Grb2 adaptor bind to PXpsiPXR motifs within the Sos1 nucleotide exchange factor in a discriminate manner.
  Biochemistry, 48, 4074-4085.  
19590096 E.J.Stollar, B.Garcia, P.A.Chong, A.Rath, H.Lin, J.D.Forman-Kay, and A.R.Davidson (2009).
Structural, functional, and bioinformatic studies demonstrate the crucial role of an extended peptide binding site for the SH3 domain of yeast Abp1p.
  J Biol Chem, 284, 26918-26927.
PDB code: 2rpn
19781555 J.A.Poe, and T.E.Smithgall (2009).
HIV-1 Nef dimerization is required for Nef-mediated receptor downregulation and viral replication.
  J Mol Biol, 394, 329-342.  
  19807124 L.Emert-Sedlak, T.Kodama, E.C.Lerner, W.Dai, C.Foster, B.W.Day, J.S.Lazo, and T.E.Smithgall (2009).
Chemical library screens targeting an HIV-1 accessory factor/host cell kinase complex identify novel antiretroviral compounds.
  ACS Chem Biol, 4, 939-947.  
19585521 R.Hassan, S.Suzu, M.Hiyoshi, N.Takahashi-Makise, T.Ueno, T.Agatsuma, H.Akari, J.Komano, Y.Takebe, K.Motoyoshi, and S.Okada (2009).
Dys-regulated activation of a Src tyroine kinase Hck at the Golgi disturbs N-glycosylation of a cytokine receptor Fms.
  J Cell Physiol, 221, 458-468.  
17452790 A.Cámara-Artigas, A.Palencia, J.C.Martínez, I.Luque, J.A.Gavira, and J.M.García-Ruiz (2007).
Crystallization by capillary counter-diffusion and structure determination of the N114A mutant of the SH3 domain of Abl tyrosine kinase complexed with a high-affinity peptide ligand.
  Acta Crystallogr D Biol Crystallogr, 63, 646-652.
PDB code: 2o88
17407569 S.Casares, E.Ab, H.Eshuis, O.Lopez-Mayorga, N.A.van Nuland, and F.Conejero-Lara (2007).
The high-resolution NMR structure of the R21A Spc-SH3:P41 complex: understanding the determinants of binding affinity by comparison with Abl-SH3.
  BMC Struct Biol, 7, 22.
PDB codes: 2jm8 2jm9 2jma
17330285 S.Casares, O.López-Mayorga, M.C.Vega, A.Cámara-Artigas, and F.Conejero-Lara (2007).
Cooperative propagation of local stability changes from low-stability and high-stability regions in a SH3 domain.
  Proteins, 67, 531-547.
PDB codes: 2cdt 2f2v 2f2w 2f2x
17552908 T.Stangler, T.Tran, S.Hoffmann, H.Schmidt, E.Jonas, and D.Willbold (2007).
Competitive displacement of full-length HIV-1 Nef from the Hck SH3 domain by a high-affinity artificial peptide.
  Biol Chem, 388, 611-615.  
16760313 J.F.Roeth, and K.L.Collins (2006).
Human immunodeficiency virus type 1 Nef: adapting to intracellular trafficking pathways.
  Microbiol Mol Biol Rev, 70, 548-563.  
16849330 R.P.Trible, L.Emert-Sedlak, and T.E.Smithgall (2006).
HIV-1 Nef selectively activates Src family kinases Hck, Lyn, and c-Src through direct SH3 domain interaction.
  J Biol Chem, 281, 27029-27038.  
16374509 S.Kärkkäinen, M.Hiipakka, J.H.Wang, I.Kleino, M.Vähä-Jaakkola, G.H.Renkema, M.Liss, R.Wagner, and K.Saksela (2006).
Identification of preferred protein interactions by phage-display of the human Src homology-3 proteome.
  EMBO Rep, 7, 186-191.  
16600966 V.Musi, B.Birdsall, G.Fernandez-Ballester, R.Guerrini, S.Salvatori, L.Serrano, and A.Pastore (2006).
New approaches to high-throughput structure characterization of SH3 complexes: the example of Myosin-3 and Myosin-5 SH3 domains from S. cerevisiae.
  Protein Sci, 15, 795-807.
PDB code: 2btt
15976924 L.Briese, A.Preusser, and D.Willbold (2005).
Mapping the binding site of full length HIV-1 Nef on human Lck SH3 by NMR spectroscopy.
  J Biomed Sci, 12, 451-456.  
15258149 J.F.Fortin, C.Barat, Y.Beauséjour, B.Barbeau, and M.J.Tremblay (2004).
Hyper-responsiveness to stimulation of human immunodeficiency virus-infected CD4+ T cells requires Nef and Tat virus gene products and results from higher NFAT, NF-kappaB, and AP-1 induction.
  J Biol Chem, 279, 39520-39531.  
14707140 L.Davidson, A.J.Pawson, R.López de Maturana, S.H.Freestone, P.Barran, R.P.Millar, and S.Maudsley (2004).
Gonadotropin-releasing hormone-induced activation of diacylglycerol kinase-zeta and its association with active c-src.
  J Biol Chem, 279, 11906-11916.  
12419805 A.Varin, S.K.Manna, V.Quivy, A.Z.Decrion, C.Van Lint, G.Herbein, and B.B.Aggarwal (2003).
Exogenous Nef protein activates NF-kappa B, AP-1, and c-Jun N-terminal kinase and stimulates HIV transcription in promonocytic cells. Role in AIDS pathogenesis.
  J Biol Chem, 278, 2219-2227.  
11955060 K.Schweimer, S.Hoffmann, F.Bauer, U.Friedrich, C.Kardinal, S.M.Feller, B.Biesinger, and H.Sticht (2002).
Structural investigation of the binding of a herpesviral protein to the SH3 domain of tyrosine kinase Lck.
  Biochemistry, 41, 5120-5130.
PDB codes: 1h92 1wa7
11297419 B.S.Nieslanik, C.Ibarra, and W.M.Atkins (2001).
The C-terminus of glutathione S-transferase A1-1 is required for entropically-driven ligand binding.
  Biochemistry, 40, 3536-3543.  
11141062 N.Okishio, T.Tanaka, R.Fukuda, and M.Nagai (2001).
Role of the conserved acidic residue Asp21 in the structure of phosphatidylinositol 3-kinase Src homology 3 domain: circular dichroism and nuclear magnetic resonance studies.
  Biochemistry, 40, 119-129.  
11406408 S.T.Arold, and A.S.Baur (2001).
Dynamic Nef and Nef dynamics: how structure could explain the complex activities of this small HIV protein.
  Trends Biochem Sci, 26, 356-363.  
11533201 Z.Hanna, X.Weng, D.G.Kay, J.Poudrier, C.Lowell, and P.Jolicoeur (2001).
The pathogenicity of human immunodeficiency virus (HIV) type 1 Nef in CD4C/HIV transgenic mice is abolished by mutation of its SH3-binding domain, and disease development is delayed in the absence of Hck.
  J Virol, 75, 9378-9392.  
  10739251 D.A.Horita, W.Zhang, T.E.Smithgall, W.H.Gmeiner, and R.A.Byrd (2000).
Dynamics of the Hck-SH3 domain: comparison of experiment with multiple molecular dynamics simulations.
  Protein Sci, 9, 95.  
  11071920 G.Bottger, P.Barnett, A.T.Klein, A.Kragt, H.F.Tabak, and B.Distel (2000).
Saccharomyces cerevisiae PTS1 receptor Pex5p interacts with the SH3 domain of the peroxisomal membrane protein Pex13p in an unconventional, non-PXXP-related manner.
  Mol Biol Cell, 11, 3963-3976.  
10662684 J.E.Ladbury, and S.Arold (2000).
Searching for specificity in SH domains.
  Chem Biol, 7, R3-R8.  
11101511 P.Barnett, G.Bottger, A.T.Klein, H.F.Tabak, and B.Distel (2000).
The peroxisomal membrane protein Pex13p shows a novel mode of SH3 interaction.
  EMBO J, 19, 6382-6391.  
  10892807 S.Arold, F.Hoh, S.Domergue, C.Birck, M.A.Delsuc, M.Jullien, and C.Dumas (2000).
Characterization and molecular basis of the oligomeric structure of HIV-1 nef protein.
  Protein Sci, 9, 1137-1148.  
10823877 T.Swigut, A.J.Iafrate, J.Muench, F.Kirchhoff, and J.Skowronski (2000).
Simian and human immunodeficiency virus Nef proteins use different surfaces to downregulate class I major histocompatibility complex antigen expression.
  J Virol, 74, 5691-5701.  
10660579 Y.Collette, S.Arold, C.Picard, K.Janvier, S.Benichou, R.Benarous, D.Olive, and C.Dumas (2000).
HIV-2 and SIV nef proteins target different Src family SH3 domains than does HIV-1 Nef because of a triple amino acid substitution.
  J Biol Chem, 275, 4171-4176.  
10805734 Z.S.Zhao, E.Manser, and L.Lim (2000).
Interaction between PAK and nck: a template for Nck targets and role of PAK autophosphorylation.
  Mol Cell Biol, 20, 3906-3917.  
10394361 O.T.Fackler, W.Luo, M.Geyer, A.S.Alberts, and B.M.Peterlin (1999).
Activation of Vav by Nef induces cytoskeletal rearrangements and downstream effector functions.
  Mol Cell, 3, 729-739.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer