spacer
spacer

PDBsum entry 1btl

Go to PDB code: 
protein ligands links
Hydrolase PDB id
1btl
Jmol
Contents
Protein chain
263 a.a. *
Ligands
SO4
Waters ×199
* Residue conservation analysis
PDB id:
1btl
Name: Hydrolase
Title: Crystal structure of escherichia coli tem1 beta-lactamase at 1.8 angstroms resolution
Structure: Beta-lactamase tem1. Chain: a. Engineered: yes
Source: Escherichia coli. Organism_taxid: 562.
Resolution:
1.80Å     R-factor:   0.164    
Authors: C.Jelsch,L.Mourey,J.M.Masson,J.P.Samama
Key ref: C.Jelsch et al. (1993). Crystal structure of Escherichia coli TEM1 beta-lactamase at 1.8 A resolution. Proteins, 16, 364-383. PubMed id: 8356032
Date:
01-Nov-93     Release date:   26-Jan-95    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P62593  (BLAT_ECOLX) -  Beta-lactamase TEM
Seq:
Struc:
286 a.a.
263 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 2 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: E.C.3.5.2.6  - Beta-lactamase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

      Pathway:
Penicillin Biosynthesis and Metabolism
      Reaction: A beta-lactam + H2O = a substituted beta-amino acid
      Cofactor: Zinc
 Gene Ontology (GO) functional annotation 
  GO annot!
  Biological process     response to antibiotic   2 terms 
  Biochemical function     protein binding     3 terms  

 

 
Proteins 16:364-383 (1993)
PubMed id: 8356032  
 
 
Crystal structure of Escherichia coli TEM1 beta-lactamase at 1.8 A resolution.
C.Jelsch, L.Mourey, J.M.Masson, J.P.Samama.
 
  ABSTRACT  
 
The X-ray structure of Escherichia coli TEM1 beta-lactamase has been refined to a crystallographic R-factor of 16.4% for 22,510 reflections between 5.0 and 1.8 A resolution; 199 water molecules and 1 sulphate ion were included in refinement. Except for the tips of a few solvent-exposed side chains, all protein atoms have clear electron density and refined to an average atomic temperature factor of 11 A2. The estimated coordinates error is 0.17 A. The substrate binding site is located at the interface of the two domains of the protein and contains 4 water molecules and the sulphate anion. One of these solvent molecules is found at hydrogen bond distance from S70 and E166. S70 and S130 are hydrogen bonded to K73 and K234, respectively. It was found that the E. coli TEM1 and Staphylococcus aureus PC1 beta-lactamases crystal structures differ in the relative orientations of the two domains composing the enzymes, which result in a narrowed substrate binding cavity in the TEM1 enzyme. Local but significant differences in the vicinity of this site may explain the occurrence of TEM1 natural mutants with extended substrate specificities.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
21425229 A.N.Volkov, H.Barrios, P.Mathonet, C.Evrard, M.Ubbink, J.P.Declercq, P.Soumillion, and J.Fastrez (2011).
Engineering an Allosteric Binding Site for Aminoglycosides into TEM1-β-Lactamase.
  Chembiochem, 12, 904-913.
PDB codes: 2v1z 2v20
20556551 J.Vandenameele, A.Matagne, and C.Damblon (2010).
1H, 13C and 15N backbone resonance assignments for the BS3 class A β-lactamase from Bacillus licheniformis.
  Biomol NMR Assign, 4, 195-197.  
20000704 M.Toth, C.Smith, H.Frase, S.Mobashery, and S.Vakulenko (2010).
An antibiotic-resistance enzyme from a deep-sea bacterium.
  J Am Chem Soc, 132, 816-823.
PDB code: 3lez
20159160 O.Fisette, S.Morin, P.Y.Savard, P.Lagüe, and S.M.Gagné (2010).
TEM-1 backbone dynamics-insights from combined molecular dynamics and nuclear magnetic resonance.
  Biophys J, 98, 637-645.  
19940132 R.Daniels, P.Mellroth, A.Bernsel, F.Neiers, S.Normark, G.von Heijne, and B.Henriques-Normark (2010).
Disulfide bond formation and cysteine exclusion in gram-positive bacteria.
  J Biol Chem, 285, 3300-3309.  
20065329 S.M.Drawz, and R.A.Bonomo (2010).
Three decades of beta-lactamase inhibitors.
  Clin Microbiol Rev, 23, 160-201.  
20383614 S.Morin, C.M.Clouthier, S.Gobeil, J.N.Pelletier, and S.M.Gagné (2010).
Backbone resonance assignments of an artificially engineered TEM-1/PSE-4 Class A β-lactamase chimera.
  Biomol NMR Assign, 4, 127-130.  
20591901 V.Mathieu, J.Fastrez, and P.Soumillion (2010).
Engineering allosteric regulation into the hinge region of a circularly permuted TEM-1 beta-lactamase.
  Protein Eng Des Sel, 23, 699-709.  
19672877 D.C.Marciano, N.G.Brown, and T.Palzkill (2009).
Analysis of the plasticity of location of the Arg244 positive charge within the active site of the TEM-1 beta-lactamase.
  Protein Sci, 18, 2080-2089.  
19485421 K.D.Schneider, C.R.Bethel, A.M.Distler, A.M.Hujer, R.A.Bonomo, and D.A.Leonard (2009).
Mutation of the active site carboxy-lysine (K70) of OXA-1 beta-lactamase results in a deacylation-deficient enzyme.
  Biochemistry, 48, 6136-6145.  
19812041 N.G.Brown, S.Shanker, B.V.Prasad, and T.Palzkill (2009).
Structural and biochemical evidence that a TEM-1 beta-lactamase N170G active site mutant acts via substrate-assisted catalysis.
  J Biol Chem, 284, 33703-33712.
PDB code: 3jyi
19678665 S.Majumdar, and R.F.Pratt (2009).
Inhibition of class A and C beta-lactamases by diaroyl phosphates.
  Biochemistry, 48, 8285-8292.  
19486690 S.Morin, and S.M.Gagné (2009).
NMR dynamics of PSE-4 beta-lactamase: an interplay of ps-ns order and mus-ms motions in the active site.
  Biophys J, 96, 4681-4691.  
19622546 T.A.Whitehead, L.M.Bergeron, and D.S.Clark (2009).
Tying up the loose ends: circular permutation decreases the proteolytic susceptibility of recombinant proteins.
  Protein Eng Des Sel, 22, 607-613.  
19165722 Y.Chen, S.Li, T.Chen, H.Hua, and Z.Lin (2009).
Random dissection to select for protein split sites and its application in protein fragment complementation.
  Protein Sci, 18, 399-409.  
18559360 A.J.Baldwin, K.Busse, A.M.Simm, and D.D.Jones (2008).
Expanded molecular diversity generation during directed evolution by trinucleotide exchange (TriNEx).
  Nucleic Acids Res, 36, e77.  
18625772 S.Petrella, N.Ziental-Gelus, C.Mayer, M.Renard, V.Jarlier, and W.Sougakoff (2008).
Genetic and structural insights into the dissemination potential of the extremely broad-spectrum class A beta-lactamase KPC-2 identified in an Escherichia coli strain and an Enterobacter cloacae strain isolated from the same patient in France.
  Antimicrob Agents Chemother, 52, 3725-3736.
PDB code: 3dw0
18559359 W.R.Edwards, K.Busse, R.K.Allemann, and D.D.Jones (2008).
Linking the functions of unrelated proteins using a novel directed evolution domain insertion method.
  Nucleic Acids Res, 36, e78.  
17704567 C.A.Smith, M.Caccamo, K.A.Kantardjieff, and S.Vakulenko (2007).
Structure of GES-1 at atomic resolution: insights into the evolution of carbapenamase activity in the class A extended-spectrum beta-lactamases.
  Acta Crystallogr D Biol Crystallogr, 63, 982-992.
PDB code: 2qpn
17374723 E.Santillana, A.Beceiro, G.Bou, and A.Romero (2007).
Crystal structure of the carbapenemase OXA-24 reveals insights into the mechanism of carbapenem hydrolysis.
  Proc Natl Acad Sci U S A, 104, 5354-5359.
PDB code: 2jc7
17600829 N.Doucet, and J.N.Pelletier (2007).
Simulated annealing exploration of an active-site tyrosine in TEM-1 beta-lactamase suggests the existence of alternate conformations.
  Proteins, 69, 340-348.  
16344949 C.Christov, F.Tielens, and M.Mirazchiiski (2006).
Modeling study of the influences of the aromatic transitions and the local environment on the far-UV rotational strengths in TEM-1 beta-lactamase.
  J Mol Model, 12, 411-416.  
16754878 D.Paus, and G.Winter (2006).
Mapping epitopes and antigenicity by site-directed masking.
  Proc Natl Acad Sci U S A, 103, 9172-9177.  
16436733 J.Delmas, F.Robin, F.Carvalho, C.Mongaret, and R.Bonnet (2006).
Prediction of the evolution of ceftazidime resistance in extended-spectrum beta-lactamase CTX-M-9.
  Antimicrob Agents Chemother, 50, 731-738.  
16803899 J.M.Thomson, A.M.Distler, F.Prati, and R.A.Bonomo (2006).
Probing active site chemistry in SHV beta-lactamase variants at Ambler position 244. Understanding unique properties of inhibitor resistance.
  J Biol Chem, 281, 26734-26744.  
16963643 P.Mathonet, J.Deherve, P.Soumillion, and J.Fastrez (2006).
Active TEM-1 beta-lactamase mutants with random peptides inserted in three contiguous surface loops.
  Protein Sci, 15, 2323-2334.  
16041072 B.Stec, K.M.Holtz, C.L.Wojciechowski, and E.R.Kantrowitz (2005).
Structure of the wild-type TEM-1 beta-lactamase at 1.55 A and the mutant enzyme Ser70Ala at 2.1 A suggest the mode of noncovalent catalysis for the mutant enzyme.
  Acta Crystallogr D Biol Crystallogr, 61, 1072-1079.
PDB codes: 1zg4 1zg6
15897323 D.D.Jones (2005).
Triplet nucleotide removal at random positions in a target gene: the tolerance of TEM-1 beta-lactamase to an amino acid deletion.
  Nucleic Acids Res, 33, e80.  
16184435 D.Roccatano, G.Sbardella, M.Aschi, G.Amicosante, C.Bossa, A.Di Nola, and F.Mazza (2005).
Dynamical aspects of TEM-1 beta-lactamase probed by molecular dynamics.
  J Comput Aided Mol Des, 19, 329-340.  
16048956 F.K.Majiduddin, and T.Palzkill (2005).
Amino acid residues that contribute to substrate specificity of class A beta-lactamase SME-1.
  Antimicrob Agents Chemother, 49, 3421-3427.  
16021631 G.Hernández, and D.M.LeMaster (2005).
Hybrid native partitioning of interactions among nonconserved residues in chimeric proteins.
  Proteins, 60, 723-731.  
15880735 G.Reifferscheid, C.Arndt, and C.Schmid (2005).
Further development of the beta-lactamase MutaGen assay and evaluation by comparison with Ames fluctuation tests and the umu test.
  Environ Mol Mutagen, 46, 126-139.  
16189109 J.Delmas, F.Robin, F.Bittar, C.Chanal, and R.Bonnet (2005).
Unexpected enzyme TEM-126: role of mutation Asp179Glu.
  Antimicrob Agents Chemother, 49, 4280-4287.  
15739204 J.Ko, L.F.Murga, P.André, H.Yang, M.J.Ondrechen, R.J.Williams, A.Agunwamba, and D.E.Budil (2005).
Statistical criteria for the identification of protein active sites using Theoretical Microscopic Titration Curves.
  Proteins, 59, 183-195.  
15673739 L.Ma, J.Alba, F.Y.Chang, M.Ishiguro, K.Yamaguchi, L.K.Siu, and Y.Ishii (2005).
Novel SHV-derived extended-spectrum beta-lactamase, SHV-57, that confers resistance to ceftazidime but not cefazolin.
  Antimicrob Agents Chemother, 49, 600-605.  
16162506 S.Negoro, T.Ohki, N.Shibata, N.Mizuno, Y.Wakitani, J.Tsurukame, K.Matsumoto, I.Kawamoto, M.Takeo, and Y.Higuchi (2005).
X-ray crystallographic analysis of 6-aminohexanoate-dimer hydrolase: molecular basis for the birth of a nylon oligomer-degrading enzyme.
  J Biol Chem, 280, 39644-39652.  
15981999 V.L.Thomas, D.Golemi-Kotra, C.Kim, S.B.Vakulenko, S.Mobashery, and B.K.Shoichet (2005).
Structural consequences of the inhibitor-resistant Ser130Gly substitution in TEM beta-lactamase.
  Biochemistry, 44, 9330-9338.
PDB code: 1yt4
15324804 A.Tousignant, and J.N.Pelletier (2004).
Protein motions promote catalysis.
  Chem Biol, 11, 1037-1042.  
15326193 N.Doucet, P.Y.De Wals, and J.N.Pelletier (2004).
Site-saturation mutagenesis of Tyr-105 reveals its importance in substrate stabilization and discrimination in TEM-1 beta-lactamase.
  J Biol Chem, 279, 46295-46303.  
15461559 N.H.Georgopapadakou (2004).
Beta-lactamase inhibitors: evolving compounds for evolving resistance targets.
  Expert Opin Investig Drugs, 13, 1307-1318.  
  12618385 F.K.Majiduddin, and T.Palzkill (2003).
An analysis of why highly similar enzymes evolve differently.
  Genetics, 163, 457-466.  
12876318 M.M.Meyer, J.J.Silberg, C.A.Voigt, J.B.Endelman, S.L.Mayo, Z.G.Wang, and F.H.Arnold (2003).
Library analysis of SCHEMA-guided protein recombination.
  Protein Sci, 12, 1686-1693.  
12945052 M.Oliva, O.Dideberg, and M.J.Field (2003).
Understanding the acylation mechanisms of active-site serine penicillin-recognizing proteins: a molecular dynamics simulation study.
  Proteins, 53, 88.  
14583258 S.Chopra, and A.Ranganathan (2003).
Protein evolution by "codon shuffling": a novel method for generating highly variant mutant libraries by assembly of hexamer DNA duplexes.
  Chem Biol, 10, 917-926.  
12933802 Z.Zhang, and T.Palzkill (2003).
Determinants of binding affinity and specificity for the interaction of TEM-1 and SME-1 beta-lactamase with beta-lactamase inhibitory protein.
  J Biol Chem, 278, 45706-45712.  
12042875 C.A.Voigt, C.Martinez, Z.G.Wang, S.L.Mayo, and F.H.Arnold (2002).
Protein building blocks preserved by recombination.
  Nat Struct Biol, 9, 553-558.  
12456788 C.Goffin, and J.M.Ghuysen (2002).
Biochemistry and comparative genomics of SxxK superfamily acyltransferases offer a clue to the mycobacterial paradox: presence of penicillin-susceptible target proteins versus lack of efficiency of penicillin as therapeutic agent.
  Microbiol Mol Biol Rev, 66, 702.  
12395425 I.Massova, and P.A.Kollman (2002).
pKa, MM, and QM studies of mechanisms of beta-lactamases and penicillin-binding proteins: acylation step.
  J Comput Chem, 23, 1559-1576.  
12415118 J.M.Spotts, R.E.Dolmetsch, and M.E.Greenberg (2002).
Time-lapse imaging of a dynamic phosphorylation-dependent protein-protein interaction in mammalian cells.
  Proc Natl Acad Sci U S A, 99, 15142-15147.  
11895438 L.Chesnel, A.Zapun, N.Mouz, O.Dideberg, and T.Vernet (2002).
Increase of the deacylation rate of PBP2x from Streptococcus pneumoniae by single point mutations mimicking the class A beta-lactamases.
  Eur J Biochem, 269, 1678-1683.  
12177312 P.Gaytán, J.Osuna, and X.Soberón (2002).
Novel ceftazidime-resistance beta-lactamases generated by a codon-based mutagenesis method and selection.
  Nucleic Acids Res, 30, e84.  
12446841 R.J.Hayes, J.Bentzien, M.L.Ary, M.Y.Hwang, J.M.Jacinto, J.Vielmetter, A.Kundu, and B.I.Dahiyat (2002).
Combining computational and experimental screening for rapid optimization of protein properties.
  Proc Natl Acad Sci U S A, 99, 15926-15931.  
  12052544 S.Madec, C.Blin, R.Krishnamoorthy, B.Picard, e.l. .B.Chaibi, M.Fouchereau-Péron, and R.Labia (2002).
Substitution of Met-69 by Ala or Gly in TEM-1 beta-lactamase confer an increased susceptibility to clavulanic acid and other inhibitors.
  FEMS Microbiol Lett, 211, 13-16.  
12221102 T.Shimamura, A.Ibuka, S.Fushinobu, T.Wakagi, M.Ishiguro, Y.Ishii, and H.Matsuzawa (2002).
Acyl-intermediate structures of the extended-spectrum class A beta-lactamase, Toho-1, in complex with cefotaxime, cephalothin, and benzylpenicillin.
  J Biol Chem, 277, 46601-46608.
PDB codes: 1iyo 1iyp 1iyq
11904411 T.Wehrman, B.Kleaveland, J.H.Her, R.F.Balint, and H.M.Blau (2002).
Protein-protein interactions monitored in mammalian cells via complementation of beta -lactamase enzyme fragments.
  Proc Natl Acad Sci U S A, 99, 3469-3474.  
11847270 U.G.Wagner, E.I.Petersen, H.Schwab, and C.Kratky (2002).
EstB from Burkholderia gladioli: a novel esterase with a beta-lactamase fold reveals steric factors to discriminate between esterolytic and beta-lactam cleaving activity.
  Protein Sci, 11, 467-478.
PDB codes: 1ci8 1ci9
11807251 W.Sougakoff, G.L'Hermite, L.Pernot, T.Naas, V.Guillet, P.Nordmann, V.Jarlier, and J.Delettré (2002).
Structure of the imipenem-hydrolyzing class A beta-lactamase SME-1 from Serratia marcescens.
  Acta Crystallogr D Biol Crystallogr, 58, 267-274.
PDB code: 1dy6
12058046 X.Wang, G.Minasov, and B.K.Shoichet (2002).
The structural bases of antibiotic resistance in the clinically derived mutant beta-lactamases TEM-30, TEM-32, and TEM-34.
  J Biol Chem, 277, 32149-32156.
PDB codes: 1lhy 1li0 1li9
11870868 X.Wang, G.Minasov, and B.K.Shoichet (2002).
Noncovalent interaction energies in covalent complexes: TEM-1 beta-lactamase and beta-lactams.
  Proteins, 47, 86-96.
PDB code: 1jvj
11502518 C.Arpin, R.Labia, C.Andre, C.Frigo, Z.El Harrif, and C.Quentin (2001).
SHV-16, a beta-lactamase with a pentapeptide duplication in the omega loop.
  Antimicrob Agents Chemother, 45, 2480-2485.  
11148033 D.Lim, F.Sanschagrin, L.Passmore, L.De Castro, R.C.Levesque, and N.C.Strynadka (2001).
Insights into the molecular basis for the carbenicillinase activity of PSE-4 beta-lactamase from crystallographic and kinetic studies.
  Biochemistry, 40, 395-402.
PDB codes: 1g68 1g6a
11114163 V.Sideraki, W.Huang, T.Palzkill, and H.F.Gilbert (2001).
A secondary drug resistance mutation of TEM-1 beta-lactamase that suppresses misfolding and aggregation.
  Proc Natl Acad Sci U S A, 98, 283-288.  
10716727 B.P.Atanasov, D.Mustafi, and M.W.Makinen (2000).
Protonation of the beta-lactam nitrogen is the trigger event in the catalytic action of class A beta-lactamases.
  Proc Natl Acad Sci U S A, 97, 3160-3165.  
10841972 C.Therrien, and R.C.Levesque (2000).
Molecular basis of antibiotic resistance and beta-lactamase inhibition by mechanism-based inactivators: perspectives and future directions.
  FEMS Microbiol Rev, 24, 251-262.  
11188693 L.Maveyraud, D.Golemi, L.P.Kotra, S.Tranier, S.Vakulenko, S.Mobashery, and J.P.Samama (2000).
Insights into class D beta-lactamases are revealed by the crystal structure of the OXA10 enzyme from Pseudomonas aeruginosa.
  Structure, 8, 1289-1298.
PDB codes: 1e3u 1e4d
10849003 M.C.Frate, E.J.Lietz, J.Santos, J.P.Rossi, A.L.Fink, and M.R.Ermácora (2000).
Export and folding of signal-sequenceless Bacillus licheniformis beta-lactamase in Escherichia coli.
  Eur J Biochem, 267, 3836-3847.  
10858358 R.Bonnet, J.L.Sampaio, R.Labia, C.De Champs, D.Sirot, C.Chanal, and J.Sirot (2000).
A novel CTX-M beta-lactamase (CTX-M-8) in cefotaxime-resistant Enterobacteriaceae isolated in Brazil.
  Antimicrob Agents Chemother, 44, 1936-1942.  
10419503 E.Fonzé, M.Vermeire, M.Nguyen-Distèche, R.Brasseur, and P.Charlier (1999).
The crystal structure of a penicilloyl-serine transferase of intermediate penicillin sensitivity. The DD-transpeptidase of streptomyces K15.
  J Biol Chem, 274, 21853-21860.
PDB code: 1skf
  10103213 G.Arlet, S.Goussard, P.Courvalin, and A.Philippon (1999).
Sequences of the genes for the TEM-20, TEM-21, TEM-22, and TEM-29 extended-spectrum beta-lactamases.
  Antimicrob Agents Chemother, 43, 969-971.  
  10543745 R.Bonnet, C.De Champs, D.Sirot, C.Chanal, R.Labia, and J.Sirot (1999).
Diversity of TEM mutants in Proteus mirabilis.
  Antimicrob Agents Chemother, 43, 2671-2677.  
10511459 Y.Yang, B.A.Rasmussen, and D.M.Shlaes (1999).
Class A beta-lactamases--enzyme-inhibitor interactions and resistance.
  Pharmacol Ther, 83, 141-151.  
9761898 A.Carfi, E.Duée, M.Galleni, J.M.Frère, and O.Dideberg (1998).
1.85 A resolution structure of the zinc (II) beta-lactamase from Bacillus cereus.
  Acta Crystallogr D Biol Crystallogr, 54, 313-323.
PDB code: 1bvt
9756899 C.Cantu, and T.Palzkill (1998).
The role of residue 238 of TEM-1 beta-lactamase in the hydrolysis of extended-spectrum antibiotics.
  J Biol Chem, 273, 26603-26609.  
  9756758 C.Therrien, F.Sanschagrin, T.Palzkill, and R.C.Levesque (1998).
Roles of amino acids 161 to 179 in the PSE-4 omega loop in substrate specificity and in resistance to ceftazidime.
  Antimicrob Agents Chemother, 42, 2576-2583.  
9449253 I.Massova, and S.Mobashery (1998).
Kinship and diversification of bacterial penicillin-binding proteins and beta-lactamases.
  Antimicrob Agents Chemother, 42, 1.  
9746943 J.Petrosino, C.Cantu, and T.Palzkill (1998).
beta-Lactamases: protein evolution in real time.
  Trends Microbiol, 6, 323-327.  
9485412 L.Maveyraud, R.F.Pratt, and J.P.Samama (1998).
Crystal structure of an acylation transition-state analog of the TEM-1 beta-lactamase. Mechanistic implications for class A beta-lactamases.
  Biochemistry, 37, 2622-2628.
PDB code: 1axb
  9624468 M.M.Caniça, N.Caroff, M.Barthélémy, R.Labia, R.Krishnamoorthy, G.Paul, and J.M.Dupret (1998).
Phenotypic study of resistance of beta-lactamase-inhibitor-resistant TEM enzymes which differ by naturally occurring variations and by site-directed substitution at Asp276.
  Antimicrob Agents Chemother, 42, 1323-1328.  
9756914 P.Swarén, L.Maveyraud, X.Raquet, S.Cabantous, C.Duez, J.D.Pédelacq, S.Mariotte-Boyer, L.Mourey, R.Labia, M.H.Nicolas-Chanoine, P.Nordmann, J.M.Frère, and J.P.Samama (1998).
X-ray analysis of the NMC-A beta-lactamase at 1.64-A resolution, a class A carbapenemase with broad substrate specificity.
  J Biol Chem, 273, 26714-26721.
PDB code: 1bue
  9660980 S.B.Vakulenko, B.Geryk, L.P.Kotra, S.Mobashery, and S.A.Lerner (1998).
Selection and characterization of beta-lactam-beta-lactamase inactivator-resistant mutants following PCR mutagenesis of the TEM-1 beta-lactamase gene.
  Antimicrob Agents Chemother, 42, 1542-1548.  
9521648 S.Banerjee, U.Pieper, G.Kapadia, L.K.Pannell, and O.Herzberg (1998).
Role of the omega-loop in the activity, substrate specificity, and structure of class A beta-lactamase.
  Biochemistry, 37, 3286-3296.
PDB code: 1ome
  9736556 Y.Sabbagh, E.Thériault, F.Sanschagrin, N.Voyer, T.Palzkill, and R.C.Levesque (1998).
Characterization of a PSE-4 mutant with different properties in relation to penicillanic acid sulfones: importance of residues 216 to 218 in class A beta-lactamases.
  Antimicrob Agents Chemother, 42, 2319-2325.  
  9021171 B.A.Rasmussen, and K.Bush (1997).
Carbapenem-hydrolyzing beta-lactamases.
  Antimicrob Agents Chemother, 41, 223-232.  
9108174 B.Hallet, D.J.Sherratt, and F.Hayes (1997).
Pentapeptide scanning mutagenesis: random insertion of a variable five amino acid cassette in a target protein.
  Nucleic Acids Res, 25, 1866-1867.  
9360991 C.Cantu, W.Huang, and T.Palzkill (1997).
Cephalosporin substrate specificity determinants of TEM-1 beta-lactamase.
  J Biol Chem, 272, 29144-29150.  
9360947 F.Hayes, B.Hallet, and Y.Cao (1997).
Insertion mutagenesis as a tool in the modification of protein function. Extended substrate specificity conferred by pentapeptide insertions in the omega-loop of TEM-1 beta-lactamase.
  J Biol Chem, 272, 28833-28836.  
9016577 F.Lefèvre, M.H.Rémy, and J.M.Masson (1997).
Alanine-stretch scanning mutagenesis: a simple and efficient method to probe protein structure and function.
  Nucleic Acids Res, 25, 447-448.  
  9244263 F.Lefèvre, M.H.Rémy, and J.M.Masson (1997).
Topographical and functional investigation of Escherichia coli penicillin-binding protein 1b by alanine stretch scanning mutagenesis.
  J Bacteriol, 179, 4761-4767.  
  9371336 M.Perilli, A.Felici, N.Franceschini, A.De Santis, L.Pagani, F.Luzzaro, A.Oratore, G.M.Rossolini, J.R.Knox, and G.Amicosante (1997).
Characterization of a new TEM-derived beta-lactamase produced in a Serratia marcescens strain.
  Antimicrob Agents Chemother, 41, 2374-2382.  
9283075 S.Banerjee, N.Shigematsu, L.K.Pannell, S.Ruvinov, J.Orban, F.Schwarz, and O.Herzberg (1997).
Probing the non-proline cis peptide bond in beta-lactamase from Staphylococcus aureus PC1 by the replacement Asn136 --> Ala.
  Biochemistry, 36, 10857-10866.  
  9371340 S.Trépanier, A.Prince, and A.Huletsky (1997).
Characterization of the penA and penR genes of Burkholderia cepacia 249 which encode the chromosomal class A penicillinase and its LysR-type transcriptional regulator.
  Antimicrob Agents Chemother, 41, 2399-2405.  
9238058 W.Huang, and T.Palzkill (1997).
A natural polymorphism in beta-lactamase is a global suppressor.
  Proc Natl Acad Sci U S A, 94, 8801-8806.  
9037711 X.Raquet, J.Lamotte-Brasseur, F.Bouillenne, and J.M.Frère (1997).
A disulfide bridge near the active site of carbapenem-hydrolyzing class A beta-lactamases might explain their unusual substrate profile.
  Proteins, 27, 47-58.  
18629936 A.Freeman, S.Abramov, and G.Georgiou (1996).
Fixation and stabilization of Escherichia coli cells displaying genetically engineered cell surface proteins.
  Biotechnol Bioeng, 52, 625-630.  
8798421 C.Cantu, W.Huang, and T.Palzkill (1996).
Selection and characterization of amino acid substitutions at residues 237-240 of TEM-1 beta-lactamase with altered substrate specificity for aztreonam and ceftazidime.
  J Biol Chem, 271, 22538-22545.  
8700829 C.Damblon, X.Raquet, L.Y.Lian, J.Lamotte-Brasseur, E.Fonze, P.Charlier, G.C.Roberts, and J.M.Frère (1996).
The catalytic mechanism of beta-lactamases: NMR titration of an active-site lysine residue of the TEM-1 enzyme.
  Proc Natl Acad Sci U S A, 93, 1747-1752.  
  9158770 F.Guo, G.I.Dmitrienko, A.J.Clarke, and T.Viswanatha (1996).
The role of the nonconserved residues at position 167 of class A beta-lactamases in susceptibility to mechanism-based inhibitors.
  Microb Drug Resist, 2, 261-268.  
  8606154 J.F.Petrosino, and T.Palzkill (1996).
Systematic mutagenesis of the active site omega loop of TEM-1 beta-lactamase.
  J Bacteriol, 178, 1821-1828.  
8987980 L.E.Zawadzke, C.C.Chen, S.Banerjee, Z.Li, S.Wäsch, G.Kapadia, J.Moult, and O.Herzberg (1996).
Elimination of the hydrolytic water molecule in a class A beta-lactamase mutant: crystal structure and kinetics.
  Biochemistry, 35, 16475-16482.
PDB codes: 1kge 1kgf
8756327 N.C.Strynadka, R.Martin, S.E.Jensen, M.Gold, and J.B.Jones (1996).
Structure-based design of a potent transition state analogue for TEM-1 beta-lactamase.
  Nat Struct Biol, 3, 688-695.  
8901555 P.Gervasoni, W.Staudenmann, P.James, P.Gehrig, and A.Plückthun (1996).
beta-Lactamase binds to GroEL in a conformation highly protected against hydrogen/deuterium exchange.
  Proc Natl Acad Sci U S A, 93, 12189-12194.  
  8891161 S.Farzaneh, E.B.Chaibi, J.Peduzzi, M.Barthelemy, R.Labia, J.Blazquez, and F.Baquero (1996).
Implication of Ile-69 and Thr-182 residues in kinetic characteristics of IRT-3 (TEM-32) beta-lactamase.
  Antimicrob Agents Chemother, 40, 2434-2436.  
7822311 H.Viadiu, J.Osuna, A.L.Fink, and X.Soberón (1995).
A new TEM beta-lactamase double mutant with broadened specificity reveals substrate-dependent functional interactions.
  J Biol Chem, 270, 781-787.  
7629142 I.Saves, O.Burlet-Schiltz, P.Swarén, F.Lefèvre, J.M.Masson, J.C.Promé, and J.P.Samama (1995).
The asparagine to aspartic acid substitution at position 276 of TEM-35 and TEM-36 is involved in the beta-lactamase resistance to clavulanic acid.
  J Biol Chem, 270, 18240-18245.  
7822310 J.Osuna, H.Viadiu, A.L.Fink, and X.Soberón (1995).
Substitution of Asp for Asn at position 132 in the active site of TEM beta-lactamase. Activity toward different substrates and effects of neighboring residues.
  J Biol Chem, 270, 775-780.  
  8592985 J.R.Knox (1995).
Extended-spectrum and inhibitor-resistant TEM-type beta-lactamases: mutations, specificity, and three-dimensional structure.
  Antimicrob Agents Chemother, 39, 2593-2601.  
7873579 R.A.Bonomo, C.G.Dawes, J.R.Knox, and D.M.Shlaes (1995).
Complementary roles of mutations at positions 69 and 242 in a class A beta-lactamase.
  Biochim Biophys Acta, 1247, 113-120.  
  7486939 S.B.Vakulenko, M.Tóth, P.Taibi, S.Mobashery, and S.A.Lerner (1995).
Effects of Asp-179 mutations in TEMpUC19 beta-lactamase on susceptibility to beta-lactams.
  Antimicrob Agents Chemother, 39, 1878-1880.  
8539251 X.Raquet, M.Vanhove, J.Lamotte-Brasseur, S.Goussard, P.Courvalin, and J.M.Frère (1995).
Stability of TEM beta-lactamase mutants hydrolyzing third generation cephalosporins.
  Proteins, 23, 63-72.  
  8619581 Y.Ishii, A.Ohno, H.Taguchi, S.Imajo, M.Ishiguro, and H.Matsuzawa (1995).
Cloning and sequence of the gene encoding a cefotaxime-hydrolyzing class A beta-lactamase isolated from Escherichia coli.
  Antimicrob Agents Chemother, 39, 2269-2275.  
7850201 G.A.Jacoby (1994).
Extrachromosomal resistance in gram-negative organisms: the evolution of beta-lactamase.
  Trends Microbiol, 2, 357-360.  
  7703842 G.Georgiou, P.Valax, M.Ostermeier, and P.M.Horowitz (1994).
Folding and aggregation of TEM beta-lactamase: analogies with the formation of inclusion bodies in Escherichia coli.
  Protein Sci, 3, 1953-1960.  
7850204 J.M.Ghuysen (1994).
Molecular structures of penicillin-binding proteins and beta-lactamases.
  Trends Microbiol, 2, 372-380.  
8200509 M.Barthélémy, J.Péduzzi, D.Rowlands, G.Paul, G.Moreau, and R.Labia (1994).
Val-237 for Ala substitution in the TEM-2 beta-lactamase dramatically alters the catalytic efficiencies towards carbenicillin and ticarcillin.
  FEMS Microbiol Lett, 117, 333-339.  
7712290 P.M.Colman (1994).
Structure-based drug design.
  Curr Opin Struct Biol, 4, 868-874.  
8056282 T.Brun, J.Péduzzi, M.M.Caniça, G.Paul, P.Névot, M.Barthélémy, and R.Labia (1994).
Characterization and amino acid sequence of IRT-4, a novel TEM-type enzyme with a decreased susceptibility to beta-lactamase inhibitors.
  FEMS Microbiol Lett, 120, 111-117.  
8057847 T.Palzkill, Q.Q.Le, K.V.Venkatachalam, M.LaRocco, and H.Ocera (1994).
Evolution of antibiotic resistance: several different amino acid substitutions in an active site loop alter the substrate profile of beta-lactamase.
  Mol Microbiol, 12, 217-229.  
  7840555 W.Huang, Q.Q.Le, M.LaRocco, and T.Palzkill (1994).
Effect of threonine-to-methionine substitution at position 265 on structure and function of TEM-1 beta-lactamase.
  Antimicrob Agents Chemother, 38, 2266-2269.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.