PDBsum entry 1bcm

Go to PDB code: 
protein Protein-protein interface(s) links
Transposase PDB id
Protein chains
304 a.a. *
* Residue conservation analysis
PDB id:
Name: Transposase
Title: Bacteriophage mu transposase core domain with 2 monomers per asymmetric unit
Structure: Bacteriophage mu transposase. Chain: a, b. Synonym: mua domain ii. Engineered: yes
Source: Enterobacteria phage mu. Organism_taxid: 10677. Strain: wild type. Gene: mua (amino acids 248 - 574). Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Dimer (from PQS)
2.80Å     R-factor:   0.214     R-free:   0.276
Authors: P.A.Rice,K.Mizuuchi
Key ref: P.Rice and K.Mizuuchi (1995). Structure of the bacteriophage Mu transposase core: a common structural motif for DNA transposition and retroviral integration. Cell, 82, 209-220. PubMed id: 7628012 DOI: 10.1016/0092-8674(95)90308-9
26-May-95     Release date:   15-Oct-95    
Go to PROCHECK summary

Protein chains
Pfam   ArchSchema ?
P07636  (TRA_BPMU) -  DDE-recombinase A
663 a.a.
304 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Gene Ontology (GO) functional annotation 
  GO annot!
  Biological process     DNA integration   2 terms 
  Biochemical function     nucleic acid binding     3 terms  


DOI no: 10.1016/0092-8674(95)90308-9 Cell 82:209-220 (1995)
PubMed id: 7628012  
Structure of the bacteriophage Mu transposase core: a common structural motif for DNA transposition and retroviral integration.
P.Rice, K.Mizuuchi.
The crystal structure of the core domain of bacteriophage Mu transposase, MuA, has been determined at 2.4 A resolution. The first of two subdomains contains the active site and, despite very limited sequence homology, exhibits a striking similarity to the core domain of HIV-1 integrase, which carries out a similar set of biochemical reactions. It also exhibits more limited similarity to other nucleases, RNase H and RuvC. The second, a beta barrel, connects to the first subdomain through several contacts. Three independent determinations of the monomer structure from two crystal forms all show the active site held in a similar, apparently inactive configuration. The enzymatic activity of MuA is known to be activated by formation of a DNA-bound tetramer of the protein. We propose that the connections between the two subdomains may be involved in the cross-talk between the active site and the other domains of the transposase that controls the activity of the protein.

Literature references that cite this PDB file's key reference

  PubMed id Reference
23135398 S.P.Montaño, Y.Z.Pigli, and P.A.Rice (2012).
The Mu transpososome structure sheds light on DDE recombinase evolution.
  Nature, 491, 413-417.
PDB code: 4fcy
20854710 W.Yang (2011).
Nucleases: diversity of structure, function and mechanism.
  Q Rev Biophys, 44, 1.  
20067338 A.B.Hickman, M.Chandler, and F.Dyda (2010).
Integrating prokaryotes and eukaryotes: DNA transposases in light of structure.
  Crit Rev Biochem Mol Biol, 45, 50-69.  
20200253 A.Goulet, M.Pina, P.Redder, D.Prangishvili, L.Vera, J.Lichière, N.Leulliot, H.van Tilbeurgh, M.Ortiz-Lombardia, V.Campanacci, and C.Cambillau (2010).
ORF157 from the archaeal virus Acidianus filamentous virus 1 defines a new class of nuclease.
  J Virol, 84, 5025-5031.
PDB codes: 3ii2 3ii3 3ild 3ile
20842711 A.Sabogal, and D.C.Rio (2010).
A green fluorescent protein solubility screen in E. coli reveals domain boundaries of the GTP-binding domain in the P element transposase.
  Protein Sci, 19, 2210-2218.  
20615441 I.V.Nesmelova, and P.B.Hackett (2010).
DDE transposases: Structural similarity and diversity.
  Adv Drug Deliv Rev, 62, 1187-1195.  
20805464 M.Nadal, P.J.Mas, A.G.Blanco, C.Arnan, M.Solà, D.J.Hart, and M.Coll (2010).
Structure and inhibition of herpesvirus DNA packaging terminase nuclease domain.
  Proc Natl Acad Sci U S A, 107, 16078-16083.
PDB codes: 3n4p 3n4q
18841415 C.C.Chung, S.P.Hwang, and J.Chang (2009).
The Identification of Three Novel Genes Involved in the Rapid-Growth Regulation in a Marine Diatom, Skeletonema costatum.
  Mar Biotechnol (NY), 11, 356-367.  
19165139 M.Nowotny (2009).
Retroviral integrase superfamily: the structural perspective.
  EMBO Rep, 10, 144-151.  
19228197 T.Tadokoro, and S.Kanaya (2009).
Ribonuclease H: molecular diversities, substrate binding domains, and catalytic mechanism of the prokaryotic enzymes.
  FEBS J, 276, 1482-1493.  
19808934 Z.Hobaika, L.Zargarian, Y.Boulard, R.G.Maroun, O.Mauffret, and S.Fermandjian (2009).
Specificity of LTR DNA recognition by a peptide mimicking the HIV-1 integrase {alpha}4 helix.
  Nucleic Acids Res, 37, 7691-7700.  
18719126 C.T.Schweidenback, and T.A.Baker (2008).
Dissecting the roles of MuB in Mu transposition: ATP regulation of DNA binding is not essential for target delivery.
  Proc Natl Acad Sci U S A, 105, 12101-12107.  
18215304 D.De Palmenaer, P.Siguier, and J.Mahillon (2008).
IS4 family goes genomic.
  BMC Evol Biol, 8, 18.  
19032786 D.Zhang, H.Xiong, J.Shan, X.Xia, and V.L.Trudeau (2008).
Functional insight into Maelstrom in the germline piRNA pathway: a unique domain homologous to the DnaQ-H 3'-5' exonuclease, its lineage-specific expansion/loss and evolutionarily active site switch.
  Biol Direct, 3, 48.  
18694512 J.H.Keith, C.A.Schaeper, T.S.Fraser, and M.J.Fraser (2008).
Mutational analysis of highly conserved aspartate residues essential to the catalytic core of the piggyBac transposase.
  BMC Mol Biol, 9, 73.  
18790806 V.A.Klenchin, A.Czyz, I.Y.Goryshin, R.Gradman, S.Lovell, I.Rayment, and W.S.Reznikoff (2008).
Phosphate coordination and movement of DNA in the Tn5 synaptic complex: role of the (R)YREK motif.
  Nucleic Acids Res, 36, 5855-5862.
PDB code: 3ecp
17988683 K.M.Lemberg, C.T.Schweidenback, and T.A.Baker (2007).
The dynamic Mu transpososome: MuB activation prevents disintegration.
  J Mol Biol, 374, 1158-1171.  
17259219 S.Baranova, F.V.Tuzikov, O.D.Zakharova, N.A.Tuzikova, C.Calmels, S.Litvak, L.Tarrago-Litvak, V.Parissi, and G.A.Nevinsky (2007).
Small-angle X-ray characterization of the nucleoprotein complexes resulting from DNA-induced oligomerization of HIV-1 integrase.
  Nucleic Acids Res, 35, 975-987.  
16757579 A.H.Saariaho, and H.Savilahti (2006).
Characteristics of MuA transposase-catalyzed processing of model transposon end DNA hairpin substrates.
  Nucleic Acids Res, 34, 3139-3149.  
16912289 D.Lim, G.G.Gregorio, C.Bingman, E.Martinez-Hackert, W.A.Hendrickson, and S.P.Goff (2006).
Crystal structure of the moloney murine leukemia virus RNase H domain.
  J Virol, 80, 8379-8389.
PDB code: 2hb5
16650002 H.Chon, T.Tadokoro, N.Ohtani, Y.Koga, K.Takano, and S.Kanaya (2006).
Identification of RNase HII from psychrotrophic bacterium, Shewanella sp. SIB1 as a high-activity type RNase H.
  FEBS J, 273, 2264-2275.  
16340015 H.H.Lee, J.Y.Yoon, H.S.Kim, J.Y.Kang, K.H.Kim, D.J.Kim, J.Y.Ha, B.Mikami, H.J.Yoon, and S.W.Suh (2006).
Crystal structure of a metal ion-bound IS200 transposase.
  J Biol Chem, 281, 4261-4266.
PDB codes: 2f4f 2f5g
16511570 J.M.Richardson, A.Dawson, N.O'Hagan, P.Taylor, D.J.Finnegan, and M.D.Walkinshaw (2006).
Mechanism of Mos1 transposition: insights from structural analysis.
  EMBO J, 25, 1324-1334.
PDB code: 2f7t
17130173 M.M.Babu, L.M.Iyer, S.Balaji, and L.Aravind (2006).
The natural history of the WRKY-GCM1 zinc fingers and the relationship between transcription factors and transposons.
  Nucleic Acids Res, 34, 6505-6520.  
15637158 A.T.Phan, V.Kuryavyi, J.B.Ma, A.Faure, M.L.Andréola, and D.J.Patel (2005).
An interlocked dimeric parallel-stranded DNA quadruplex: a potent inhibitor of HIV-1 integrase.
  Proc Natl Acad Sci U S A, 102, 634-639.
PDB code: 1y8d
16046622 B.M.Burton, and T.A.Baker (2005).
Remodeling protein complexes: insights from the AAA+ unfoldase ClpX and Mu transposase.
  Protein Sci, 14, 1945-1954.  
16209952 D.R.Ronning, C.Guynet, B.Ton-Hoang, Z.N.Perez, R.Ghirlando, M.Chandler, and F.Dyda (2005).
Active site sharing and subterminal hairpin recognition in a new class of DNA transposases.
  Mol Cell, 20, 143-154.
PDB codes: 2a6m 2a6o
15774720 J.F.Yuan, D.R.Beniac, G.Chaconas, and F.P.Ottensmeyer (2005).
3D reconstruction of the Mu transposase and the Type 1 transpososome: a structural framework for Mu DNA transposition.
  Genes Dev, 19, 840-852.  
  16511103 Z.N.Perez, P.Musingarimi, N.L.Craig, F.Dyda, and A.B.Hickman (2005).
Purification, crystallization and preliminary crystallographic analysis of the Hermes transposase.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 61, 587-590.  
16165328 ┼.ü.Knizewski, and K.Ginalski (2005).
Bacillus subtilis YkuK protein is distantly related to RNase H.
  FEMS Microbiol Lett, 251, 341-346.  
15201394 B.Ason, and W.S.Reznikoff (2004).
A high-throughput assay for Tn5 Tnp-induced DNA cleavage.
  Nucleic Acids Res, 32, e83.  
15284453 J.J.Song, S.K.Smith, G.J.Hannon, and L.Joshua-Tor (2004).
Crystal structure of Argonaute and its implications for RISC slicer activity.
  Science, 305, 1434-1437.
PDB code: 1u04
15103153 J.M.Richardson, L.Zhang, S.Marcos, D.J.Finnegan, M.M.Harding, P.Taylor, and M.D.Walkinshaw (2004).
Expression, purification and preliminary crystallographic studies of a single-point mutant of Mos1 mariner transposase.
  Acta Crystallogr D Biol Crystallogr, 60, 962-964.  
15102449 M.Steiniger-White, I.Rayment, and W.S.Reznikoff (2004).
Structure/function insights into Tn5 transposition.
  Curr Opin Struct Biol, 14, 50-57.
PDB code: 1mus
15282550 T.K.Au, S.Pathania, and R.M.Harshey (2004).
True reversal of Mu integration.
  EMBO J, 23, 3408-3420.  
14585843 T.L.Williams, and T.A.Baker (2004).
Reorganization of the Mu transpososome active sites during a cooperative transition between DNA cleavage and joining.
  J Biol Chem, 279, 5135-5145.  
15242410 V.L.Brandt, and D.B.Roth (2004).
V(D)J recombination: how to tame a transposase.
  Immunol Rev, 200, 249-260.  
12770828 B.M.Burton, and T.A.Baker (2003).
Mu transpososome architecture ensures that unfolding by ClpX or proteolysis by ClpXP remodels but does not destroy the complex.
  Chem Biol, 10, 463-472.  
12888514 I.Lee, and R.M.Harshey (2003).
Patterns of sequence conservation at termini of long terminal repeat (LTR) retrotransposons and DNA transposons in the human genome: lessons from phage Mu.
  Nucleic Acids Res, 31, 4531-4540.  
14682279 M.J.Curcio, and K.M.Derbyshire (2003).
The outs and ins of transposition: from mu to kangaroo.
  Nat Rev Mol Cell Biol, 4, 865-877.  
14661176 N.Loewen, D.A.Leske, Y.Chen, W.L.Teo, D.T.Saenz, M.Peretz, J.M.Holmes, and E.M.Poeschla (2003).
Comparison of wild-type and class I integrase mutant-FIV vectors in retina demonstrates sustained expression of integrated transgenes in retinal pigment epithelium.
  J Gene Med, 5, 1009-1017.  
12606583 P.Rao, W.Yuan, and R.M.Krug (2003).
Crucial role of CA cleavage sites in the cap-snatching mechanism for initiating viral mRNA synthesis.
  EMBO J, 22, 1188-1198.  
12465033 A.Krakowiak, A.Owczarek, M.Koziołkiewicz, and W.J.Stec (2002).
Stereochemical course of Escherichia coli RNase H.
  Chembiochem, 3, 1242-1250.  
11739723 C.L.Mundy, N.Patenge, A.G.Matthews, and M.A.Oettinger (2002).
Assembly of the RAG1/RAG2 synaptic complex.
  Mol Cell Biol, 22, 69-77.  
11967383 M.Dlaki─ç (2002).
A model of the replication fork blocking protein Fob1p based on the catalytic core domain of retroviral integrases.
  Protein Sci, 11, 1274-1277.  
12399484 S.Ohta, K.Tsuchida, S.Choi, Y.Sekine, Y.Shiga, and E.Ohtsubo (2002).
Presence of a characteristic D-D-E motif in IS1 transposase.
  J Bacteriol, 184, 6146-6154.  
12191481 W.Kagawa, H.Kurumizaka, R.Ishitani, S.Fukai, O.Nureki, T.Shibata, and S.Yokoyama (2002).
Crystal structure of the homologous-pairing domain from the human Rad52 recombinase in the undecameric form.
  Mol Cell, 10, 359-371.
PDB code: 1kn0
11274461 A.Muroya, D.Tsuchiya, M.Ishikawa, M.Haruki, M.Morikawa, S.Kanaya, and K.Morikawa (2001).
Catalytic center of an archaeal type 2 ribonuclease H as revealed by X-ray crystallographic and mutational analyses.
  Protein Sci, 10, 707-714.
PDB code: 1io2
11169105 D.M.Tobiason, J.M.Buchner, W.H.Thiel, K.M.Gernert, and A.C.Karls (2001).
Conserved amino acid motifs from the novel Piv/MooV family of transposases and site-specific recombinases are required for catalysis of DNA inversion by Piv.
  Mol Microbiol, 39, 641-651.  
11743009 J.Y.Wang, H.Ling, W.Yang, and R.Craigie (2001).
Structure of a two-domain fragment of HIV-1 integrase: implications for domain organization in the intact protein.
  EMBO J, 20, 7333-7343.
PDB code: 1k6y
11160934 M.Kamali-Moghaddam, and L.Sundström (2001).
Arrayed transposase-binding sequences on the ends of transposon Tn5090/Tn402.
  Nucleic Acids Res, 29, 1005-1011.  
11447129 P.Crellin, and R.Chalmers (2001).
Protein-DNA contacts and conformational changes in the Tn10 transpososome during assembly and activation for cleavage.
  EMBO J, 20, 3882-3891.  
11359901 W.Li, F.C.Chang, and S.Desiderio (2001).
Rag-1 mutations associated with B-cell-negative scid dissociate the nicking and transesterification steps of V(D)J recombination.
  Mol Cell Biol, 21, 3935-3946.  
11343799 Y.Tsunaka, M.Haruki, M.Morikawa, and S.Kanaya (2001).
Strong nucleic acid binding to the Escherichia coli RNase HI mutant with two arginine residues at the active site.
  Biochim Biophys Acta, 1547, 135-142.  
10911996 A.B.Hickman, Y.Li, S.V.Mathew, E.W.May, N.L.Craig, and F.Dyda (2000).
Unexpected structural diversity in DNA recombination: the restriction endonuclease connection.
  Mol Cell, 5, 1025-1034.
PDB code: 1f1z
10847684 A.K.Kennedy, D.B.Haniford, and K.Mizuuchi (2000).
Single active site catalysis of the successive phosphoryl transfer steps by DNA transposases: insights from phosphorothioate stereoselectivity.
  Cell, 101, 295-305.  
10944205 D.M.Lilley, and M.F.White (2000).
Resolving the relationships of resolving enzymes.
  Proc Natl Acad Sci U S A, 97, 9351-9353.  
10884228 D.R.Davies, I.Y.Goryshin, W.S.Reznikoff, and I.Rayment (2000).
Three-dimensional structure of the Tn5 synaptic complex transposition intermediate.
  Science, 289, 77-85.
PDB codes: 1f3i 1muh
10880457 F.Lu, and N.L.Craig (2000).
Isolation and characterization of Tn7 transposase gain-of-function mutants: a model for transposase activation.
  EMBO J, 19, 3446-3457.  
10982859 L.Aravind, K.S.Makarova, and E.V.Koonin (2000).
SURVEY AND SUMMARY: holliday junction resolvases and related nucleases: identification of new families, phyletic distribution and evolutionary trajectories.
  Nucleic Acids Res, 28, 3417-3432.  
11060014 L.H.Hung, G.Chaconas, and G.S.Shaw (2000).
The solution structure of the C-terminal domain of the Mu B transposition protein.
  EMBO J, 19, 5625-5634.
PDB code: 1f6v
10997908 L.Lai, H.Yokota, L.W.Hung, R.Kim, and S.H.Kim (2000).
Crystal structure of archaeal RNase HII: a homologue of human major RNase H.
  Structure, 8, 897-904.
PDB code: 1eke
11029656 M.Yoshikawa, H.Iwasaki, K.Kinoshita, and H.Shinagawa (2000).
Two basic residues, Lys-107 and Lys-118, of RuvC resolvase are involved in critical contacts with the Holliday junction for its resolution.
  Genes Cells, 5, 803-813.  
10678172 S.D.Fugmann, I.J.Villey, L.M.Ptaszek, and D.G.Schatz (2000).
Identification of two catalytic residues in RAG1 that define a single active site within the RAG1/RAG2 protein complex.
  Mol Cell, 5, 97.  
11120587 S.Mariconda, S.Y.Namgoong, K.H.Yoon, H.Jiang, and R.M.Harshey (2000).
Domain III function of Mu transposase analysed by directed placement of subunits within the transpososome.
  J Biosci, 25, 347-360.  
10908658 T.A.Naumann, and W.S.Reznikoff (2000).
Trans catalysis in Tn5 transposition.
  Proc Natl Acad Sci U S A, 97, 8944-8949.  
  10516052 D.K.Gavin, S.M.Young, W.Xiao, B.Temple, C.R.Abernathy, D.J.Pereira, N.Muzyczka, and R.J.Samulski (1999).
Charge-to-alanine mutagenesis of the adeno-associated virus type 2 Rep78/68 proteins yields temperature-sensitive and magnesium-dependent variants.
  J Virol, 73, 9433-9445.  
10207011 D.R.Davies, L.Mahnke Braam, W.S.Reznikoff, and I.Rayment (1999).
The three-dimensional structure of a Tn5 transposase-related protein determined to 2.9-A resolution.
  J Biol Chem, 274, 11904-11913.
PDB code: 1b7e
10413462 J.Greenwald, V.Le, S.L.Butler, F.D.Bushman, and S.Choe (1999).
The mobility of an HIV-1 integrase active site loop is correlated with catalytic activity.
  Biochemistry, 38, 8892-8898.
PDB codes: 1b92 1b9d 1b9f
10547692 L.Haren, B.Ton-Hoang, and M.Chandler (1999).
Integrating DNA: transposases and retroviral integrases.
  Annu Rev Microbiol, 53, 245-281.  
10601032 M.A.Landree, J.A.Wibbenmeyer, and D.B.Roth (1999).
Mutational analysis of RAG1 and RAG2 identifies three catalytic amino acids in RAG1 critical for both cleavage steps of V(D)J recombination.
  Genes Dev, 13, 3059-3069.  
10541558 T.L.Williams, E.L.Jackson, A.Carritte, and T.A.Baker (1999).
Organization and dynamics of the Mu transpososome: recombination by communication between two active sites.
  Genes Dev, 13, 2725-2737.  
9636151 A.E.Leschziner, T.J.Griffin, and N.D.Grindley (1998).
Tn552 transposase catalyzes concerted strand transfer in vitro.
  Proc Natl Acad Sci U S A, 95, 7345-7350.  
9813045 E.Krementsova, M.J.Giffin, D.Pincus, and T.A.Baker (1998).
Mutational analysis of the Mu transposase. Contributions of two distinct regions of domain II to recombination.
  J Biol Chem, 273, 31358-31365.  
9524133 E.L.Beall, and D.C.Rio (1998).
Transposase makes critical contacts with, and is stimulated by, single-stranded DNA at the P element termini in vitro.
  EMBO J, 17, 2122-2136.  
9852071 J.L.Keck, E.R.Goedken, and S.Marqusee (1998).
Activation/attenuation model for RNase H. A one-metal mechanism with second-metal inhibition.
  J Biol Chem, 273, 34128-34133.  
9857205 J.M.Ryter, and S.C.Schultz (1998).
Molecular basis of double-stranded RNA-protein interactions: structure of a dsRNA-binding domain complexed with dsRNA.
  EMBO J, 17, 7505-7513.
PDB code: 1di2
  9729608 J.Mahillon, and M.Chandler (1998).
Insertion sequences.
  Microbiol Mol Biol Rev, 62, 725-774.  
9813108 K.Ichiyanagi, H.Iwasaki, T.Hishida, and H.Shinagawa (1998).
Mutational analysis on structure-function relationship of a holliday junction specific endonuclease RuvC.
  Genes Cells, 3, 575-586.  
9649447 S.Y.Namgoong, and R.M.Harshey (1998).
The same two monomers within a MuA tetramer provide the DDE domains for the strand cleavage and strand transfer steps of transposition.
  EMBO J, 17, 3775-3785.  
9578550 T.S.Heuer, and P.O.Brown (1998).
Photo-cross-linking studies suggest a model for the architecture of an active human immunodeficiency virus type 1 integrase-DNA complex.
  Biochemistry, 37, 6667-6678.  
9689049 Y.Goldgur, F.Dyda, A.B.Hickman, T.M.Jenkins, R.Craigie, and D.R.Davies (1998).
Three new structures of the core domain of HIV-1 integrase: an active site that binds magnesium.
  Proc Natl Acad Sci U S A, 95, 9150-9154.
PDB codes: 1bis 1biu 1biz
  9094622 A.Engelman, Y.Liu, H.Chen, M.Farzan, and F.Dyda (1997).
Structure-based mutagenesis of the catalytic domain of human immunodeficiency virus type 1 integrase.
  J Virol, 71, 3507-3514.  
9348666 B.Hallet, and D.J.Sherratt (1997).
Transposition and site-specific recombination: adapting DNA cut-and-paste mechanisms to a variety of genetic rearrangements.
  FEMS Microbiol Rev, 21, 157-178.  
9312061 G.van Pouderoyen, R.F.Ketting, A.Perrakis, R.H.Plasterk, and T.K.Sixma (1997).
Crystal structure of the specific DNA-binding domain of Tc3 transposase of C.elegans in complex with transposon DNA.
  EMBO J, 16, 6044-6054.
PDB code: 1tc3
9082984 H.J.Kwon, R.Tirumalai, A.Landy, and T.Ellenberger (1997).
Flexibility in DNA recombination: structure of the lambda integrase catalytic core.
  Science, 276, 126-131.
PDB code: 1ae9
9351179 J.D.Pollack (1997).
Mycoplasma genes: a case for reflective annotation.
  Trends Microbiol, 5, 413-419.  
9325310 J.L.Gerton, and P.O.Brown (1997).
The core domain of HIV-1 integrase recognizes key features of its DNA substrates.
  J Biol Chem, 272, 25809-25815.  
9161051 M.Thomas, and L.Brady (1997).
HIV integrase: a target for AIDS therapeutics.
  Trends Biotechnol, 15, 167-172.  
9242914 N.L.Craig (1997).
Target site selection in transposition.
  Annu Rev Biochem, 66, 437-474.  
9336470 Q.M.Eastman, and D.G.Schatz (1997).
Nicking is asynchronous and stimulated by synapsis in 12/23 rule-regulated V(D)J cleavage.
  Nucleic Acids Res, 25, 4370-4378.  
9442895 S.C.West (1997).
Processing of recombination intermediates by the RuvABC proteins.
  Annu Rev Genet, 31, 213-244.  
9405381 S.Schumacher, R.T.Clubb, M.Cai, K.Mizuuchi, G.M.Clore, and A.M.Gronenborn (1997).
Solution structure of the Mu end DNA-binding ibeta subdomain of phage Mu transposase: modular DNA recognition by two tethered domains.
  EMBO J, 16, 7532-7541.
PDB codes: 2ezk 2ezl
9305653 T.M.Fletcher, M.A.Soares, S.McPhearson, H.Hui, M.Wiskerchen, M.A.Muesing, G.M.Shaw, A.D.Leavitt, J.D.Boeke, and B.H.Hahn (1997).
Complementation of integrase function in HIV-1 virions.
  EMBO J, 16, 5123-5138.  
8901518 A.Mazumder, N.Neamati, J.O.Ojwang, S.Sunder, R.F.Rando, and Y.Pommier (1996).
Inhibition of the human immunodeficiency virus type 1 integrase by guanosine quartet structures.
  Biochemistry, 35, 13762-13771.  
  8913752 A.R.Lohe, D.T.Sullivan, and D.L.Hartl (1996).
Subunit interactions in the mariner transposase.
  Genetics, 144, 1087-1095.  
  8970947 B.Taddeo, F.Carlini, P.Verani, and A.Engelman (1996).
Reversion of a human immunodeficiency virus type 1 integrase mutant at a second site restores enzyme function and virus infectivity.
  J Virol, 70, 8277-8284.  
8856082 F.Sourgen, R.G.Maroun, V.Frère, M.Bouziane, C.Auclair, F.Troalen, and S.Fermandjian (1996).
A synthetic peptide from the human immunodeficiency virus type-1 integrase exhibits coiled-coil properties and interferes with the in vitro integration activity of the enzyme. Correlated biochemical and spectroscopic results.
  Eur J Biochem, 240, 765-773.  
8805516 G.Bujacz, M.Jaskólski, J.Alexandratos, A.Wlodawer, G.Merkel, R.A.Katz, and A.M.Skalka (1996).
The catalytic domain of avian sarcoma virus integrase: conformation of the active-site residues in the presence of divalent cations.
  Structure, 4, 89-96.
PDB codes: 1vsd 1vse 1vsf
8805293 G.Chaconas, B.D.Lavoie, and M.A.Watson (1996).
DNA transposition: jumping gene machine, some assembly required.
  Curr Biol, 6, 817-820.  
8612278 H.Aldaz, E.Schuster, and T.A.Baker (1996).
The interwoven architecture of the Mu transposase couples DNA synapsis to catalysis.
  Cell, 85, 257-269.  
8612279 H.Savilahti, and K.Mizuuchi (1996).
Mu transpositional recombination: donor DNA cleavage and strand transfer in trans by the Mu transposase.
  Cell, 85, 271-280.  
8882584 H.Shinagawa, and H.Iwasaki (1996).
Processing the holliday junction in homologous recombination.
  Trends Biochem Sci, 21, 107-111.  
8702660 M.D.Andrake, and A.M.Skalka (1996).
Retroviral integrase, putting the pieces together.
  J Biol Chem, 271, 19633-19636.  
  8665862 M.S.Junop, and D.B.Haniford (1996).
Multiple roles for divalent metal ions in DNA transposition: distinct stages of Tn10 transposition have different Mg2+ requirements.
  EMBO J, 15, 2547-2555.  
8696976 P.Rice, R.Craigie, and D.R.Davies (1996).
Retroviral integrases and their cousins.
  Curr Opin Struct Biol, 6, 76-83.  
  8947057 R.J.Sarnovsky, E.W.May, and N.L.Craig (1996).
The Tn7 transposase is a heteromeric complex in which DNA breakage and joining activities are distributed between different gene products.
  EMBO J, 15, 6348-6361.  
8955106 S.Kanaya, M.Oobatake, and Y.Liu (1996).
Thermal stability of Escherichia coli ribonuclease HI and its active site mutants in the presence and absence of the Mg2+ ion. Proposal of a novel catalytic role for Glu48.
  J Biol Chem, 271, 32729-32736.  
  7588618 H.Savilahti, P.A.Rice, and K.Mizuuchi (1995).
The phage Mu transpososome core: DNA requirements for assembly and function.
  EMBO J, 14, 4893-4903.  
8521467 M.Mizuuchi, T.A.Baker, and K.Mizuuchi (1995).
Assembly of phage Mu transpososomes: cooperative transitions assisted by protein and DNA scaffolds.
  Cell, 83, 375-385.  
8548793 N.D.Grindley, and A.E.Leschziner (1995).
DNA transposition: from a black box to a color monitor.
  Cell, 83, 1063-1066.  
8524782 R.A.Puras Lutzke, N.A.Eppens, P.A.Weber, R.A.Houghten, and R.H.Plasterk (1995).
Identification of a hexapeptide inhibitor of the human immunodeficiency virus integrase protein by using a combinatorial chemical library.
  Proc Natl Acad Sci U S A, 92, 11456-11460.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.