PDBsum entry 1amx

Go to PDB code: 
protein links
Bacterial adhesin PDB id
Protein chain
150 a.a. *
Waters ×372
* Residue conservation analysis
PDB id:
Name: Bacterial adhesin
Title: Collagen-binding domain from a staphylococcus aureus adhesin
Structure: Collagen adhesin. Chain: a. Fragment: cbd (151 - 318). Synonym: cbd19. Engineered: yes. Other_details: a 19-kda fragment of the collagen-binding adhesin from a staphylococcus aureus (his-tag + residues 151-318)
Source: Staphylococcus aureus. Organism_taxid: 1280. Gene: cna. Expressed in: escherichia coli. Expression_system_taxid: 562.
2.00Å     R-factor:   0.200     R-free:   0.249
Authors: J.Symersky,S.Narayana
Key ref: J.Symersky et al. (1997). Structure of the collagen-binding domain from a Staphylococcus aureus adhesin. Nat Struct Biol, 4, 833-838. PubMed id: 9334749
19-Jun-97     Release date:   24-Jun-98    
Go to PROCHECK summary

Protein chain
Pfam   ArchSchema ?
Q53654  (CNA_STAAU) -  Collagen adhesin
1183 a.a.
150 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Gene Ontology (GO) functional annotation 
  GO annot!
  Biochemical function     collagen binding     1 term  


Nat Struct Biol 4:833-838 (1997)
PubMed id: 9334749  
Structure of the collagen-binding domain from a Staphylococcus aureus adhesin.
J.Symersky, J.M.Patti, M.Carson, K.House-Pompeo, M.Teale, D.Moore, L.Jin, A.Schneider, L.J.DeLucas, M.Höök, S.V.Narayana.
The crystal structure of the recombinant 19,000 M(r) binding domain from the Staphylococcus aureus collagen adhesin has been determined at 2 A resolution. The domain fold is a jelly-roll, composed of two antiparallel beta-sheets and two short alpha-helices. Triple-helical collagen model probes were used in a systematic docking search to identify the collagen-binding site. A groove on beta-sheet I exhibited the best surface complementarity to the collagen probes. This site partially overlaps with the peptide sequence previously shown to be critical for collagen binding. Recombinant proteins containing single amino acid mutations designed to disrupt the surface of the putative binding site exhibited significantly lower affinities for collagen. Here we present a structural perspective for the mode of collagen binding by a bacterial surface protein.

Literature references that cite this PDB file's key reference

  PubMed id Reference
21088778 H.M.Sanders, M.Iafisco, E.M.Pouget, P.H.Bomans, F.Nudelman, G.Falini, With, M.Merkx, G.J.Strijkers, K.Nicolay, and N.A.Sommerdijk (2011).
The binding of CNA35 contrast agents to collagen fibrils.
  Chem Commun (Camb), 47, 1503-1505.  
21404359 K.Vengadesan, and S.V.Narayana (2011).
Structural biology of gram-positive bacterial adhesins.
  Protein Sci, 20, 759-772.  
21333654 K.Vengadesan, X.Ma, P.Dwivedi, H.Ton-That, and S.V.Narayana (2011).
A model for group B Streptococcus pilus type 1: the structure of a 35-kDa C-terminal fragment of the major pilin GBS80.
  J Mol Biol, 407, 731-743.
PDB codes: 3pf2 3pg2
20550675 A.J.McCarthy, and J.A.Lindsay (2010).
Genetic variation in Staphylococcus aureus surface and immune evasion genes is lineage associated: implications for vaccine design and host-pathogen interactions.
  BMC Microbiol, 10, 173.  
20138058 N.Forsgren, R.J.Lamont, and K.Persson (2010).
Two intramolecular isopeptide bonds are identified in the crystal structure of the Streptococcus gordonii SspB C-terminal domain.
  J Mol Biol, 397, 740-751.
PDB codes: 2woy 2wqs 2wza
19497855 H.J.Kang, and E.N.Baker (2009).
Intramolecular isopeptide bonds give thermodynamic and proteolytic stability to the major pilin protein of Streptococcus pyogenes.
  J Biol Chem, 284, 20729-20737.
PDB codes: 3gld 3gle
19226623 H.J.Kang, M.Middleditch, T.Proft, and E.N.Baker (2009).
Isopeptide bonds in bacterial pili and their characterization by X-ray crystallography and mass spectrometry.
  Biopolymers, 91, 1126-1134.  
19805181 H.J.Kang, N.G.Paterson, A.H.Gaspar, H.Ton-That, and E.N.Baker (2009).
The Corynebacterium diphtheriae shaft pilin SpaA is built of tandem Ig-like modules with stabilizing isopeptide and disulfide bonds.
  Proc Natl Acad Sci U S A, 106, 16967-16971.
PDB codes: 3hr6 3htl
19903875 J.M.Budzik, C.B.Poor, K.F.Faull, J.P.Whitelegge, C.He, and O.Schneewind (2009).
Intramolecular amide bonds stabilize pili on the surface of bacilli.
  Proc Natl Acad Sci U S A, 106, 19992-19997.
PDB code: 3kpt
19329633 L.J.Gourlay, I.Santi, A.Pezzicoli, G.Grandi, M.Soriani, and M.Bolognesi (2009).
Group B streptococcus pullulanase crystal structures in the context of a novel strategy for vaccine development.
  J Bacteriol, 191, 3544-3552.
PDB codes: 3faw 3fax
18467342 J.C.Leo, H.Elovaara, B.Brodsky, M.Skurnik, and A.Goldman (2008).
The Yersinia adhesin YadA binds to a collagenous triple-helical conformation but without sequence specificity.
  Protein Eng Des Sel, 21, 475-484.  
17392280 Q.Liu, K.Ponnuraj, Y.Xu, V.K.Ganesh, J.Sillanpää, B.E.Murray, S.V.Narayana, and M.Höök (2007).
The Enterococcus faecalis MSCRAMM ACE binds its ligand by the Collagen Hug model.
  J Biol Chem, 282, 19629-19637.
PDB code: 2z1p
17438036 S.R.Nallapareddy, J.Sillanpää, V.K.Ganesh, M.Höök, and B.E.Murray (2007).
Inhibition of Enterococcus faecium adherence to collagen by antibodies against high-affinity binding subdomains of Acm.
  Infect Immun, 75, 3192-3196.  
17697995 V.Krishnan, A.H.Gaspar, N.Ye, A.Mandlik, H.Ton-That, and S.V.Narayana (2007).
An IgG-like domain in the minor pilin GBS52 of Streptococcus agalactiae mediates lung epithelial cell adhesion.
  Structure, 15, 893-903.
PDB codes: 2pz4 3phs
16788202 T.L.Bannam, W.L.Teng, D.Bulach, D.Lyras, and J.I.Rood (2006).
Functional identification of conjugation and replication regions of the tetracycline resistance plasmid pCW3 from Clostridium perfringens.
  J Bacteriol, 188, 4942-4951.  
16952949 Y.Itoi, M.Horinaka, Y.Tsujimoto, H.Matsui, and K.Watanabe (2006).
Characteristic features in the structure and collagen-binding ability of a thermophilic collagenolytic protease from the thermophile Geobacillus collagenovorans MO-1.
  J Bacteriol, 188, 6572-6579.  
16040603 B.Kreikemeyer, M.Nakata, S.Oehmcke, C.Gschwendtner, J.Normann, and A.Podbielski (2005).
Streptococcus pyogenes collagen type I-binding Cpa surface protein. Expression profile, binding characteristics, biological functions, and potential clinical impact.
  J Biol Chem, 280, 33228-33239.  
16362049 Y.Zong, Y.Xu, X.Liang, D.R.Keene, A.Höök, S.Gurusiddappa, M.Höök, and S.V.Narayana (2005).
A 'Collagen Hug' model for Staphylococcus aureus CNA binding to collagen.
  EMBO J, 24, 4224-4236.
PDB codes: 2f68 2f6a
15102780 D.Comfort, and R.T.Clubb (2004).
A comparative genome analysis identifies distinct sorting pathways in gram-positive bacteria.
  Infect Immun, 72, 2710-2722.  
14765110 H.Nummelin, M.C.Merckel, J.C.Leo, H.Lankinen, M.Skurnik, and A.Goldman (2004).
The Yersinia adhesin YadA collagen-binding domain structure is a novel left-handed parallel beta-roll.
  EMBO J, 23, 701-711.
PDB code: 1p9h
15093830 H.Remaut, and G.Waksman (2004).
Structural biology of bacterial pathogenesis.
  Curr Opin Struct Biol, 14, 161-170.  
15136580 R.Abdulhussein, C.McFadden, P.Fuentes-Prior, and W.F.Vogel (2004).
Exploring the collagen-binding site of the DDR1 tyrosine kinase receptor.
  J Biol Chem, 279, 31462-31470.  
15456768 Y.Xu, X.Liang, Y.Chen, T.M.Koehler, and M.Höök (2004).
Identification and biochemical characterization of two novel collagen binding MSCRAMMs of Bacillus anthracis.
  J Biol Chem, 279, 51760-51768.  
12611880 B.Leitinger (2003).
Molecular analysis of collagen binding by the human discoidin domain receptors, DDR1 and DDR2. Identification of collagen binding sites in DDR2.
  J Biol Chem, 278, 16761-16769.  
14617182 C.Heddle, A.H.Nobbs, N.S.Jakubovics, M.Gal, J.P.Mansell, D.Dymock, and H.F.Jenkinson (2003).
Host collagen signal induces antigen I/II adhesin and invasin gene expression in oral Streptococcus gordonii.
  Mol Microbiol, 50, 597-607.  
12682007 J.J.Wilson, O.Matsushita, A.Okabe, and J.Sakon (2003).
A bacterial collagen-binding domain with novel calcium-binding motif controls domain orientation.
  EMBO J, 22, 1743-1752.
PDB codes: 1nqd 1nqj
12874314 P.A.Esmay, S.J.Billington, M.A.Link, J.G.Songer, and B.H.Jost (2003).
The Arcanobacterium pyogenes collagen-binding protein, CbpA, promotes adhesion to host cells.
  Infect Immun, 71, 4368-4374.  
12622825 S.R.Nallapareddy, G.M.Weinstock, and B.E.Murray (2003).
Clinical isolates of Enterococcus faecium exhibit strain-specific collagen binding mediated by Acm, a new member of the MSCRAMM family.
  Mol Microbiol, 47, 1733-1747.  
12700253 Y.Shimoji, Y.Ogawa, M.Osaki, H.Kabeya, S.Maruyama, T.Mikami, and T.Sekizaki (2003).
Adhesive surface proteins of Erysipelothrix rhusiopathiae bind to polystyrene, fibronectin, and type I and IV collagens.
  J Bacteriol, 185, 2739-2748.  
12485987 C.C.Deivanayagam, E.R.Wann, W.Chen, M.Carson, K.R.Rajashankar, M.Höök, and S.V.Narayana (2002).
A novel variant of the immunoglobulin fold in surface adhesins of Staphylococcus aureus: crystal structure of the fibrinogen-binding MSCRAMM, clumping factor A.
  EMBO J, 21, 6660-6672.
PDB code: 1n67
12406216 J.Antikainen, L.Anton, J.Sillanpää, and T.K.Korhonen (2002).
Domains in the S-layer protein CbsA of Lactobacillus crispatus involved in adherence to collagens, laminin and lipoteichoic acids and in self-assembly.
  Mol Microbiol, 46, 381-394.  
10673425 C.C.Deivanayagam, R.L.Rich, M.Carson, R.T.Owens, S.Danthuluri, T.Bice, M.Höök, and S.V.Narayana (2000).
Novel fold and assembly of the repetitive B region of the Staphylococcus aureus collagen-binding surface protein.
  Structure, 8, 67-78.
PDB codes: 1d2o 1d2p
11053389 J.Sillanpää, B.Martínez, J.Antikainen, T.Toba, N.Kalkkinen, S.Tankka, K.Lounatmaa, J.Keränen, M.Höök, B.Westerlund-Wikström, P.H.Pouwels, and T.K.Korhonen (2000).
Characterization of the collagen-binding S-layer protein CbsA of Lactobacillus crispatus.
  J Bacteriol, 182, 6440-6450.  
10948146 S.R.Nallapareddy, K.V.Singh, R.W.Duh, G.M.Weinstock, and B.E.Murray (2000).
Diversity of ace, a gene encoding a microbial surface component recognizing adhesive matrix molecules, from different strains of Enterococcus faecalis and evidence for production of ace during human infections.
  Infect Immun, 68, 5210-5217.  
10948147 S.R.Nallapareddy, X.Qin, G.M.Weinstock, M.Höök, and B.E.Murray (2000).
Enterococcus faecalis adhesin, ace, mediates attachment to extracellular matrix proteins collagen type IV and laminin as well as collagen type I.
  Infect Immun, 68, 5218-5224.  
10227156 M.C.Hudson, W.K.Ramp, and K.P.Frankenburg (1999).
Staphylococcus aureus adhesion to bone matrix and bone-associated biomaterials.
  FEMS Microbiol Lett, 173, 279-284.  
  9916063 N.Mohamed, M.A.Teeters, J.M.Patti, M.Höök, and J.M.Ross (1999).
Inhibition of Staphylococcus aureus adherence to collagen under dynamic conditions.
  Infect Immun, 67, 589-594.  
10455165 R.L.Rich, C.C.Deivanayagam, R.T.Owens, M.Carson, A.Höök, D.Moore, J.Symersky, V.W.Yang, S.V.Narayana, and M.Höök (1999).
Trench-shaped binding sites promote multiple classes of interactions between collagen and the adherence receptors, alpha(1)beta(1) integrin and Staphylococcus aureus cna MSCRAMM.
  J Biol Chem, 274, 24906-24913.
PDB code: 1qc5
10542245 T.Kamata, R.C.Liddington, and Y.Takada (1999).
Interaction between collagen and the alpha(2) I-domain of integrin alpha(2)beta(1). Critical role of conserved residues in the metal ion-dependent adhesion site (MIDAS) region.
  J Biol Chem, 274, 32108-32111.  
  10066836 W.W.Navarre, and O.Schneewind (1999).
Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope.
  Microbiol Mol Biol Rev, 63, 174-229.  
9501084 T.Sasaki, E.Hohenester, W.Göhring, and R.Timpl (1998).
Crystal structure and mapping by site-directed mutagenesis of the collagen-binding epitope of an activated form of BM-40/SPARC/osteonectin.
  EMBO J, 17, 1625-1634.
PDB code: 1nub
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.