 |
PDBsum entry 1amx
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Bacterial adhesin
|
PDB id
|
|
|
|
1amx
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
Nat Struct Biol
4:833-838
(1997)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structure of the collagen-binding domain from a Staphylococcus aureus adhesin.
|
|
J.Symersky,
J.M.Patti,
M.Carson,
K.House-Pompeo,
M.Teale,
D.Moore,
L.Jin,
A.Schneider,
L.J.DeLucas,
M.Höök,
S.V.Narayana.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The crystal structure of the recombinant 19,000 M(r) binding domain from the
Staphylococcus aureus collagen adhesin has been determined at 2 A resolution.
The domain fold is a jelly-roll, composed of two antiparallel beta-sheets and
two short alpha-helices. Triple-helical collagen model probes were used in a
systematic docking search to identify the collagen-binding site. A groove on
beta-sheet I exhibited the best surface complementarity to the collagen probes.
This site partially overlaps with the peptide sequence previously shown to be
critical for collagen binding. Recombinant proteins containing single amino acid
mutations designed to disrupt the surface of the putative binding site exhibited
significantly lower affinities for collagen. Here we present a structural
perspective for the mode of collagen binding by a bacterial surface protein.
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
H.M.Sanders,
M.Iafisco,
E.M.Pouget,
P.H.Bomans,
F.Nudelman,
G.Falini,
G.de With,
M.Merkx,
G.J.Strijkers,
K.Nicolay,
and
N.A.Sommerdijk
(2011).
The binding of CNA35 contrast agents to collagen fibrils.
|
| |
Chem Commun (Camb),
47,
1503-1505.
|
 |
|
|
|
|
 |
K.Vengadesan,
and
S.V.Narayana
(2011).
Structural biology of gram-positive bacterial adhesins.
|
| |
Protein Sci,
20,
759-772.
|
 |
|
|
|
|
 |
K.Vengadesan,
X.Ma,
P.Dwivedi,
H.Ton-That,
and
S.V.Narayana
(2011).
A model for group B Streptococcus pilus type 1: the structure of a 35-kDa C-terminal fragment of the major pilin GBS80.
|
| |
J Mol Biol,
407,
731-743.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.J.McCarthy,
and
J.A.Lindsay
(2010).
Genetic variation in Staphylococcus aureus surface and immune evasion genes is lineage associated: implications for vaccine design and host-pathogen interactions.
|
| |
BMC Microbiol,
10,
173.
|
 |
|
|
|
|
 |
N.Forsgren,
R.J.Lamont,
and
K.Persson
(2010).
Two intramolecular isopeptide bonds are identified in the crystal structure of the Streptococcus gordonii SspB C-terminal domain.
|
| |
J Mol Biol,
397,
740-751.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.J.Kang,
and
E.N.Baker
(2009).
Intramolecular isopeptide bonds give thermodynamic and proteolytic stability to the major pilin protein of Streptococcus pyogenes.
|
| |
J Biol Chem,
284,
20729-20737.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.J.Kang,
M.Middleditch,
T.Proft,
and
E.N.Baker
(2009).
Isopeptide bonds in bacterial pili and their characterization by X-ray crystallography and mass spectrometry.
|
| |
Biopolymers,
91,
1126-1134.
|
 |
|
|
|
|
 |
H.J.Kang,
N.G.Paterson,
A.H.Gaspar,
H.Ton-That,
and
E.N.Baker
(2009).
The Corynebacterium diphtheriae shaft pilin SpaA is built of tandem Ig-like modules with stabilizing isopeptide and disulfide bonds.
|
| |
Proc Natl Acad Sci U S A,
106,
16967-16971.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.M.Budzik,
C.B.Poor,
K.F.Faull,
J.P.Whitelegge,
C.He,
and
O.Schneewind
(2009).
Intramolecular amide bonds stabilize pili on the surface of bacilli.
|
| |
Proc Natl Acad Sci U S A,
106,
19992-19997.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
L.J.Gourlay,
I.Santi,
A.Pezzicoli,
G.Grandi,
M.Soriani,
and
M.Bolognesi
(2009).
Group B streptococcus pullulanase crystal structures in the context of a novel strategy for vaccine development.
|
| |
J Bacteriol,
191,
3544-3552.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.C.Leo,
H.Elovaara,
B.Brodsky,
M.Skurnik,
and
A.Goldman
(2008).
The Yersinia adhesin YadA binds to a collagenous triple-helical conformation but without sequence specificity.
|
| |
Protein Eng Des Sel,
21,
475-484.
|
 |
|
|
|
|
 |
Q.Liu,
K.Ponnuraj,
Y.Xu,
V.K.Ganesh,
J.Sillanpää,
B.E.Murray,
S.V.Narayana,
and
M.Höök
(2007).
The Enterococcus faecalis MSCRAMM ACE binds its ligand by the Collagen Hug model.
|
| |
J Biol Chem,
282,
19629-19637.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.R.Nallapareddy,
J.Sillanpää,
V.K.Ganesh,
M.Höök,
and
B.E.Murray
(2007).
Inhibition of Enterococcus faecium adherence to collagen by antibodies against high-affinity binding subdomains of Acm.
|
| |
Infect Immun,
75,
3192-3196.
|
 |
|
|
|
|
 |
V.Krishnan,
A.H.Gaspar,
N.Ye,
A.Mandlik,
H.Ton-That,
and
S.V.Narayana
(2007).
An IgG-like domain in the minor pilin GBS52 of Streptococcus agalactiae mediates lung epithelial cell adhesion.
|
| |
Structure,
15,
893-903.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.L.Bannam,
W.L.Teng,
D.Bulach,
D.Lyras,
and
J.I.Rood
(2006).
Functional identification of conjugation and replication regions of the tetracycline resistance plasmid pCW3 from Clostridium perfringens.
|
| |
J Bacteriol,
188,
4942-4951.
|
 |
|
|
|
|
 |
Y.Itoi,
M.Horinaka,
Y.Tsujimoto,
H.Matsui,
and
K.Watanabe
(2006).
Characteristic features in the structure and collagen-binding ability of a thermophilic collagenolytic protease from the thermophile Geobacillus collagenovorans MO-1.
|
| |
J Bacteriol,
188,
6572-6579.
|
 |
|
|
|
|
 |
B.Kreikemeyer,
M.Nakata,
S.Oehmcke,
C.Gschwendtner,
J.Normann,
and
A.Podbielski
(2005).
Streptococcus pyogenes collagen type I-binding Cpa surface protein. Expression profile, binding characteristics, biological functions, and potential clinical impact.
|
| |
J Biol Chem,
280,
33228-33239.
|
 |
|
|
|
|
 |
Y.Zong,
Y.Xu,
X.Liang,
D.R.Keene,
A.Höök,
S.Gurusiddappa,
M.Höök,
and
S.V.Narayana
(2005).
A 'Collagen Hug' model for Staphylococcus aureus CNA binding to collagen.
|
| |
EMBO J,
24,
4224-4236.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.Comfort,
and
R.T.Clubb
(2004).
A comparative genome analysis identifies distinct sorting pathways in gram-positive bacteria.
|
| |
Infect Immun,
72,
2710-2722.
|
 |
|
|
|
|
 |
H.Nummelin,
M.C.Merckel,
J.C.Leo,
H.Lankinen,
M.Skurnik,
and
A.Goldman
(2004).
The Yersinia adhesin YadA collagen-binding domain structure is a novel left-handed parallel beta-roll.
|
| |
EMBO J,
23,
701-711.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Remaut,
and
G.Waksman
(2004).
Structural biology of bacterial pathogenesis.
|
| |
Curr Opin Struct Biol,
14,
161-170.
|
 |
|
|
|
|
 |
R.Abdulhussein,
C.McFadden,
P.Fuentes-Prior,
and
W.F.Vogel
(2004).
Exploring the collagen-binding site of the DDR1 tyrosine kinase receptor.
|
| |
J Biol Chem,
279,
31462-31470.
|
 |
|
|
|
|
 |
Y.Xu,
X.Liang,
Y.Chen,
T.M.Koehler,
and
M.Höök
(2004).
Identification and biochemical characterization of two novel collagen binding MSCRAMMs of Bacillus anthracis.
|
| |
J Biol Chem,
279,
51760-51768.
|
 |
|
|
|
|
 |
B.Leitinger
(2003).
Molecular analysis of collagen binding by the human discoidin domain receptors, DDR1 and DDR2. Identification of collagen binding sites in DDR2.
|
| |
J Biol Chem,
278,
16761-16769.
|
 |
|
|
|
|
 |
C.Heddle,
A.H.Nobbs,
N.S.Jakubovics,
M.Gal,
J.P.Mansell,
D.Dymock,
and
H.F.Jenkinson
(2003).
Host collagen signal induces antigen I/II adhesin and invasin gene expression in oral Streptococcus gordonii.
|
| |
Mol Microbiol,
50,
597-607.
|
 |
|
|
|
|
 |
J.J.Wilson,
O.Matsushita,
A.Okabe,
and
J.Sakon
(2003).
A bacterial collagen-binding domain with novel calcium-binding motif controls domain orientation.
|
| |
EMBO J,
22,
1743-1752.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.A.Esmay,
S.J.Billington,
M.A.Link,
J.G.Songer,
and
B.H.Jost
(2003).
The Arcanobacterium pyogenes collagen-binding protein, CbpA, promotes adhesion to host cells.
|
| |
Infect Immun,
71,
4368-4374.
|
 |
|
|
|
|
 |
S.R.Nallapareddy,
G.M.Weinstock,
and
B.E.Murray
(2003).
Clinical isolates of Enterococcus faecium exhibit strain-specific collagen binding mediated by Acm, a new member of the MSCRAMM family.
|
| |
Mol Microbiol,
47,
1733-1747.
|
 |
|
|
|
|
 |
Y.Shimoji,
Y.Ogawa,
M.Osaki,
H.Kabeya,
S.Maruyama,
T.Mikami,
and
T.Sekizaki
(2003).
Adhesive surface proteins of Erysipelothrix rhusiopathiae bind to polystyrene, fibronectin, and type I and IV collagens.
|
| |
J Bacteriol,
185,
2739-2748.
|
 |
|
|
|
|
 |
C.C.Deivanayagam,
E.R.Wann,
W.Chen,
M.Carson,
K.R.Rajashankar,
M.Höök,
and
S.V.Narayana
(2002).
A novel variant of the immunoglobulin fold in surface adhesins of Staphylococcus aureus: crystal structure of the fibrinogen-binding MSCRAMM, clumping factor A.
|
| |
EMBO J,
21,
6660-6672.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Antikainen,
L.Anton,
J.Sillanpää,
and
T.K.Korhonen
(2002).
Domains in the S-layer protein CbsA of Lactobacillus crispatus involved in adherence to collagens, laminin and lipoteichoic acids and in self-assembly.
|
| |
Mol Microbiol,
46,
381-394.
|
 |
|
|
|
|
 |
C.C.Deivanayagam,
R.L.Rich,
M.Carson,
R.T.Owens,
S.Danthuluri,
T.Bice,
M.Höök,
and
S.V.Narayana
(2000).
Novel fold and assembly of the repetitive B region of the Staphylococcus aureus collagen-binding surface protein.
|
| |
Structure,
8,
67-78.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Sillanpää,
B.Martínez,
J.Antikainen,
T.Toba,
N.Kalkkinen,
S.Tankka,
K.Lounatmaa,
J.Keränen,
M.Höök,
B.Westerlund-Wikström,
P.H.Pouwels,
and
T.K.Korhonen
(2000).
Characterization of the collagen-binding S-layer protein CbsA of Lactobacillus crispatus.
|
| |
J Bacteriol,
182,
6440-6450.
|
 |
|
|
|
|
 |
S.R.Nallapareddy,
K.V.Singh,
R.W.Duh,
G.M.Weinstock,
and
B.E.Murray
(2000).
Diversity of ace, a gene encoding a microbial surface component recognizing adhesive matrix molecules, from different strains of Enterococcus faecalis and evidence for production of ace during human infections.
|
| |
Infect Immun,
68,
5210-5217.
|
 |
|
|
|
|
 |
S.R.Nallapareddy,
X.Qin,
G.M.Weinstock,
M.Höök,
and
B.E.Murray
(2000).
Enterococcus faecalis adhesin, ace, mediates attachment to extracellular matrix proteins collagen type IV and laminin as well as collagen type I.
|
| |
Infect Immun,
68,
5218-5224.
|
 |
|
|
|
|
 |
M.C.Hudson,
W.K.Ramp,
and
K.P.Frankenburg
(1999).
Staphylococcus aureus adhesion to bone matrix and bone-associated biomaterials.
|
| |
FEMS Microbiol Lett,
173,
279-284.
|
 |
|
|
|
|
 |
N.Mohamed,
M.A.Teeters,
J.M.Patti,
M.Höök,
and
J.M.Ross
(1999).
Inhibition of Staphylococcus aureus adherence to collagen under dynamic conditions.
|
| |
Infect Immun,
67,
589-594.
|
 |
|
|
|
|
 |
R.L.Rich,
C.C.Deivanayagam,
R.T.Owens,
M.Carson,
A.Höök,
D.Moore,
J.Symersky,
V.W.Yang,
S.V.Narayana,
and
M.Höök
(1999).
Trench-shaped binding sites promote multiple classes of interactions between collagen and the adherence receptors, alpha(1)beta(1) integrin and Staphylococcus aureus cna MSCRAMM.
|
| |
J Biol Chem,
274,
24906-24913.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.Kamata,
R.C.Liddington,
and
Y.Takada
(1999).
Interaction between collagen and the alpha(2) I-domain of integrin alpha(2)beta(1). Critical role of conserved residues in the metal ion-dependent adhesion site (MIDAS) region.
|
| |
J Biol Chem,
274,
32108-32111.
|
 |
|
|
|
|
 |
W.W.Navarre,
and
O.Schneewind
(1999).
Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope.
|
| |
Microbiol Mol Biol Rev,
63,
174-229.
|
 |
|
|
|
|
 |
T.Sasaki,
E.Hohenester,
W.Göhring,
and
R.Timpl
(1998).
Crystal structure and mapping by site-directed mutagenesis of the collagen-binding epitope of an activated form of BM-40/SPARC/osteonectin.
|
| |
EMBO J,
17,
1625-1634.
|
 |
|
PDB code:
|
 |
|
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |