spacer
spacer

PDBsum entry 1aih

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
DNA integration PDB id
1aih

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
170 a.a. *
Ligands
SO4 ×8
Metals
_MG ×5
Waters ×152
* Residue conservation analysis
PDB id:
1aih
Name: DNA integration
Title: Catalytic domain of bacteriophage hp1 integrase
Structure: Hp1 integrase. Chain: a, b, c, d. Fragment: catalytic domain, residues 168 - 337. Engineered: yes
Source: Haemophilus phage hp1. Organism_taxid: 10690. Strain: hp1c1. Cell_line: haemophilus influenzae l10. Gene: genbank u24159. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Dimer (from PDB file)
Resolution:
2.50Å     R-factor:   0.209     R-free:   0.272
Authors: A.B.Hickman,S.Waninger,J.J.Scocca,F.Dyda
Key ref:
A.B.Hickman et al. (1997). Molecular organization in site-specific recombination: the catalytic domain of bacteriophage HP1 integrase at 2.7 A resolution. Cell, 89, 227-237. PubMed id: 9108478 DOI: 10.1016/S0092-8674(00)80202-0
Date:
17-Apr-97     Release date:   20-Aug-97    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
P21442  (VINT_BPHC1) -  Integrase from Haemophilus phage HP1 (strain HP1c1)
Seq:
Struc:
337 a.a.
170 a.a.*
Key:    Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class 1: E.C.2.7.7.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 2: E.C.3.1.-.-
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.

 

 
DOI no: 10.1016/S0092-8674(00)80202-0 Cell 89:227-237 (1997)
PubMed id: 9108478  
 
 
Molecular organization in site-specific recombination: the catalytic domain of bacteriophage HP1 integrase at 2.7 A resolution.
A.B.Hickman, S.Waninger, J.J.Scocca, F.Dyda.
 
  ABSTRACT  
 
HP1 integrase promotes site-specific recombination of the HP1 genome into that of Haemophilus influenzae. The isolated C-terminal domain (residues 165-337) of the protein interacts with the recombination site and contains the four catalytic residues conserved in the integrase family. This domain represents a novel fold consisting principally of well-packed alpha helices, a surface beta sheet, and an ordered 17-residue C-terminal tail. The conserved triad of basic residues and the active-site tyrosine are contributed by a single monomer and occupy fixed positions in a defined active-site cleft. Dimers are formed by mutual interactions of the tail of one monomer with an adjacent monomer; this orients active-site clefts antiparallel to each other.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. Schematic Diagrams of the Site-Specific Recombination Reaction(A) Site-specific recombination by bacteriophage integrases requires two DNA substrates containing related sequences at the site of strand exchange. For bacteriophage HP1, the att P site is 418 bp long and, in addition to two IHF binding sites, contains multiple integrase binding sites: three type I sites and three type II sites that exist as either direct or inverted repeating motifs ([18]). The att B site is 18 bp long and contains an inverted repeat sequence. The DNA chromosomes and their attachment sites are not drawn to scale.(B) The steps of strand cleavage and exchange proceed using a topoisomerase mechanism (see Introduction for details). Adapted from Nash, 1996.
Figure 4.
Figure 4. The Protein Fold of the Catalytic C-terminal Domain of HP1 IntegraseMOLSCRIPT ([33]) stereo picture of the fold of the HPC monomer. The overall fold is of a mostly α helical globular domain from which extends an ordered 17-residue tail.
 
  The above figures are reprinted by permission from Cell Press: Cell (1997, 89, 227-237) copyright 1997.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21165603 L.Warth, I.Haug, and J.Altenbuchner (2011).
Characterization of the tyrosine recombinase MrpA encoded by the Streptomyces coelicolor A3(2) plasmid SCP2*.
  Arch Microbiol, 193, 187-200.  
20854710 W.Yang (2011).
Nucleases: diversity of structure, function and mechanism.
  Q Rev Biophys, 44, 1.  
20693535 M.Matovina, N.Seah, T.Hamilton, D.Warren, and A.Landy (2010).
Stoichiometric incorporation of base substitutions at specific sites in supercoiled DNA and supercoiled recombination intermediates.
  Nucleic Acids Res, 38, e175.  
19915028 S.Kim, B.M.Swalla, and J.F.Gardner (2010).
Structure-function analysis of IntDOT.
  J Bacteriol, 192, 575-586.  
21087076 W.Yang (2010).
Topoisomerases and site-specific recombinases: similarities in structure and mechanism.
  Crit Rev Biochem Mol Biol, 45, 520-534.  
19440204 C.H.Ma, P.A.Rowley, A.Macieszak, P.Guga, and M.Jayaram (2009).
Active site electrostatics protect genome integrity by blocking abortive hydrolysis during DNA recombination.
  EMBO J, 28, 1745-1756.  
19168607 K.Malanowska, J.Cioni, B.M.Swalla, A.Salyers, and J.F.Gardner (2009).
Mutational analysis and homology-based modeling of the IntDOT core-binding domain.
  J Bacteriol, 191, 2330-2339.  
19317906 T.Jain, B.J.Roper, and A.Grove (2009).
A functional type I topoisomerase from Pseudomonas aeruginosa.
  BMC Mol Biol, 10, 23.  
16368685 A.Patel, S.Shuman, and A.Mondragón (2006).
Crystal structure of a bacterial type IB DNA topoisomerase reveals a preassembled active site in the absence of DNA.
  J Biol Chem, 281, 6030-6037.
PDB code: 2f4q
16641988 D.MacDonald, G.Demarre, M.Bouvier, D.Mazel, and D.N.Gopaul (2006).
Structural basis for broad DNA-specificity in integron recombination.
  Nature, 440, 1157-1162.
PDB code: 2a3v
16977316 J.P.Mumm, A.Landy, and J.Gelles (2006).
Viewing single lambda site-specific recombination events from start to finish.
  EMBO J, 25, 4586-4595.  
16689798 K.Malanowska, A.A.Salyers, and J.F.Gardner (2006).
Characterization of a conjugative transposon integrase, IntDOT.
  Mol Microbiol, 60, 1228-1240.  
16756503 N.D.Grindley, K.L.Whiteson, and P.A.Rice (2006).
Mechanisms of site-specific recombination.
  Annu Rev Biochem, 75, 567-605.  
17003057 S.Bolusani, C.H.Ma, A.Paek, J.H.Konieczka, M.Jayaram, and Y.Voziyanov (2006).
Evolution of variants of yeast site-specific recombinase Flp that utilize native genomic sequences as recombination target sites.
  Nucleic Acids Res, 34, 5259-5269.  
15656988 C.Frumerie, J.M Eriksson, M.Dugast, and E.Haggård-Ljungquist (2005).
Dimerization of bacteriophage P2 integrase is not required for binding to its DNA target but for its biological activity.
  Gene, 344, 221-231.  
15123675 C.Letzelter, M.Duguet, and M.C.Serre (2004).
Mutational analysis of the archaeal tyrosine recombinase SSV1 integrase suggests a mechanism of DNA cleavage in trans.
  J Biol Chem, 279, 28936-28944.  
15218019 V.Petyuk, J.McDermott, M.Cook, and B.Sauer (2004).
Functional mapping of Cre recombinase by pentapeptide insertional mutagenesis.
  J Biol Chem, 279, 37040-37048.  
12560475 B.M.Swalla, R.I.Gumport, and J.F.Gardner (2003).
Conservation of structure and function among tyrosine recombinases: homology-based modeling of the lambda integrase core-binding domain.
  Nucleic Acids Res, 31, 805-818.
PDB code: 1m97
12832614 D.Warren, M.D.Sam, K.Manley, D.Sarkar, S.Y.Lee, M.Abbani, J.M.Wojciak, R.T.Clubb, and A.Landy (2003).
Identification of the lambda integrase surface that interacts with Xis reveals a residue that is also critical for Int dimer formation.
  Proc Natl Acad Sci U S A, 100, 8176-8181.  
12887904 H.Aihara, H.J.Kwon, S.E.Nunes-Düby, A.Landy, and T.Ellenberger (2003).
A conformational switch controls the DNA cleavage activity of lambda integrase.
  Mol Cell, 12, 187-198.
PDB code: 1p7d
12592032 H.B.Kamadurai, S.Subramaniam, R.B.Jones, K.B.Green-Church, and M.P.Foster (2003).
Protein folding coupled to DNA binding in the catalytic domain of bacteriophage lambda integrase detected by mass spectrometry.
  Protein Sci, 12, 620-626.  
12716882 Y.Chen, and P.A.Rice (2003).
The role of the conserved Trp330 in Flp-mediated recombination. Functional and structural analysis.
  J Biol Chem, 278, 24800-24807.
PDB code: 1p4e
12598365 Y.Chen, and P.A.Rice (2003).
New insight into site-specific recombination from Flp recombinase-DNA structures.
  Annu Rev Biophys Biomol Struct, 32, 135-159.  
11756402 B.O.Krogh, and S.Shuman (2002).
Proton relay mechanism of general acid catalysis by DNA topoisomerase IB.
  J Biol Chem, 277, 5711-5714.  
11830640 B.O.Krogh, and S.Shuman (2002).
A poxvirus-like type IB topoisomerase family in bacteria.
  Proc Natl Acad Sci U S A, 99, 1853-1858.  
11904406 J.M.Wojciak, D.Sarkar, A.Landy, and R.T.Clubb (2002).
Arm-site binding by lambda -integrase: solution structure and functional characterization of its amino-terminal domain.
  Proc Natl Acad Sci U S A, 99, 3434-3439.
PDB code: 1kjk
12130667 R.Campos-Olivas, J.M.Louis, D.Clerot, B.Gronenborn, and A.M.Gronenborn (2002).
The structure of a replication initiator unites diverse aspects of nucleic acid metabolism.
  Proc Natl Acad Sci U S A, 99, 10310-10315.
PDB codes: 1l2m 1l5i
  11574677 D.Esposito, J.S.Thrower, and J.J.Scocca (2001).
Protein and DNA requirements of the bacteriophage HP1 recombination system: a model for intasome formation.
  Nucleic Acids Res, 29, 3955-3964.  
11230143 D.Sarkar, M.Radman-Livaja, and A.Landy (2001).
The small DNA binding domain of lambda integrase is a context-sensitive modulator of recombinase functions.
  EMBO J, 20, 1203-1212.  
11340053 G.D.Van Duyne (2001).
A structural view of cre-loxp site-specific recombination.
  Annu Rev Biophys Biomol Struct, 30, 87.  
11395412 J.J.Champoux (2001).
DNA topoisomerases: structure, function, and mechanism.
  Annu Rev Biochem, 70, 369-413.  
11673443 N.Messier, and P.H.Roy (2001).
Integron integrases possess a unique additional domain necessary for activity.
  J Bacteriol, 183, 6699-6706.  
10911997 B.O.Krogh, and S.Shuman (2000).
Catalytic mechanism of DNA topoisomerase IB.
  Mol Cell, 5, 1035-1041.  
11027276 C.Cheng, and S.Shuman (2000).
Recombinogenic flap ligation pathway for intrinsic repair of topoisomerase IB-induced double-strand breaks.
  Mol Cell Biol, 20, 8059-8068.  
10869430 C.E.Peña, J.M.Kahlenberg, and G.F.Hatfull (2000).
Assembly and activation of site-specific recombination complexes.
  Proc Natl Acad Sci U S A, 97, 7760-7765.  
10744667 G.W.Blakely, A.O.Davidson, and D.J.Sherratt (2000).
Sequential strand exchange by XerC and XerD during site-specific recombination at dif.
  J Biol Chem, 275, 9930-9936.  
10954601 G.Woodfield, C.Cheng, S.Shuman, and A.B.Burgin (2000).
Vaccinia topoisomerase and Cre recombinase catalyze direct ligation of activated DNA substrates containing a 3'-para-nitrophenyl phosphate ester.
  Nucleic Acids Res, 28, 3323-3331.  
10820030 J.T.Stivers, G.J.Jagadeesh, B.Nawrot, W.J.Stec, and S.Shuman (2000).
Stereochemical outcome and kinetic effects of Rp- and Sp-phosphorothioate substitutions at the cleavage site of vaccinia type I DNA topoisomerase.
  Biochemistry, 39, 5561-5572.  
10648529 L.Jessop, T.Bankhead, D.Wong, and A.M.Segall (2000).
The amino terminus of bacteriophage lambda integrase is involved in protein-protein interactions during recombination.
  J Bacteriol, 182, 1024-1034.  
10781567 L.S.Burns, S.G.Smith, and C.J.Dorman (2000).
Interaction of the FimB integrase with the fimS invertible DNA element in Escherichia coli in vivo and in vitro.
  J Bacteriol, 182, 2953-2959.  
10871343 N.V.Grishin (2000).
Two tricks in one bundle: helix-turn-helix gains enzymatic activity.
  Nucleic Acids Res, 28, 2229-2233.  
  11090626 Y.Chen, U.Narendra, L.E.Iype, M.M.Cox, and P.A.Rice (2000).
Crystal structure of a Flp recombinase-Holliday junction complex: assembly of an active oligomer by helix swapping.
  Mol Cell, 6, 885-897.
PDB code: 1flo
10361305 A.J.Spiers, and D.J.Sherratt (1999).
C-terminal interactions between the XerC and XerD site-specific recombinases.
  Mol Microbiol, 32, 1031-1042.  
10377377 A.Landy (1999).
Coming or going it's another pretty picture for the lambda-Int family album.
  Proc Natl Acad Sci U S A, 96, 7122-7124.  
10635320 B.Hallet, L.K.Arciszewska, and D.J.Sherratt (1999).
Reciprocal control of catalysis by the tyrosine recombinases XerC and XerD: an enzymatic switch in site-specific recombination.
  Mol Cell, 4, 949-959.  
10047575 D.N.Gopaul, and G.D.Duyne (1999).
Structure and mechanism in site-specific recombination.
  Curr Opin Struct Biol, 9, 14-20.  
10075917 H.Raaijmakers, O.Vix, I.Törõ, S.Golz, B.Kemper, and D.Suck (1999).
X-ray structure of T4 endonuclease VII: a DNA junction resolvase with a novel fold and unusual domain-swapped dimer architecture.
  EMBO J, 18, 1447-1458.
PDB code: 1en7
10577069 I.Grainge, and M.Jayaram (1999).
The integrase family of recombinase: organization and function of the active site.
  Mol Microbiol, 33, 449-456.  
9927438 J.Lee, M.Jayaram, and I.Grainge (1999).
Wild-type Flp recombinase cleaves DNA in trans.
  EMBO J, 18, 784-791.  
  10024565 M.P.Mayer, L.C.Bueno, E.J.Hansen, and J.M.DiRienzo (1999).
Identification of a cytolethal distending toxin gene locus and features of a virulence-associated region in Actinobacillus actinomycetemcomitans.
  Infect Immun, 67, 1227-1237.  
10047584 M.R.Redinbo, J.J.Champoux, and W.G.Hol (1999).
Structural insights into the function of type IB topoisomerases.
  Curr Opin Struct Biol, 9, 29-36.  
10594822 S.G.Smith, and C.J.Dorman (1999).
Functional analysis of the FimE integrase of Escherichia coli K-12: isolation of mutant derivatives with altered DNA inversion preferences.
  Mol Microbiol, 34, 965-979.  
10049830 S.Moreau, C.Le Marrec, C.Blanco, and A.Trautwetter (1999).
Analysis of the integration functions of phi304L: an integrase module among corynephages.
  Virology, 255, 150-159.  
10690407 T.Komano (1999).
Shufflons: multiple inversion systems and integrons.
  Annu Rev Genet, 33, 171-191.  
10476025 V.N.Rybchin, and A.N.Svarchevsky (1999).
The plasmid prophage N15: a linear DNA with covalently closed ends.
  Mol Microbiol, 33, 895-903.  
9529259 C.Cheng, P.Kussie, N.Pavletich, and S.Shuman (1998).
Conservation of structure and mechanism between eukaryotic topoisomerase I and site-specific recombinases.
  Cell, 92, 841-850.
PDB code: 1a41
9660956 C.J.Xu, I.Grainge, J.Lee, R.M.Harshey, and M.Jayaram (1998).
Unveiling two distinct ribonuclease activities and a topoisomerase activity in a site-specific DNA recombinase.
  Mol Cell, 1, 729-739.  
9804830 C.J.Xu, Y.T.Ahn, S.Pathania, and M.Jayaram (1998).
Flp ribonuclease activities. Mechanistic similarities and contrasts to site-specific DNA recombination.
  J Biol Chem, 273, 30591-30598.  
9634692 D.B.Wigley (1998).
Teaching a new dog old tricks?
  Structure, 6, 543-548.  
9670032 D.N.Gopaul, F.Guo, and G.D.Van Duyne (1998).
Structure of the Holliday junction intermediate in Cre-loxP site-specific recombination.
  EMBO J, 17, 4175-4187.
PDB codes: 2crx 3crx
9748476 J.M.Berger (1998).
Structure of DNA topoisomerases.
  Biochim Biophys Acta, 1400, 3.  
9665166 K.M.Connolly, J.M.Wojciak, and R.T.Clubb (1998).
Site-specific DNA binding using a variation of the double stranded RNA binding motif.
  Nat Struct Biol, 5, 546-550.
PDB codes: 1bb8 2bb8
9722507 M.Hartung, and B.Kisters-Woike (1998).
Cre mutants with altered DNA binding properties.
  J Biol Chem, 273, 22884-22891.  
9488644 M.R.Redinbo, L.Stewart, P.Kuhn, J.J.Champoux, and W.G.Hol (1998).
Crystal structures of human topoisomerase I in covalent and noncovalent complexes with DNA.
  Science, 279, 1504-1513.
PDB codes: 1a31 1a35
9421491 S.E.Nunes-Düby, H.J.Kwon, R.S.Tirumalai, T.Ellenberger, and A.Landy (1998).
Similarities and differences among 105 members of the Int family of site-specific recombinases.
  Nucleic Acids Res, 26, 391-406.  
9660957 S.Shuman (1998).
Polynucleotide ligase activity of eukaryotic topoisomerase I.
  Mol Cell, 1, 741-748.  
9187646 A.Mondragón (1997).
Solving the cis/trans paradox in the Int family of recombinases.
  Nat Struct Biol, 4, 427-429.  
9348666 B.Hallet, and D.J.Sherratt (1997).
Transposition and site-specific recombination: adapting DNA cut-and-paste mechanisms to a variety of genetic rearrangements.
  FEMS Microbiol Rev, 21, 157-178.  
9278480 D.Esposito, and J.J.Scocca (1997).
The integrase family of tyrosine recombinases: evolution of a conserved active site domain.
  Nucleic Acids Res, 25, 3605-3614.  
9311978 H.S.Subramanya, L.K.Arciszewska, R.A.Baker, L.E.Bird, D.J.Sherratt, and D.B.Wigley (1997).
Crystal structure of the site-specific recombinase, XerD.
  EMBO J, 16, 5178-5187.
PDB code: 1a0p
9224599 J.Wittschieben, and S.Shuman (1997).
Mechanism of DNA transesterification by vaccinia topoisomerase: catalytic contributions of essential residues Arg-130, Gly-132, Tyr-136 and Lys-167.
  Nucleic Acids Res, 25, 3001-3008.  
9368738 N.D.Grindley (1997).
Site-specific recombination: synapsis and strand exchange revealed.
  Curr Biol, 7, R608-R612.  
9384556 W.Yang, and K.Mizuuchi (1997).
Site-specific recombination in plane view.
  Structure, 5, 1401-1406.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer