 |
PDBsum entry 1a1v
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Hydrolase/DNA
|
PDB id
|
|
|
|
1a1v
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class 1:
|
 |
E.C.2.7.7.48
- RNA-directed Rna polymerase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
RNA(n) + a ribonucleoside 5'-triphosphate = RNA(n+1) + diphosphate
|
 |
 |
 |
 |
 |
RNA(n)
|
+
|
ribonucleoside 5'-triphosphate
|
=
|
RNA(n+1)
|
+
|
diphosphate
|
|
 |
 |
 |
 |
 |
 |
 |
 |
Enzyme class 2:
|
 |
E.C.3.4.21.98
- hepacivirin.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
Hydrolysis of four peptide bonds in the viral precursor polyprotein, commonly with Asp or Glu in the P6 position, Cys or Thr in P1 and Ser or Ala in P1'.
|
 |
 |
 |
 |
 |
Enzyme class 3:
|
 |
E.C.3.4.22.-
- ?????
|
|
 |
 |
 |
 |
 |
Enzyme class 4:
|
 |
E.C.3.6.1.15
- nucleoside-triphosphate phosphatase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
a ribonucleoside 5'-triphosphate + H2O = a ribonucleoside 5'-diphosphate + phosphate + H+
|
 |
 |
 |
 |
 |
ribonucleoside 5'-triphosphate
|
+
|
H2O
|
=
|
ribonucleoside 5'-diphosphate
|
+
|
phosphate
|
+
|
H(+)
|
|
 |
 |
 |
 |
 |
 |
 |
 |
Enzyme class 5:
|
 |
E.C.3.6.4.13
- Rna helicase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
ATP + H2O = ADP + phosphate + H+
|
 |
 |
 |
 |
 |
ATP
|
+
|
H2O
|
=
|
ADP
|
+
|
phosphate
|
+
|
H(+)
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Note, where more than one E.C. class is given (as above), each may
correspond to a different protein domain or, in the case of polyprotein
precursors, to a different mature protein.
|
|
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
DOI no:
|
Structure
6:89
(1998)
|
|
PubMed id:
|
|
|
|
|
| |
|
Hepatitis C virus NS3 RNA helicase domain with a bound oligonucleotide: the crystal structure provides insights into the mode of unwinding.
|
|
J.L.Kim,
K.A.Morgenstern,
J.P.Griffith,
M.D.Dwyer,
J.A.Thomson,
M.A.Murcko,
C.Lin,
P.R.Caron.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
BACKGROUND: Hepatitis C virus (HCV) represents a major health concern as it is
responsible for a significant number of hepatitis cases worldwide. Much research
has focused on the replicative enzymes of HCV as possible targets for more
effective therapeutic agents. HCV NS3 helicase may provide one such suitable
target. Helicases are enzymes which can unwind double-stranded regions of DNA or
RNA in an ATP-dependent reaction. The structures of several helicases have been
published but the structural details as to how ATP binding and hydrolysis are
coupled to RNA unwinding are unknown. RESULTS: The structure of the HCV NS3 RNA
helicase domain complexed with a single-stranded DNA oligonucleotide has been
solved to 2.2 A resolution. The protein consists of three structural domains
with the oligonucleotide lying in a groove between the first two domains and the
third. The first two domains have an adenylate kinase like fold, including a
phosphate-binding loop in the first domain. CONCLUSIONS: HCV NS3 helicase is a
member of a superfamily of helicases, termed superfamily II. Residues of NS3
helicase which are conserved among superfamily II helicases line an interdomain
cleft between the first two domains. The oligonucleotide binds in an orthogonal
binding site and contacts relatively few conserved residues. There are no strong
sequence-specific interactions with the oligonucleotide bases.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
Figure 7.
Figure 7. Helicase mechanism schematic. The binding of
polynucleotide by NS3 helicase in the absence of ATP leaves a
large cleft between domains 1 and 2. Binding of ATP occurs with
the b-phosphate binding to residues in motif I (GSGKT) and the
g-phosphate with Mg2+ binding to the conserved acidic residues
in motif II (DECH). This results in the closing of the
interdomain cleft and the binding of conserved arginines in
motif VI (QRRGRTGR) to the ATP phosphates. Val432 and Trp501
disrupt base stacking at either end of the single-stranded
region. Closure of the interdomain cleft leads to translocation
of the single strand in the 5' to 3' direction and forces
several bases to slip past Trp501. Hydrolysis of ATP facilitates
opening of the cleft and release of ADP. The orientation of
Trp501 favors movement of the polynucleotide in only one
direction such that opening of the gap results in net movement
of the helicase in a 3' ->5' direction.
|
 |
|
|
|
| |
The above figure is
reprinted
by permission from Cell Press:
Structure
(1998,
6,
89-0)
copyright 1998.
|
|
| |
Figure was
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
A.G.Villaseñor,
A.Wong,
A.Shao,
A.Garg,
T.J.Donohue,
A.Kuglstatter,
and
S.F.Harris
(2012).
Nanolitre-scale crystallization using acoustic liquid-transfer technology.
|
| |
Acta Crystallogr D Biol Crystallogr,
68,
893-900.
|
 |
|
|
|
|
 |
J.Strohmeier,
I.Hertel,
U.Diederichsen,
M.G.Rudolph,
and
D.Klostermeier
(2011).
Changing nucleotide specificity of the DEAD-box helicase Hera abrogates communication between the Q-motif and the P-loop.
|
| |
Biol Chem,
392,
357-369.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.A.Belon,
Y.D.High,
T.I.Lin,
F.Pauwels,
and
D.N.Frick
(2010).
Mechanism and specificity of a symmetrical benzimidazolephenylcarboxamide helicase inhibitor.
|
| |
Biochemistry,
49,
1822-1832.
|
 |
|
|
|
|
 |
C.M.Lange,
C.Sarrazin,
and
S.Zeuzem
(2010).
Review article: specifically targeted anti-viral therapy for hepatitis C - a new era in therapy.
|
| |
Aliment Pharmacol Ther,
32,
14-28.
|
 |
|
|
|
|
 |
D.N.Frick,
O.Ginzburg,
and
A.M.Lam
(2010).
A method to simultaneously monitor hepatitis C virus NS3 helicase and protease activities.
|
| |
Methods Mol Biol,
587,
223-233.
|
 |
|
|
|
|
 |
G.Hauk,
J.N.McKnight,
I.M.Nodelman,
and
G.D.Bowman
(2010).
The chromodomains of the Chd1 chromatin remodeler regulate DNA access to the ATPase motor.
|
| |
Mol Cell,
39,
711-723.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Walbott,
S.Mouffok,
R.Capeyrou,
S.Lebaron,
O.Humbert,
H.van Tilbeurgh,
Y.Henry,
and
N.Leulliot
(2010).
Prp43p contains a processive helicase structural architecture with a specific regulatory domain.
|
| |
EMBO J,
29,
2194-2204.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Rudolf,
C.Rouillon,
U.Schwarz-Linek,
and
M.F.White
(2010).
The helicase XPD unwinds bubble structures and is not stalled by DNA lesions removed by the nucleotide excision repair pathway.
|
| |
Nucleic Acids Res,
38,
931-941.
|
 |
|
|
|
|
 |
M.Gu,
and
C.M.Rice
(2010).
Three conformational snapshots of the hepatitis C virus NS3 helicase reveal a ratchet translocation mechanism.
|
| |
Proc Natl Acad Sci U S A,
107,
521-528.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Gyimesi,
K.Sarlós,
and
M.Kovács
(2010).
Processive translocation mechanism of the human Bloom's syndrome helicase along single-stranded DNA.
|
| |
Nucleic Acids Res,
38,
4404-4414.
|
 |
|
|
|
|
 |
N.Bostan,
and
T.Mahmood
(2010).
An overview about hepatitis C: a devastating virus.
|
| |
Crit Rev Microbiol,
36,
91.
|
 |
|
|
|
|
 |
P.J.Provazzi,
H.A.Arcuri,
I.M.de Carvalho-Mello,
J.R.Pinho,
M.L.Nogueira,
M.S.Palma,
and
P.Rahal
(2010).
Structural studies of Helicase NS3 variants from Hepatitis C virus genotype 3 in virological sustained responder and non-responder patients.
|
| |
BMC Res Notes,
3,
196.
|
 |
|
|
|
|
 |
S.D.Taylor,
A.Solem,
J.Kawaoka,
and
A.M.Pyle
(2010).
The NPH-II helicase displays efficient DNA x RNA helicase activity and a pronounced purine sequence bias.
|
| |
J Biol Chem,
285,
11692-11703.
|
 |
|
|
|
|
 |
S.Despins,
M.Issur,
I.Bougie,
and
M.Bisaillon
(2010).
Deciphering the molecular basis for nucleotide selection by the West Nile virus RNA helicase.
|
| |
Nucleic Acids Res,
38,
5493-5506.
|
 |
|
|
|
|
 |
S.Lattmann,
B.Giri,
J.P.Vaughn,
S.A.Akman,
and
Y.Nagamine
(2010).
Role of the amino terminal RHAU-specific motif in the recognition and resolution of guanine quadruplex-RNA by the DEAH-box RNA helicase RHAU.
|
| |
Nucleic Acids Res,
38,
6219-6233.
|
 |
|
|
|
|
 |
S.Myong,
and
T.Ha
(2010).
Stepwise translocation of nucleic acid motors.
|
| |
Curr Opin Struct Biol,
20,
121-127.
|
 |
|
|
|
|
 |
W.Yang
(2010).
Lessons learned from UvrD helicase: mechanism for directional movement.
|
| |
Annu Rev Biophys,
39,
367-385.
|
 |
|
|
|
|
 |
Y.R.Chemla
(2010).
Revealing the base pair stepping dynamics of nucleic acid motor proteins with optical traps.
|
| |
Phys Chem Chem Phys,
12,
3080-3095.
|
 |
|
|
|
|
 |
C.A.Belon,
and
D.N.Frick
(2009).
Helicase inhibitors as specifically targeted antiviral therapy for hepatitis C.
|
| |
Future Virol,
4,
277-293.
|
 |
|
|
|
|
 |
C.A.Belon,
and
D.N.Frick
(2009).
Fuel specificity of the hepatitis C virus NS3 helicase.
|
| |
J Mol Biol,
388,
851-864.
|
 |
|
|
|
|
 |
D.Bamming,
and
C.M.Horvath
(2009).
Regulation of signal transduction by enzymatically inactive antiviral RNA helicase proteins MDA5, RIG-I, and LGP2.
|
| |
J Biol Chem,
284,
9700-9712.
|
 |
|
|
|
|
 |
D.Klostermeier,
and
M.G.Rudolph
(2009).
A novel dimerization motif in the C-terminal domain of the Thermus thermophilus DEAD box helicase Hera confers substantial flexibility.
|
| |
Nucleic Acids Res,
37,
421-430.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.Vlachakis
(2009).
Theoretical study of the Usutu virus helicase 3D structure, by means of computer-aided homology modelling.
|
| |
Theor Biol Med Model,
6,
9.
|
 |
|
|
|
|
 |
N.T.Uyen,
S.Y.Park,
J.W.Choi,
H.J.Lee,
K.Nishi,
and
J.S.Kim
(2009).
The fragment structure of a putative HsdR subunit of a type I restriction enzyme from Vibrio vulnificus YJ016: implications for DNA restriction and translocation activity.
|
| |
Nucleic Acids Res,
37,
6960-6969.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Chimnaronk,
T.Suzuki,
T.Manita,
Y.Ikeuchi,
M.Yao,
T.Suzuki,
and
I.Tanaka
(2009).
RNA helicase module in an acetyltransferase that modifies a specific tRNA anticodon.
|
| |
EMBO J,
28,
1362-1373.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.H.Ling,
Z.Cheng,
and
H.Song
(2009).
Structural aspects of RNA helicases in eukaryotic mRNA decay.
|
| |
Biosci Rep,
29,
339-349.
|
 |
|
|
|
|
 |
T.A.Jennings,
S.G.Mackintosh,
M.K.Harrison,
D.Sikora,
B.Sikora,
B.Dave,
A.J.Tackett,
C.E.Cameron,
and
K.D.Raney
(2009).
NS3 helicase from the hepatitis C virus can function as a monomer or oligomer depending on enzyme and substrate concentrations.
|
| |
J Biol Chem,
284,
4806-4814.
|
 |
|
|
|
|
 |
T.Phan,
R.K.Beran,
C.Peters,
I.C.Lorenz,
and
B.D.Lindenbach
(2009).
Hepatitis C virus NS2 protein contributes to virus particle assembly via opposing epistatic interactions with the E1-E2 glycoprotein and NS3-NS4A enzyme complexes.
|
| |
J Virol,
83,
8379-8395.
|
 |
|
|
|
|
 |
V.Pena,
S.M.Jovin,
P.Fabrizio,
J.Orlowski,
J.M.Bujnicki,
R.Lührmann,
and
M.C.Wahl
(2009).
Common design principles in the spliceosomal RNA helicase Brr2 and in the Hel308 DNA helicase.
|
| |
Mol Cell,
35,
454-466.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
V.Serebrov,
R.K.Beran,
and
A.M.Pyle
(2009).
Establishing a mechanistic basis for the large kinetic steps of the NS3 helicase.
|
| |
J Biol Chem,
284,
2512-2521.
|
 |
|
|
|
|
 |
A.Garai,
D.Chowdhury,
and
M.D.Betterton
(2008).
Two-state model for helicase translocation and unwinding of nucleic acids.
|
| |
Phys Rev E Stat Nonlin Soft Matter Phys,
77,
061910.
|
 |
|
|
|
|
 |
A.Gozdek,
I.Zhukov,
A.Polkowska,
J.Poznanski,
A.Stankiewicz-Drogon,
J.M.Pawlowicz,
W.Zagórski-Ostoja,
P.Borowski,
and
A.M.Boguszewska-Chachulska
(2008).
NS3 Peptide, a novel potent hepatitis C virus NS3 helicase inhibitor: its mechanism of action and antiviral activity in the replicon system.
|
| |
Antimicrob Agents Chemother,
52,
393-401.
|
 |
|
|
|
|
 |
A.M.Pyle
(2008).
Translocation and unwinding mechanisms of RNA and DNA helicases.
|
| |
Annu Rev Biophys,
37,
317-336.
|
 |
|
|
|
|
 |
B.Sikora,
Y.Chen,
C.F.Lichti,
M.K.Harrison,
T.A.Jennings,
Y.Tang,
A.J.Tackett,
J.B.Jordan,
J.Sakon,
C.E.Cameron,
and
K.D.Raney
(2008).
Hepatitis C virus NS3 helicase forms oligomeric structures that exhibit optimal DNA unwinding activity in vitro.
|
| |
J Biol Chem,
283,
11516-11525.
|
 |
|
|
|
|
 |
D.E.Kainov,
E.J.Mancini,
J.Telenius,
J.Lísal,
J.M.Grimes,
D.H.Bamford,
D.I.Stuart,
and
R.Tuma
(2008).
Structural basis of mechanochemical coupling in a hexameric molecular motor.
|
| |
J Biol Chem,
283,
3607-3617.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.Luo,
T.Xu,
R.P.Watson,
D.Scherer-Becker,
A.Sampath,
W.Jahnke,
S.S.Yeong,
C.H.Wang,
S.P.Lim,
A.Strongin,
S.G.Vasudevan,
and
J.Lescar
(2008).
Insights into RNA unwinding and ATP hydrolysis by the flavivirus NS3 protein.
|
| |
EMBO J,
27,
3209-3219.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.Chamieh,
L.Ballut,
F.Bonneau,
and
H.Le Hir
(2008).
NMD factors UPF2 and UPF3 bridge UPF1 to the exon junction complex and stimulate its RNA helicase activity.
|
| |
Nat Struct Mol Biol,
15,
85-93.
|
 |
|
|
|
|
 |
H.Liu,
J.Rudolf,
K.A.Johnson,
S.A.McMahon,
M.Oke,
L.Carter,
A.M.McRobbie,
S.E.Brown,
J.H.Naismith,
and
M.F.White
(2008).
Structure of the DNA repair helicase XPD.
|
| |
Cell,
133,
801-812.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
I.Garcia,
and
O.C.Uhlenbeck
(2008).
Differential RNA-dependent ATPase activities of four rRNA processing yeast DEAD-box proteins.
|
| |
Biochemistry,
47,
12562-12573.
|
 |
|
|
|
|
 |
J.Banroques,
O.Cordin,
M.Doère,
P.Linder,
and
N.K.Tanner
(2008).
A conserved phenylalanine of motif IV in superfamily 2 helicases is required for cooperative, ATP-dependent binding of RNA substrates in DEAD-box proteins.
|
| |
Mol Cell Biol,
28,
3359-3371.
|
 |
|
|
|
|
 |
J.Yang,
Y.F.Lei,
W.Yin,
S.H.Wei,
Q.X.An,
X.Lv,
X.B.Hu,
and
Z.K.Xu
(2008).
Production and characterization of monoclonal antibody specific for NS3 helicase of hepatitis C virus.
|
| |
Hybridoma (Larchmt),
27,
181-186.
|
 |
|
|
|
|
 |
N.D.Thomsen,
and
J.M.Berger
(2008).
Structural frameworks for considering microbial protein- and nucleic acid-dependent motor ATPases.
|
| |
Mol Microbiol,
69,
1071-1090.
|
 |
|
|
|
|
 |
P.T.Li,
J.Vieregg,
and
I.Tinoco
(2008).
How RNA unfolds and refolds.
|
| |
Annu Rev Biochem,
77,
77.
|
 |
|
|
|
|
 |
R.A.Pugh,
M.Honda,
H.Leesley,
A.Thomas,
Y.Lin,
M.J.Nilges,
I.K.Cann,
and
M.Spies
(2008).
The iron-containing domain is essential in Rad3 helicases for coupling of ATP hydrolysis to DNA translocation and for targeting the helicase to the single-stranded DNA-double-stranded DNA junction.
|
| |
J Biol Chem,
283,
1732-1743.
|
 |
|
|
|
|
 |
R.Lewis,
H.Dürr,
K.P.Hopfner,
and
J.Michaelis
(2008).
Conformational changes of a Swi2/Snf2 ATPase during its mechano-chemical cycle.
|
| |
Nucleic Acids Res,
36,
1881-1890.
|
 |
|
|
|
|
 |
R.Perera,
and
R.J.Kuhn
(2008).
Structural proteomics of dengue virus.
|
| |
Curr Opin Microbiol,
11,
369-377.
|
 |
|
|
|
|
 |
S.C.Wolski,
J.Kuper,
P.Hänzelmann,
J.J.Truglio,
D.L.Croteau,
B.Van Houten,
and
C.Kisker
(2008).
Crystal structure of the FeS cluster-containing nucleotide excision repair helicase XPD.
|
| |
PLoS Biol,
6,
e149.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Salloum,
C.Oniangue-Ndza,
C.Neumann-Haefelin,
L.Hudson,
S.Giugliano,
M.aus dem Siepen,
J.Nattermann,
U.Spengler,
G.M.Lauer,
M.Wiese,
P.Klenerman,
H.Bright,
N.Scherbaum,
R.Thimme,
M.Roggendorf,
S.Viazov,
and
J.Timm
(2008).
Escape from HLA-B*08-restricted CD8 T cells by hepatitis C virus is associated with fitness costs.
|
| |
J Virol,
82,
11803-11812.
|
 |
|
|
|
|
 |
T.M.Lohman,
E.J.Tomko,
and
C.G.Wu
(2008).
Non-hexameric DNA helicases and translocases: mechanisms and regulation.
|
| |
Nat Rev Mol Cell Biol,
9,
391-401.
|
 |
|
|
|
|
 |
V.Popuri,
C.Z.Bachrati,
L.Muzzolini,
G.Mosedale,
S.Costantini,
E.Giacomini,
I.D.Hickson,
and
A.Vindigni
(2008).
The Human RecQ helicases, BLM and RECQ1, display distinct DNA substrate specificities.
|
| |
J Biol Chem,
283,
17766-17776.
|
 |
|
|
|
|
 |
Y.Ma,
J.Yates,
Y.Liang,
S.M.Lemon,
and
M.Yi
(2008).
NS3 helicase domains involved in infectious intracellular hepatitis C virus particle assembly.
|
| |
J Virol,
82,
7624-7639.
|
 |
|
|
|
|
 |
Y.Yang,
S.X.Dou,
H.Ren,
P.Y.Wang,
X.D.Zhang,
M.Qian,
B.Y.Pan,
and
X.G.Xi
(2008).
Evidence for a functional dimeric form of the PcrA helicase in DNA unwinding.
|
| |
Nucleic Acids Res,
36,
1976-1989.
|
 |
|
|
|
|
 |
A.R.Karow,
B.Theissen,
and
D.Klostermeier
(2007).
Authentic interdomain communication in an RNA helicase reconstituted by expressed protein ligation of two helicase domains.
|
| |
FEBS J,
274,
463-473.
|
 |
|
|
|
|
 |
B.R.Cairns
(2007).
Chromatin remodeling: insights and intrigue from single-molecule studies.
|
| |
Nat Struct Mol Biol,
14,
989-996.
|
 |
|
|
|
|
 |
D.N.Frick,
S.Banik,
and
R.S.Rypma
(2007).
Role of divalent metal cations in ATP hydrolysis catalyzed by the hepatitis C virus NS3 helicase: magnesium provides a bridge for ATP to fuel unwinding.
|
| |
J Mol Biol,
365,
1017-1032.
|
 |
|
|
|
|
 |
D.S.Johnson,
L.Bai,
B.Y.Smith,
S.S.Patel,
and
M.D.Wang
(2007).
Single-molecule studies reveal dynamics of DNA unwinding by the ring-shaped T7 helicase.
|
| |
Cell,
129,
1299-1309.
|
 |
|
|
|
|
 |
E.Jankowsky,
and
M.E.Fairman
(2007).
RNA helicases--one fold for many functions.
|
| |
Curr Opin Struct Biol,
17,
316-324.
|
 |
|
|
|
|
 |
G.Wen,
C.Chen,
X.Luo,
Y.Wang,
C.Zhang,
and
Z.Pan
(2007).
Identification and characterization of the NTPase activity of classical swine fever virus (CSFV) nonstructural protein 3 (NS3) expressed in bacteria.
|
| |
Arch Virol,
152,
1565-1573.
|
 |
|
|
|
|
 |
I.D.Kerr,
S.Sivakolundu,
Z.Li,
J.C.Buchsbaum,
L.A.Knox,
R.Kriwacki,
and
S.W.White
(2007).
Crystallographic and NMR analyses of UvsW and UvsW.1 from bacteriophage T4.
|
| |
J Biol Chem,
282,
34392-34400.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.M.Pawlotsky,
S.Chevaliez,
and
J.G.McHutchison
(2007).
The hepatitis C virus life cycle as a target for new antiviral therapies.
|
| |
Gastroenterology,
132,
1979-1998.
|
 |
|
|
|
|
 |
K.Büttner,
S.Nehring,
and
K.P.Hopfner
(2007).
Structural basis for DNA duplex separation by a superfamily-2 helicase.
|
| |
Nat Struct Mol Biol,
14,
647-652.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.P.Hopfner,
and
J.Michaelis
(2007).
Mechanisms of nucleic acid translocases: lessons from structural biology and single-molecule biophysics.
|
| |
Curr Opin Struct Biol,
17,
87-95.
|
 |
|
|
|
|
 |
M.R.Singleton,
M.S.Dillingham,
and
D.B.Wigley
(2007).
Structure and mechanism of helicases and nucleic acid translocases.
|
| |
Annu Rev Biochem,
76,
23-50.
|
 |
|
|
|
|
 |
P.Zhang,
N.Zhang,
V.E.Buckwold,
and
R.S.Hosmane
(2007).
Chemical and biological effects of substitution of the 2-position of ring-expanded ('fat') nucleosides containing the imidazo[4,5-e][1,3]diazepine-4,8-dione ring system: the role of electronic and steric factors on glycosidic bond stability and anti-HCV activity.
|
| |
Bioorg Med Chem,
15,
4933-4945.
|
 |
|
|
|
|
 |
S.Myong,
M.M.Bruno,
A.M.Pyle,
and
T.Ha
(2007).
Spring-loaded mechanism of DNA unwinding by hepatitis C virus NS3 helicase.
|
| |
Science,
317,
513-516.
|
 |
|
|
|
|
 |
S.Plumet,
F.Herschke,
J.M.Bourhis,
H.Valentin,
S.Longhi,
and
D.Gerlier
(2007).
Cytosolic 5'-triphosphate ended viral leader transcript of measles virus as activator of the RIG I-mediated interferon response.
|
| |
PLoS ONE,
2,
e279.
|
 |
|
|
|
|
 |
T.L.Tellinghuisen,
M.J.Evans,
T.von Hahn,
S.You,
and
C.M.Rice
(2007).
Studying hepatitis C virus: making the best of a bad virus.
|
| |
J Virol,
81,
8853-8867.
|
 |
|
|
|
|
 |
T.Suzuki,
K.Ishii,
H.Aizaki,
and
T.Wakita
(2007).
Hepatitis C viral life cycle.
|
| |
Adv Drug Deliv Rev,
59,
1200-1212.
|
 |
|
|
|
|
 |
W.Zheng,
J.C.Liao,
B.R.Brooks,
and
S.Doniach
(2007).
Toward the mechanism of dynamical couplings and translocation in hepatitis C virus NS3 helicase using elastic network model.
|
| |
Proteins,
67,
886-896.
|
 |
|
|
|
|
 |
A.K.Byrd,
and
K.D.Raney
(2006).
Displacement of a DNA binding protein by Dda helicase.
|
| |
Nucleic Acids Res,
34,
3020-3029.
|
 |
|
|
|
|
 |
A.M.Lam,
and
D.N.Frick
(2006).
Hepatitis C virus subgenomic replicon requires an active NS3 RNA helicase.
|
| |
J Virol,
80,
404-411.
|
 |
|
|
|
|
 |
A.Saha,
J.Wittmeyer,
and
B.R.Cairns
(2006).
Chromatin remodelling: the industrial revolution of DNA around histones.
|
| |
Nat Rev Mol Cell Biol,
7,
437-447.
|
 |
|
|
|
|
 |
A.Sampath,
T.Xu,
A.Chao,
D.Luo,
J.Lescar,
and
S.G.Vasudevan
(2006).
Structure-based mutational analysis of the NS3 helicase from dengue virus.
|
| |
J Virol,
80,
6686-6690.
|
 |
|
|
|
|
 |
D.N.Frick
(2006).
Step-by-step progress toward understanding the hepatitis C virus RNA helicase.
|
| |
Hepatology,
43,
1392-1395.
|
 |
|
|
|
|
 |
D.Nashchekin,
J.Zhao,
N.Visa,
and
B.Daneholt
(2006).
A novel Ded1-like RNA helicase interacts with the Y-box protein ctYB-1 in nuclear mRNP particles and in polysomes.
|
| |
J Biol Chem,
281,
14263-14272.
|
 |
|
|
|
|
 |
H.Dürr,
A.Flaus,
T.Owen-Hughes,
and
K.P.Hopfner
(2006).
Snf2 family ATPases and DExx box helicases: differences and unifying concepts from high-resolution crystal structures.
|
| |
Nucleic Acids Res,
34,
4160-4167.
|
 |
|
|
|
|
 |
J.Y.Lee,
and
W.Yang
(2006).
UvrD helicase unwinds DNA one base pair at a time by a two-part power stroke.
|
| |
Cell,
127,
1349-1360.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
L.Fan,
A.S.Arvai,
P.K.Cooper,
S.Iwai,
F.Hanaoka,
and
J.A.Tainer
(2006).
Conserved XPB core structure and motifs for DNA unwinding: implications for pathway selection of transcription or excision repair.
|
| |
Mol Cell,
22,
27-37.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
L.K.Stanley,
R.Seidel,
C.van der Scheer,
N.H.Dekker,
M.D.Szczelkun,
and
C.Dekker
(2006).
When a helicase is not a helicase: dsDNA tracking by the motor protein EcoR124I.
|
| |
EMBO J,
25,
2230-2239.
|
 |
|
|
|
|
 |
M.P.Killoran,
and
J.L.Keck
(2006).
Sit down, relax and unwind: structural insights into RecQ helicase mechanisms.
|
| |
Nucleic Acids Res,
34,
4098-4105.
|
 |
|
|
|
|
 |
N.Appel,
T.Schaller,
F.Penin,
and
R.Bartenschlager
(2006).
From structure to function: new insights into hepatitis C virus RNA replication.
|
| |
J Biol Chem,
281,
9833-9836.
|
 |
|
|
|
|
 |
N.B.Leeds,
E.C.Small,
S.L.Hiley,
T.R.Hughes,
and
J.P.Staley
(2006).
The splicing factor Prp43p, a DEAH box ATPase, functions in ribosome biogenesis.
|
| |
Mol Cell Biol,
26,
513-522.
|
 |
|
|
|
|
 |
N.Tanaka,
and
B.Schwer
(2006).
Mutations in PRP43 that uncouple RNA-dependent NTPase activity and pre-mRNA splicing function.
|
| |
Biochemistry,
45,
6510-6521.
|
 |
|
|
|
|
 |
S.Dumont,
W.Cheng,
V.Serebrov,
R.K.Beran,
I.Tinoco,
A.M.Pyle,
and
C.Bustamante
(2006).
RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP.
|
| |
Nature,
439,
105-108.
|
 |
|
|
|
|
 |
S.G.Mackintosh,
J.Z.Lu,
J.B.Jordan,
M.K.Harrison,
B.Sikora,
S.D.Sharma,
C.E.Cameron,
K.D.Raney,
and
J.Sakon
(2006).
Structural and biological identification of residues on the surface of NS3 helicase required for optimal replication of the hepatitis C virus.
|
| |
J Biol Chem,
281,
3528-3535.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.Lionnet,
A.Dawid,
S.Bigot,
F.X.Barre,
O.A.Saleh,
F.Heslot,
J.F.Allemand,
D.Bensimon,
and
V.Croquette
(2006).
DNA mechanics as a tool to probe helicase and translocase activity.
|
| |
Nucleic Acids Res,
34,
4232-4244.
|
 |
|
|
|
|
 |
T.Matsui,
K.Hogetsu,
J.Usukura,
T.Sato,
T.Kumasaka,
Y.Akao,
and
N.Tanaka
(2006).
Structural insight of human DEAD-box protein rck/p54 into its substrate recognition with conformational changes.
|
| |
Genes Cells,
11,
439-452.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.Shibuya,
T.Ã.˜.Tange,
M.E.Stroupe,
and
M.J.Moore
(2006).
Mutational analysis of human eIF4AIII identifies regions necessary for exon junction complex formation and nonsense-mediated mRNA decay.
|
| |
RNA,
12,
360-374.
|
 |
|
|
|
|
 |
X.D.Zhang,
S.X.Dou,
P.Xie,
J.S.Hu,
P.Y.Wang,
and
X.G.Xi
(2006).
Escherichia coli RecQ is a rapid, efficient, and monomeric helicase.
|
| |
J Biol Chem,
281,
12655-12663.
|
 |
|
|
|
|
 |
A.D.Kwong,
B.G.Rao,
and
K.T.Jeang
(2005).
Viral and cellular RNA helicases as antiviral targets.
|
| |
Nat Rev Drug Discov,
4,
845-853.
|
 |
|
|
|
|
 |
C.Yon,
T.Teramoto,
N.Mueller,
J.Phelan,
V.K.Ganesh,
K.H.Murthy,
and
R.Padmanabhan
(2005).
Modulation of the nucleoside triphosphatase/RNA helicase and 5'-RNA triphosphatase activities of Dengue virus type 2 nonstructural protein 3 (NS3) by interaction with NS5, the RNA-dependent RNA polymerase.
|
| |
J Biol Chem,
280,
27412-27419.
|
 |
|
|
|
|
 |
C.Zhang,
Z.Cai,
Y.C.Kim,
R.Kumar,
F.Yuan,
P.Y.Shi,
C.Kao,
and
G.Luo
(2005).
Stimulation of hepatitis C virus (HCV) nonstructural protein 3 (NS3) helicase activity by the NS3 protease domain and by HCV RNA-dependent RNA polymerase.
|
| |
J Virol,
79,
8687-8697.
|
 |
|
|
|
|
 |
E.Papanikou,
S.Karamanou,
C.Baud,
M.Frank,
G.Sianidis,
D.Keramisanou,
C.G.Kalodimos,
A.Kuhn,
and
A.Economou
(2005).
Identification of the preprotein binding domain of SecA.
|
| |
J Biol Chem,
280,
43209-43217.
|
 |
|
|
|
|
 |
H.Dürr,
C.Körner,
M.Müller,
V.Hickmann,
and
K.P.Hopfner
(2005).
X-ray structures of the Sulfolobus solfataricus SWI2/SNF2 ATPase core and its complex with DNA.
|
| |
Cell,
121,
363-373.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Wu,
A.K.Bera,
R.J.Kuhn,
and
J.L.Smith
(2005).
Structure of the Flavivirus helicase: implications for catalytic activity, protein interactions, and proteolytic processing.
|
| |
J Virol,
79,
10268-10277.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.K.Levin,
M.Gurjar,
and
S.S.Patel
(2005).
A Brownian motor mechanism of translocation and strand separation by hepatitis C virus helicase.
|
| |
Nat Struct Mol Biol,
12,
429-435.
|
 |
|
|
|
|
 |
M.Oberer,
A.Marintchev,
and
G.Wagner
(2005).
Structural basis for the enhancement of eIF4A helicase activity by eIF4G.
|
| |
Genes Dev,
19,
2212-2223.
|
 |
|
|
|
|
 |
M.S.Willis,
J.K.Hogan,
P.Prabhakar,
X.Liu,
K.Tsai,
Y.Wei,
and
T.Fox
(2005).
Investigation of protein refolding using a fractional factorial screen: a study of reagent effects and interactions.
|
| |
Protein Sci,
14,
1818-1826.
|
 |
|
|
|
|
 |
N.H.Thomä,
B.K.Czyzewski,
A.A.Alexeev,
A.V.Mazin,
S.C.Kowalczykowski,
and
N.P.Pavletich
(2005).
Structure of the SWI2/SNF2 chromatin-remodeling domain of eukaryotic Rad54.
|
| |
Nat Struct Mol Biol,
12,
350-356.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
N.L.Korneeva,
E.A.First,
C.A.Benoit,
and
R.E.Rhoads
(2005).
Interaction between the NH2-terminal domain of eIF4A and the central domain of eIF4G modulates RNA-stimulated ATPase activity.
|
| |
J Biol Chem,
280,
1872-1881.
|
 |
|
|
|
|
 |
S.Rocak,
B.Emery,
N.K.Tanner,
and
P.Linder
(2005).
Characterization of the ATPase and unwinding activities of the yeast DEAD-box protein Has1p and the analysis of the roles of the conserved motifs.
|
| |
Nucleic Acids Res,
33,
999.
|
 |
|
|
|
|
 |
T.Xu,
A.Sampath,
A.Chao,
D.Wen,
M.Nanao,
P.Chene,
S.G.Vasudevan,
and
J.Lescar
(2005).
Structure of the Dengue virus helicase/nucleoside triphosphatase catalytic domain at a resolution of 2.4 A.
|
| |
J Virol,
79,
10278-10288.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Y.Tang,
Y.Chen,
C.F.Lichti,
R.A.Hall,
K.D.Raney,
and
S.F.Jennings
(2005).
CLPM: a cross-linked peptide mapping algorithm for mass spectrometric analysis.
|
| |
BMC Bioinformatics,
6,
S9.
|
 |
|
|
|
|
 |
Z.Cheng,
J.Coller,
R.Parker,
and
H.Song
(2005).
Crystal structure and functional analysis of DEAD-box protein Dhh1p.
|
| |
RNA,
11,
1258-1270.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.B.Carmel,
and
B.W.Matthews
(2004).
Crystal structure of the BstDEAD N-terminal domain: a novel DEAD protein from Bacillus stearothermophilus.
|
| |
RNA,
10,
66-74.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.K.Byrd,
and
K.D.Raney
(2004).
Protein displacement by an assembly of helicase molecules aligned along single-stranded DNA.
|
| |
Nat Struct Mol Biol,
11,
531-538.
|
 |
|
|
|
|
 |
A.M.Lam,
R.S.Rypma,
and
D.N.Frick
(2004).
Enhanced nucleic acid binding to ATP-bound hepatitis C virus NS3 helicase at low pH activates RNA unwinding.
|
| |
Nucleic Acids Res,
32,
4060-4070.
|
 |
|
|
|
|
 |
A.Y.Howe,
J.Bloom,
C.J.Baldick,
C.A.Benetatos,
H.Cheng,
J.S.Christensen,
S.K.Chunduru,
G.A.Coburn,
B.Feld,
A.Gopalsamy,
W.P.Gorczyca,
S.Herrmann,
S.Johann,
X.Jiang,
M.L.Kimberland,
G.Krisnamurthy,
M.Olson,
M.Orlowski,
S.Swanberg,
I.Thompson,
M.Thorn,
A.Del Vecchio,
D.C.Young,
M.van Zeijl,
J.W.Ellingboe,
J.Upeslacis,
M.Collett,
T.S.Mansour,
and
J.F.O'Connell
(2004).
Novel nonnucleoside inhibitor of hepatitis C virus RNA-dependent RNA polymerase.
|
| |
Antimicrob Agents Chemother,
48,
4813-4821.
|
 |
|
|
|
|
 |
B.Hwang,
J.S.Cho,
H.J.Yeo,
J.H.Kim,
K.M.Chung,
K.Han,
S.K.Jang,
and
S.W.Lee
(2004).
Isolation of specific and high-affinity RNA aptamers against NS3 helicase domain of hepatitis C virus.
|
| |
RNA,
10,
1277-1290.
|
 |
|
|
|
|
 |
B.Macao,
M.Olsson,
and
P.Elias
(2004).
Functional properties of the herpes simplex virus type I origin-binding protein are controlled by precise interactions with the activated form of the origin of DNA replication.
|
| |
J Biol Chem,
279,
29211-29217.
|
 |
|
|
|
|
 |
D.J.Fitzgerald,
C.DeLuca,
I.Berger,
H.Gaillard,
R.Sigrist,
K.Schimmele,
and
T.J.Richmond
(2004).
Reaction cycle of the yeast Isw2 chromatin remodeling complex.
|
| |
EMBO J,
23,
3836-3843.
|
 |
|
|
|
|
 |
D.N.Frick,
R.S.Rypma,
A.M.Lam,
and
B.Gu
(2004).
The nonstructural protein 3 protease/helicase requires an intact protease domain to unwind duplex RNA efficiently.
|
| |
J Biol Chem,
279,
1269-1280.
|
 |
|
|
|
|
 |
D.N.Frick,
R.S.Rypma,
A.M.Lam,
and
C.M.Frenz
(2004).
Electrostatic analysis of the hepatitis C virus NS3 helicase reveals both active and allosteric site locations.
|
| |
Nucleic Acids Res,
32,
5519-5528.
|
 |
|
|
|
|
 |
E.A.Sickmier,
K.N.Kreuzer,
and
S.W.White
(2004).
The crystal structure of the UvsW helicase from bacteriophage T4.
|
| |
Structure,
12,
583-592.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
F.Nishikawa,
K.Funaji,
K.Fukuda,
and
S.Nishikawa
(2004).
In vitro selection of RNA aptamers against the HCV NS3 helicase domain.
|
| |
Oligonucleotides,
14,
114-129.
|
 |
|
|
|
|
 |
F.Penin,
J.Dubuisson,
F.A.Rey,
D.Moradpour,
and
J.M.Pawlotsky
(2004).
Structural biology of hepatitis C virus.
|
| |
Hepatology,
39,
5.
|
 |
|
|
|
|
 |
F.V.Karginov,
and
O.C.Uhlenbeck
(2004).
Interaction of Escherichia coli DbpA with 23S rRNA in different functional states of the enzyme.
|
| |
Nucleic Acids Res,
32,
3028-3032.
|
 |
|
|
|
|
 |
I.Gómez-Pinto,
E.Cubero,
S.G.Kalko,
V.Monaco,
G.van der Marel,
J.H.van Boom,
M.Orozco,
and
C.González
(2004).
Effect of bulky lesions on DNA: solution structure of a DNA duplex containing a cholesterol adduct.
|
| |
J Biol Chem,
279,
24552-24560.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.C.Murphy,
I.Rasnik,
W.Cheng,
T.M.Lohman,
and
T.Ha
(2004).
Probing single-stranded DNA conformational flexibility using fluorescence spectroscopy.
|
| |
Biophys J,
86,
2530-2537.
|
 |
|
|
|
|
 |
M.K.Levin,
Y.H.Wang,
and
S.S.Patel
(2004).
The functional interaction of the hepatitis C virus helicase molecules is responsible for unwinding processivity.
|
| |
J Biol Chem,
279,
26005-26012.
|
 |
|
|
|
|
 |
M.Kew,
G.François,
D.Lavanchy,
H.Margolis,
P.Van Damme,
P.Grob,
J.Hallauer,
D.Shouval,
G.Leroux-Roels,
and
A.Meheus
(2004).
Prevention of hepatitis C virus infection.
|
| |
J Viral Hepat,
11,
198-205.
|
 |
|
|
|
|
 |
N.Tuteja,
and
R.Tuteja
(2004).
Unraveling DNA helicases. Motif, structure, mechanism and function.
|
| |
Eur J Biochem,
271,
1849-1863.
|
 |
|
|
|
|
 |
P.L.Garcia,
G.Bradley,
C.J.Hayes,
S.Krintel,
P.Soultanas,
and
P.Janscak
(2004).
RPA alleviates the inhibitory effect of vinylphosphonate internucleotide linkages on DNA unwinding by BLM and WRN helicases.
|
| |
Nucleic Acids Res,
32,
3771-3778.
|
 |
|
|
|
|
 |
R.Zhao,
J.Shen,
M.R.Green,
M.MacMorris,
and
T.Blumenthal
(2004).
Crystal structure of UAP56, a DExD/H-box protein involved in pre-mRNA splicing and mRNA export.
|
| |
Structure,
12,
1373-1381.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Rocak,
and
P.Linder
(2004).
DEAD-box proteins: the driving forces behind RNA metabolism.
|
| |
Nat Rev Mol Cell Biol,
5,
232-241.
|
 |
|
|
|
|
 |
S.Schneider,
E.Campodonico,
and
B.Schwer
(2004).
Motifs IV and V in the DEAH box splicing factor Prp22 are important for RNA unwinding, and helicase-defective Prp22 mutants are suppressed by Prp8.
|
| |
J Biol Chem,
279,
8617-8626.
|
 |
|
|
|
|
 |
T.Shibuya,
T.Ã.˜.Tange,
N.Sonenberg,
and
M.J.Moore
(2004).
eIF4AIII binds spliced mRNA in the exon junction complex and is essential for nonsense-mediated decay.
|
| |
Nat Struct Mol Biol,
11,
346-351.
|
 |
|
|
|
|
 |
T.Ã.˜.Tange,
A.Nott,
and
M.J.Moore
(2004).
The ever-increasing complexities of the exon junction complex.
|
| |
Curr Opin Cell Biol,
16,
279-284.
|
 |
|
|
|
|
 |
V.Serebrov,
and
A.M.Pyle
(2004).
Periodic cycles of RNA unwinding and pausing by hepatitis C virus NS3 helicase.
|
| |
Nature,
430,
476-480.
|
 |
|
|
|
|
 |
A.K.Kar,
and
P.Roy
(2003).
Defining the structure-function relationships of bluetongue virus helicase protein VP6.
|
| |
J Virol,
77,
11347-11356.
|
 |
|
|
|
|
 |
A.M.Lam,
D.Keeney,
and
D.N.Frick
(2003).
Two novel conserved motifs in the hepatitis C virus NS3 protein critical for helicase action.
|
| |
J Biol Chem,
278,
44514-44524.
|
 |
|
|
|
|
 |
A.M.Lam,
D.Keeney,
P.Q.Eckert,
and
D.N.Frick
(2003).
Hepatitis C virus NS3 ATPases/helicases from different genotypes exhibit variations in enzymatic properties.
|
| |
J Virol,
77,
3950-3961.
|
 |
|
|
|
|
 |
A.Oguro,
T.Ohtsu,
Y.V.Svitkin,
N.Sonenberg,
and
Y.Nakamura
(2003).
RNA aptamers to initiation factor 4A helicase hinder cap-dependent translation by blocking ATP hydrolysis.
|
| |
RNA,
9,
394-407.
|
 |
|
|
|
|
 |
B.Marintcheva,
and
S.K.Weller
(2003).
Helicase motif Ia is involved in single-strand DNA-binding and helicase activities of the herpes simplex virus type 1 origin-binding protein, UL9.
|
| |
J Virol,
77,
2477-2488.
|
 |
|
|
|
|
 |
D.A.Bernstein,
M.C.Zittel,
and
J.L.Keck
(2003).
High-resolution structure of the E.coli RecQ helicase catalytic core.
|
| |
EMBO J,
22,
4910-4921.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.C.Arthur,
A.F.Ghetu,
M.J.Gubbins,
R.A.Edwards,
L.S.Frost,
and
J.N.Glover
(2003).
FinO is an RNA chaperone that facilitates sense-antisense RNA interactions.
|
| |
EMBO J,
22,
6346-6355.
|
 |
|
|
|
|
 |
D.Liu,
W.T.Windsor,
and
D.F.Wyss
(2003).
Double-stranded DNA-induced localized unfolding of HCV NS3 helicase subdomain 2.
|
| |
Protein Sci,
12,
2757-2767.
|
 |
|
|
|
|
 |
H.Q.Xu,
E.Deprez,
A.H.Zhang,
P.Tauc,
M.M.Ladjimi,
J.C.Brochon,
C.Auclair,
and
X.G.Xi
(2003).
The Escherichia coli RecQ helicase functions as a monomer.
|
| |
J Biol Chem,
278,
34925-34933.
|
 |
|
|
|
|
 |
H.Xu,
N.Sträter,
W.Schröder,
C.Böttcher,
K.Ludwig,
and
W.Saenger
(2003).
Structure of DNA helicase RepA in complex with sulfate at 1.95 A resolution implicates structural changes to an "open" form.
|
| |
Acta Crystallogr D Biol Crystallogr,
59,
815-822.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.A.Grobler,
E.J.Markel,
J.F.Fay,
D.J.Graham,
A.L.Simcoe,
S.W.Ludmerer,
E.M.Murray,
G.Migliaccio,
and
O.A.Flores
(2003).
Identification of a key determinant of hepatitis C virus cell culture adaptation in domain II of NS3 helicase.
|
| |
J Biol Chem,
278,
16741-16746.
|
 |
|
|
|
|
 |
J.A.Tanner,
R.M.Watt,
Y.B.Chai,
L.Y.Lu,
M.C.Lin,
J.S.Peiris,
L.L.Poon,
H.F.Kung,
and
J.D.Huang
(2003).
The severe acute respiratory syndrome (SARS) coronavirus NTPase/helicase belongs to a distinct class of 5' to 3' viral helicases.
|
| |
J Biol Chem,
278,
39578-39582.
|
 |
|
|
|
|
 |
J.W.Kim,
M.Y.Seo,
A.Shelat,
C.S.Kim,
T.W.Kwon,
H.H.Lu,
D.T.Moustakas,
J.Sun,
and
J.H.Han
(2003).
Structurally conserved amino Acid w501 is required for RNA helicase activity but is not essential for DNA helicase activity of hepatitis C virus NS3 protein.
|
| |
J Virol,
77,
571-582.
|
 |
|
|
|
|
 |
L.J.Stuyver,
T.Whitaker,
T.R.McBrayer,
B.I.Hernandez-Santiago,
S.Lostia,
P.M.Tharnish,
M.Ramesh,
C.K.Chu,
R.Jordan,
J.Shi,
S.Rachakonda,
K.A.Watanabe,
M.J.Otto,
and
R.F.Schinazi
(2003).
Ribonucleoside analogue that blocks replication of bovine viral diarrhea and hepatitis C viruses in culture.
|
| |
Antimicrob Agents Chemother,
47,
244-254.
|
 |
|
|
|
|
 |
M.Christiansen,
T.Stevnsner,
C.Modin,
P.M.Martensen,
R.M.Brosh,
and
V.A.Bohr
(2003).
Functional consequences of mutations in the conserved SF2 motifs and post-translational phosphorylation of the CSB protein.
|
| |
Nucleic Acids Res,
31,
963-973.
|
 |
|
|
|
|
 |
M.D.Betterton,
and
F.Jülicher
(2003).
A motor that makes its own track: helicase unwinding of DNA.
|
| |
Phys Rev Lett,
91,
258103.
|
 |
|
|
|
|
 |
M.K.Levin,
M.M.Gurjar,
and
S.S.Patel
(2003).
ATP binding modulates the nucleic acid affinity of hepatitis C virus helicase.
|
| |
J Biol Chem,
278,
23311-23316.
|
 |
|
|
|
|
 |
P.Borowski,
J.Deinert,
S.Schalinski,
M.Bretner,
K.Ginalski,
T.Kulikowski,
and
D.Shugar
(2003).
Halogenated benzimidazoles and benzotriazoles as inhibitors of the NTPase/helicase activities of hepatitis C and related viruses.
|
| |
Eur J Biochem,
270,
1645-1653.
|
 |
|
|
|
|
 |
V.Lohmann,
S.Hoffmann,
U.Herian,
F.Penin,
and
R.Bartenschlager
(2003).
Viral and cellular determinants of hepatitis C virus RNA replication in cell culture.
|
| |
J Virol,
77,
3007-3019.
|
 |
|
|
|
|
 |
V.Sharma,
A.Arockiasamy,
D.R.Ronning,
C.G.Savva,
A.Holzenburg,
M.Braunstein,
W.R.Jacobs,
and
J.C.Sacchettini
(2003).
Crystal structure of Mycobacterium tuberculosis SecA, a preprotein translocating ATPase.
|
| |
Proc Natl Acad Sci U S A,
100,
2243-2248.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Aslani,
M.Olsson,
and
P.Elias
(2002).
ATP-dependent unwinding of a minimal origin of DNA replication by the origin-binding protein and the single-strand DNA-binding protein ICP8 from herpes simplex virus type I.
|
| |
J Biol Chem,
277,
41204-41212.
|
 |
|
|
|
|
 |
A.C.Rodríguez,
and
D.Stock
(2002).
Crystal structure of reverse gyrase: insights into the positive supercoiling of DNA.
|
| |
EMBO J,
21,
418-426.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.I.Alexandrov,
M.R.Botchan,
and
N.R.Cozzarelli
(2002).
Characterization of simian virus 40 T-antigen double hexamers bound to a replication fork. The active form of the helicase.
|
| |
J Biol Chem,
277,
44886-44897.
|
 |
|
|
|
|
 |
C.F.Boerkoel,
H.Takashima,
J.John,
J.Yan,
P.Stankiewicz,
L.Rosenbarker,
J.L.André,
R.Bogdanovic,
A.Burguet,
S.Cockfield,
I.Cordeiro,
S.Fründ,
F.Illies,
M.Joseph,
I.Kaitila,
G.Lama,
C.Loirat,
D.R.McLeod,
D.V.Milford,
E.M.Petty,
F.Rodrigo,
J.M.Saraiva,
B.Schmidt,
G.C.Smith,
J.Spranger,
A.Stein,
H.Thiele,
J.Tizard,
R.Weksberg,
J.R.Lupski,
and
D.W.Stockton
(2002).
Mutant chromatin remodeling protein SMARCAL1 causes Schimke immuno-osseous dysplasia.
|
| |
Nat Genet,
30,
215-220.
|
 |
|
|
|
|
 |
C.G.Lee
(2002).
RH70, a bidirectional RNA helicase, co-purifies with U1snRNP.
|
| |
J Biol Chem,
277,
39679-39683.
|
 |
|
|
|
|
 |
E.Campodonico,
and
B.Schwer
(2002).
ATP-dependent remodeling of the spliceosome: intragenic suppressors of release-defective mutants of Saccharomyces cerevisiae Prp22.
|
| |
Genetics,
160,
407-415.
|
 |
|
|
|
|
 |
E.Or,
A.Navon,
and
T.Rapoport
(2002).
Dissociation of the dimeric SecA ATPase during protein translocation across the bacterial membrane.
|
| |
EMBO J,
21,
4470-4479.
|
 |
|
|
|
|
 |
G.A.Locatelli,
S.Spadari,
and
G.Maga
(2002).
Hepatitis C virus NS3 ATPase/helicase: an ATP switch regulates the cooperativity among the different substrate binding sites.
|
| |
Biochemistry,
41,
10332-10342.
|
 |
|
|
|
|
 |
J.F.Hunt,
S.Weinkauf,
L.Henry,
J.J.Fak,
P.McNicholas,
D.B.Oliver,
and
J.Deisenhofer
(2002).
Nucleotide control of interdomain interactions in the conformational reaction cycle of SecA.
|
| |
Science,
297,
2018-2026.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.M.Caruthers,
and
D.B.McKay
(2002).
Helicase structure and mechanism.
|
| |
Curr Opin Struct Biol,
12,
123-133.
|
 |
|
|
|
|
 |
M.K.Levin,
and
S.S.Patel
(2002).
Helicase from hepatitis C virus, energetics of DNA binding.
|
| |
J Biol Chem,
277,
29377-29385.
|
 |
|
|
|
|
 |
M.Minczuk,
J.Piwowarski,
M.A.Papworth,
K.Awiszus,
S.Schalinski,
A.Dziembowski,
A.Dmochowska,
E.Bartnik,
K.Tokatlidis,
P.P.Stepien,
and
P.Borowski
(2002).
Localisation of the human hSuv3p helicase in the mitochondrial matrix and its preferential unwinding of dsDNA.
|
| |
Nucleic Acids Res,
30,
5074-5086.
|
 |
|
|
|
|
 |
M.R.Singleton,
and
D.B.Wigley
(2002).
Modularity and specialization in superfamily 1 and 2 helicases.
|
| |
J Bacteriol,
184,
1819-1826.
|
 |
|
|
|
|
 |
M.S.Dillingham,
D.B.Wigley,
and
M.R.Webb
(2002).
Direct measurement of single-stranded DNA translocation by PcrA helicase using the fluorescent base analogue 2-aminopurine.
|
| |
Biochemistry,
41,
643-651.
|
 |
|
|
|
|
 |
M.S.Mitchell,
S.Matsuzaki,
S.Imai,
and
V.B.Rao
(2002).
Sequence analysis of bacteriophage T4 DNA packaging/terminase genes 16 and 17 reveals a common ATPase center in the large subunit of viral terminases.
|
| |
Nucleic Acids Res,
30,
4009-4021.
|
 |
|
|
|
|
 |
P.Borowski,
M.Lang,
A.Haag,
H.Schmitz,
J.Choe,
H.M.Chen,
and
R.S.Hosmane
(2002).
Characterization of imidazo[4,5-d]pyridazine nucleosides as modulators of unwinding reaction mediated by West Nile virus nucleoside triphosphatase/helicase: evidence for activity on the level of substrate and/or enzyme.
|
| |
Antimicrob Agents Chemother,
46,
1231-1239.
|
 |
|
|
|
|
 |
S.L.Tan,
A.Pause,
Y.Shi,
and
N.Sonenberg
(2002).
Hepatitis C therapeutics: current status and emerging strategies.
|
| |
Nat Rev Drug Discov,
1,
867-881.
|
 |
|
|
|
|
 |
S.Schneider,
H.R.Hotz,
and
B.Schwer
(2002).
Characterization of dominant-negative mutants of the DEAH-box splicing factors Prp22 and Prp16.
|
| |
J Biol Chem,
277,
15452-15458.
|
 |
|
|
|
|
 |
Y.Huang,
and
Z.R.Liu
(2002).
The ATPase, RNA unwinding, and RNA binding activities of recombinant p68 RNA helicase.
|
| |
J Biol Chem,
277,
12810-12815.
|
 |
|
|
|
|
 |
A.E.Matusan,
M.J.Pryor,
A.D.Davidson,
and
P.J.Wright
(2001).
Mutagenesis of the Dengue virus type 2 NS3 protein within and outside helicase motifs: effects on enzyme activity and virus replication.
|
| |
J Virol,
75,
9633-9643.
|
 |
|
|
|
|
 |
A.J.Tackett,
L.Wei,
C.E.Cameron,
and
K.D.Raney
(2001).
Unwinding of nucleic acids by HCV NS3 helicase is sensitive to the structure of the duplex.
|
| |
Nucleic Acids Res,
29,
565-572.
|
 |
|
|
|
|
 |
B.W.Dymock
(2001).
Emerging therapies for hepatitis C virus infection.
|
| |
Expert Opin Emerg Drugs,
6,
13-42.
|
 |
|
|
|
|
 |
C.A.Tsu,
K.Kossen,
and
O.C.Uhlenbeck
(2001).
The Escherichia coli DEAD protein DbpA recognizes a small RNA hairpin in 23S rRNA.
|
| |
RNA,
7,
702-709.
|
 |
|
|
|
|
 |
C.L.Tai,
W.C.Pan,
S.H.Liaw,
U.C.Yang,
L.H.Hwang,
and
D.S.Chen
(2001).
Structure-based mutational analysis of the hepatitis C virus NS3 helicase.
|
| |
J Virol,
75,
8289-8297.
|
 |
|
|
|
|
 |
C.M.Diges,
and
O.C.Uhlenbeck
(2001).
Escherichia coli DbpA is an RNA helicase that requires hairpin 92 of 23S rRNA.
|
| |
EMBO J,
20,
5503-5512.
|
 |
|
|
|
|
 |
C.Wu,
R.Roy,
and
D.T.Simmons
(2001).
Role of single-stranded DNA binding activity of T antigen in simian virus 40 DNA replication.
|
| |
J Virol,
75,
2839-2847.
|
 |
|
|
|
|
 |
G.F.Moolenaar,
L.Höglund,
and
N.Goosen
(2001).
Clue to damage recognition by UvrB: residues in the beta-hairpin structure prevent binding to non-damaged DNA.
|
| |
EMBO J,
20,
6140-6149.
|
 |
|
|
|
|
 |
G.Sianidis,
S.Karamanou,
E.Vrontou,
K.Boulias,
K.Repanas,
N.Kyrpides,
A.S.Politou,
and
A.Economou
(2001).
Cross-talk between catalytic and regulatory elements in a DEAD motor domain is essential for SecA function.
|
| |
EMBO J,
20,
961-970.
|
 |
|
|
|
|
 |
J.W.George,
E.P.Salazar,
M.P.Vreeswijk,
J.E.Lamerdin,
J.T.Reardon,
M.Z.Zdzienicka,
A.Sancar,
S.Kadkhodayan,
R.S.Tebbs,
L.H.Mullenders,
and
L.H.Thompson
(2001).
Restoration of nucleotide excision repair in a helicase-deficient XPD mutant from intragenic suppression by a trichothiodystrophy mutation.
|
| |
Mol Cell Biol,
21,
7355-7365.
|
 |
|
|
|
|
 |
M.C.Daugeron,
and
P.Linder
(2001).
Characterization and mutational analysis of yeast Dbp8p, a putative RNA helicase involved in ribosome biogenesis.
|
| |
Nucleic Acids Res,
29,
1144-1155.
|
 |
|
|
|
|
 |
M.R.Singleton,
S.Scaife,
and
D.B.Wigley
(2001).
Structural analysis of DNA replication fork reversal by RecG.
|
| |
Cell,
107,
79-89.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.S.Dillingham,
P.Soultanas,
P.Wiley,
M.R.Webb,
and
D.B.Wigley
(2001).
Defining the roles of individual residues in the single-stranded DNA binding site of PcrA helicase.
|
| |
Proc Natl Acad Sci U S A,
98,
8381-8387.
|
 |
|
|
|
|
 |
N.Ismaïli,
M.Sha,
E.H.Gustafson,
and
M.M.Konarska
(2001).
The 100-kda U5 snRNP protein (hPrp28p) contacts the 5' splice site through its ATPase site.
|
| |
RNA,
7,
182-193.
|
 |
|
|
|
|
 |
N.K.Tanner,
and
P.Linder
(2001).
DExD/H box RNA helicases: from generic motors to specific dissociation functions.
|
| |
Mol Cell,
8,
251-262.
|
 |
|
|
|
|
 |
P.Borowski,
A.Niebuhr,
O.Mueller,
M.Bretner,
K.Felczak,
T.Kulikowski,
and
H.Schmitz
(2001).
Purification and characterization of West Nile virus nucleoside triphosphatase (NTPase)/helicase: evidence for dissociation of the NTPase and helicase activities of the enzyme.
|
| |
J Virol,
75,
3220-3229.
|
 |
|
|
|
|
 |
R.M.Story,
H.Li,
and
J.N.Abelson
(2001).
Crystal structure of a DEAD box protein from the hyperthermophile Methanococcus jannaschii.
|
| |
Proc Natl Acad Sci U S A,
98,
1465-1470.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.Heintges,
J.Encke,
J.zu Putlitz,
and
J.R.Wands
(2001).
Inhibition of hepatitis C virus NS3 function by antisense oligodeoxynucleotides and protease inhibitor.
|
| |
J Med Virol,
65,
671-680.
|
 |
|
|
|
|
 |
U.Koch,
G.Biasiol,
M.Brunetti,
D.Fattori,
M.Pallaoro,
and
C.Steinkühler
(2001).
Role of charged residues in the catalytic mechanism of hepatitis C virus NS3 protease: electrostatic precollision guidance and transition-state stabilization.
|
| |
Biochemistry,
40,
631-640.
|
 |
|
|
|
|
 |
V.Lohmann,
F.Körner,
A.Dobierzewska,
and
R.Bartenschlager
(2001).
Mutations in hepatitis C virus RNAs conferring cell culture adaptation.
|
| |
J Virol,
75,
1437-1449.
|
 |
|
|
|
|
 |
Y.L.Khu,
E.Koh,
S.P.Lim,
Y.H.Tan,
S.Brenner,
S.G.Lim,
W.J.Hong,
and
P.Y.Goh
(2001).
Mutations that affect dimer formation and helicase activity of the hepatitis C virus helicase.
|
| |
J Virol,
75,
205-214.
|
 |
|
|
|
|
 |
A.J.van Brabant,
R.Stan,
and
N.A.Ellis
(2000).
DNA helicases, genomic instability, and human genetic disease.
|
| |
Annu Rev Genomics Hum Genet,
1,
409-459.
|
 |
|
|
|
|
 |
A.Seybert,
A.Hegyi,
S.G.Siddell,
and
J.Ziebuhr
(2000).
The human coronavirus 229E superfamily 1 helicase has RNA and DNA duplex-unwinding activities with 5'-to-3' polarity.
|
| |
RNA,
6,
1056-1068.
|
 |
|
|
|
|
 |
B.Schwer,
and
T.Meszaros
(2000).
RNA helicase dynamics in pre-mRNA splicing.
|
| |
EMBO J,
19,
6582-6591.
|
 |
|
|
|
|
 |
B.Wölk,
D.Sansonno,
H.G.Kräusslich,
F.Dammacco,
C.M.Rice,
H.E.Blum,
and
D.Moradpour
(2000).
Subcellular localization, stability, and trans-cleavage competence of the hepatitis C virus NS3-NS4A complex expressed in tetracycline-regulated cell lines.
|
| |
J Virol,
74,
2293-2304.
|
 |
|
|
|
|
 |
D.J.Porter,
and
F.Preugschat
(2000).
Strand-separating activity of hepatitis C virus helicase in the absence of ATP.
|
| |
Biochemistry,
39,
5166-5173.
|
 |
|
|
|
|
 |
F.Narjes,
M.Brunetti,
S.Colarusso,
B.Gerlach,
U.Koch,
G.Biasiol,
D.Fattori,
R.De Francesco,
V.G.Matassa,
and
C.Steinkühler
(2000).
Alpha-ketoacids are potent slow binding inhibitors of the hepatitis C virus NS3 protease.
|
| |
Biochemistry,
39,
1849-1861.
|
 |
|
|
|
|
 |
F.Preugschat,
D.P.Danger,
L.H.Carter,
R.G.Davis,
and
D.J.Porter
(2000).
Kinetic analysis of the effects of mutagenesis of W501 and V432 of the hepatitis C virus NS3 helicase domain on ATPase and strand-separating activity.
|
| |
Biochemistry,
39,
5174-5183.
|
 |
|
|
|
|
 |
G.Edwalds-Gilbert,
D.H.Kim,
S.H.Kim,
Y.H.Tseng,
Y.Yu,
and
R.J.Lin
(2000).
Dominant negative mutants of the yeast splicing factor Prp2 map to a putative cleft region in the helicase domain of DExD/H-box proteins.
|
| |
RNA,
6,
1106-1119.
|
 |
|
|
|
|
 |
J.M.Caruthers,
E.R.Johnson,
and
D.B.McKay
(2000).
Crystal structure of yeast initiation factor 4A, a DEAD-box RNA helicase.
|
| |
Proc Natl Acad Sci U S A,
97,
13080-13085.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.Fukuda,
D.Vishnuvardhan,
S.Sekiya,
J.Hwang,
N.Kakiuchi,
K.Taira,
K.Shimotohno,
P.K.Kumar,
and
S.Nishikawa
(2000).
Isolation and characterization of RNA aptamers specific for the hepatitis C virus nonstructural protein 3 protease.
|
| |
Eur J Biochem,
267,
3685-3694.
|
 |
|
|
|
|
 |
M.Hicham Alaoui-Ismaili,
C.Gervais,
S.Brunette,
G.Gouin,
M.Hamel,
R.F.Rando,
and
J.Bedard
(2000).
A novel high throughput screening assay for HCV NS3 helicase activity.
|
| |
Antiviral Res,
46,
181-193.
|
 |
|
|
|
|
 |
M.R.Singleton,
M.R.Sawaya,
T.Ellenberger,
and
D.B.Wigley
(2000).
Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides.
|
| |
Cell,
101,
589-600.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
N.Butkiewicz,
N.Yao,
W.Zhong,
J.Wright-Minogue,
P.Ingravallo,
R.Zhang,
J.Durkin,
D.N.Standring,
B.M.Baroudy,
D.V.Sangar,
S.M.Lemon,
J.Y.Lau,
and
Z.Hong
(2000).
Virus-specific cofactor requirement and chimeric hepatitis C virus/GB virus B nonstructural protein 3.
|
| |
J Virol,
74,
4291-4301.
|
 |
|
|
|
|
 |
P.Leyssen,
E.De Clercq,
and
J.Neyts
(2000).
Perspectives for the treatment of infections with Flaviviridae.
|
| |
Clin Microbiol Rev,
13,
67.
|
 |
|
|
|
|
 |
P.McGlynn,
A.A.Mahdi,
and
R.G.Lloyd
(2000).
Characterisation of the catalytically active form of RecG helicase.
|
| |
Nucleic Acids Res,
28,
2324-2332.
|
 |
|
|
|
|
 |
P.Soultanas,
and
D.B.Wigley
(2000).
DNA helicases: 'inching forward'.
|
| |
Curr Opin Struct Biol,
10,
124-128.
|
 |
|
|
|
|
 |
S.C.Chang,
J.C.Cheng,
Y.H.Kou,
C.H.Kao,
C.H.Chiu,
H.Y.Wu,
and
M.F.Chang
(2000).
Roles of the AX(4)GKS and arginine-rich motifs of hepatitis C virus RNA helicase in ATP- and viral RNA-binding activity.
|
| |
J Virol,
74,
9732-9737.
|
 |
|
|
|
|
 |
S.S.Patel,
and
K.M.Picha
(2000).
Structure and function of hexameric helicases.
|
| |
Annu Rev Biochem,
69,
651-697.
|
 |
|
|
|
|
 |
T.Hesson,
A.Mannarino,
and
M.Cable
(2000).
Probing the relationship between RNA-stimulated ATPase and helicase activities of HCV NS3 using 2'-O-methyl RNA substrates.
|
| |
Biochemistry,
39,
2619-2625.
|
 |
|
|
|
|
 |
A.Martins,
C.H.Gross,
and
S.Shuman
(1999).
Mutational analysis of vaccinia virus nucleoside triphosphate phosphohydrolase I, a DNA-dependent ATPase of the DExH box family.
|
| |
J Virol,
73,
1302-1308.
|
 |
|
|
|
|
 |
C.Lin,
and
J.L.Kim
(1999).
Structure-based mutagenesis study of hepatitis C virus NS3 helicase.
|
| |
J Virol,
73,
8798-8807.
|
 |
|
|
|
|
 |
C.Schmitt,
C.von Kobbe,
A.Bachi,
N.Panté,
J.P.Rodrigues,
C.Boscheron,
G.Rigaut,
M.Wilm,
B.Séraphin,
M.Carmo-Fonseca,
and
E.Izaurralde
(1999).
Dbp5, a DEAD-box protein required for mRNA export, is recruited to the cytoplasmic fibrils of nuclear pore complex via a conserved interaction with CAN/Nup159p.
|
| |
EMBO J,
18,
4332-4347.
|
 |
|
|
|
|
 |
C.W.Grassmann,
O.Isken,
and
S.E.Behrens
(1999).
Assignment of the multifunctional NS3 protein of bovine viral diarrhea virus during RNA replication: an in vivo and in vitro study.
|
| |
J Virol,
73,
9196-9205.
|
 |
|
|
|
|
 |
E.Ferrari,
J.Wright-Minogue,
J.W.Fang,
B.M.Baroudy,
J.Y.Lau,
and
Z.Hong
(1999).
Characterization of soluble hepatitis C virus RNA-dependent RNA polymerase expressed in Escherichia coli.
|
| |
J Virol,
73,
1649-1654.
|
 |
|
|
|
|
 |
E.R.Johnson,
and
D.B.McKay
(1999).
Crystallographic structure of the amino terminal domain of yeast initiation factor 4A, a representative DEAD-box RNA helicase.
|
| |
RNA,
5,
1526-1534.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
G.W.Rogers,
N.J.Richter,
and
W.C.Merrick
(1999).
Biochemical and kinetic characterization of the RNA helicase activity of eukaryotic initiation factor 4A.
|
| |
J Biol Chem,
274,
12236-12244.
|
 |
|
|
|
|
 |
H.Ago,
T.Adachi,
A.Yoshida,
M.Yamamoto,
N.Habuka,
K.Yatsunami,
and
M.Miyano
(1999).
Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus.
|
| |
Structure,
7,
1417-1426.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Li,
S.Clum,
S.You,
K.E.Ebner,
and
R.Padmanabhan
(1999).
The serine protease and RNA-stimulated nucleoside triphosphatase and RNA helicase functional domains of dengue virus type 2 NS3 converge within a region of 20 amino acids.
|
| |
J Virol,
73,
3108-3116.
|
 |
|
|
|
|
 |
J.Benz,
H.Trachsel,
and
U.Baumann
(1999).
Crystal structure of the ATPase domain of translation initiation factor 4A from Saccharomyces cerevisiae--the prototype of the DEAD box protein family.
|
| |
Structure,
7,
671-679.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Weigelt,
S.E.Brown,
C.S.Miles,
N.E.Dixon,
and
G.Otting
(1999).
NMR structure of the N-terminal domain of E. coli DnaB helicase: implications for structure rearrangements in the helicase hexamer.
|
| |
Structure,
7,
681-690.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.de la Cruz,
D.Kressler,
and
P.Linder
(1999).
Unwinding RNA in Saccharomyces cerevisiae: DEAD-box proteins and related families.
|
| |
Trends Biochem Sci,
24,
192-198.
|
 |
|
|
|
|
 |
K.Theis,
P.J.Chen,
M.Skorvaga,
B.Van Houten,
and
C.Kisker
(1999).
Crystal structure of UvrB, a DNA helicase adapted for nucleotide excision repair.
|
| |
EMBO J,
18,
6899-6907.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
L.E.Mechanic,
M.C.Hall,
and
S.W.Matson
(1999).
Escherichia coli DNA helicase II is active as a monomer.
|
| |
J Biol Chem,
274,
12488-12498.
|
 |
|
|
|
|
 |
M.A.Walker
(1999).
Hepatitis C virus: an overview of current approaches and progress.
|
| |
Drug Discov Today,
4,
518-529.
|
 |
|
|
|
|
 |
M.C.Hall,
and
S.W.Matson
(1999).
Helicase motifs: the engine that powers DNA unwinding.
|
| |
Mol Microbiol,
34,
867-877.
|
 |
|
|
|
|
 |
M.K.Levin,
and
S.S.Patel
(1999).
The helicase from hepatitis C virus is active as an oligomer.
|
| |
J Biol Chem,
274,
31839-31846.
|
 |
|
|
|
|
 |
M.L.Peck,
and
D.Herschlag
(1999).
Effects of oligonucleotide length and atomic composition on stimulation of the ATPase activity of translation initiation factor elF4A.
|
| |
RNA,
5,
1210-1221.
|
 |
|
|
|
|
 |
M.Machius,
L.Henry,
M.Palnitkar,
and
J.Deisenhofer
(1999).
Crystal structure of the DNA nucleotide excision repair enzyme UvrB from Thermus thermophilus.
|
| |
Proc Natl Acad Sci U S A,
96,
11717-11722.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.R.Sawaya,
S.Guo,
S.Tabor,
C.C.Richardson,
and
T.Ellenberger
(1999).
Crystal structure of the helicase domain from the replicative helicase-primase of bacteriophage T7.
|
| |
Cell,
99,
167-177.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
N.Mamiya,
and
H.J.Worman
(1999).
Hepatitis C virus core protein binds to a DEAD box RNA helicase.
|
| |
J Biol Chem,
274,
15751-15756.
|
 |
|
|
|
|
 |
N.Yao,
P.Reichert,
S.S.Taremi,
W.W.Prosise,
and
P.C.Weber
(1999).
Molecular views of viral polyprotein processing revealed by the crystal structure of the hepatitis C virus bifunctional protease-helicase.
|
| |
Structure,
7,
1353-1363.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
P.Borowski,
R.Kuehl,
O.Mueller,
L.H.Hwang,
J.Schulze Zur Wiesch,
and
H.Schmitz
(1999).
Biochemical properties of a minimal functional domain with ATP-binding activity of the NTPase/helicase of hepatitis C virus.
|
| |
Eur J Biochem,
266,
715-723.
|
 |
|
|
|
|
 |
S.Karamanou,
E.Vrontou,
G.Sianidis,
C.Baud,
T.Roos,
A.Kuhn,
A.S.Politou,
and
A.Economou
(1999).
A molecular switch in SecA protein couples ATP hydrolysis to protein translocation.
|
| |
Mol Microbiol,
34,
1133-1145.
|
 |
|
|
|
|
 |
S.S.Velankar,
P.Soultanas,
M.S.Dillingham,
H.S.Subramanya,
and
D.B.Wigley
(1999).
Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism.
|
| |
Cell,
97,
75-84.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Y.Gwack,
H.Yoo,
I.Song,
J.Choe,
and
J.H.Han
(1999).
RNA-Stimulated ATPase and RNA helicase activities and RNA binding domain of hepatitis G virus nonstructural protein 3.
|
| |
J Virol,
73,
2909-2915.
|
 |
|
|
|
|
 |
K.M.Picha,
and
S.S.Patel
(1998).
Bacteriophage T7 DNA helicase binds dTTP, forms hexamers, and binds DNA in the absence of Mg2+. The presence of dTTP is sufficient for hexamer formation and DNA binding.
|
| |
J Biol Chem,
273,
27315-27319.
|
 |
|
|
|
|
 |
Y.Wang,
and
C.Guthrie
(1998).
PRP16, a DEAH-box RNA helicase, is recruited to the spliceosome primarily via its nonconserved N-terminal domain.
|
| |
RNA,
4,
1216-1229.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |