spacer
spacer

PDBsum entry 1w6t

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Lyase PDB id
1w6t
Jmol
Contents
Protein chains
429 a.a. *
Ligands
2PE ×2
Metals
_MG ×2
Waters ×535
* Residue conservation analysis
PDB id:
1w6t
Name: Lyase
Title: Crystal structure of octameric enolase from streptococcus pneumoniae
Structure: Enolase. Chain: a, b. Synonym: 2-phosphoglycerate dehydratase, phosphopyruvate hy 2-phospho-d-glycerate hydro-lyase. Engineered: yes
Source: Streptococcus pneumoniae. Pneumococci. Organism_taxid: 170187. Strain: tigr4. Atcc: 11733, baa-255/r6. Expressed in: escherichia coli. Expression_system_taxid: 511693.
Biol. unit: Octamer (from PDB file)
Resolution:
2.10Å     R-factor:   0.150     R-free:   0.187
Authors: S.Ehinger,W.-D.Schubert,S.Bergmann,S.Hammerschmidt, D.W.Hein
Key ref:
S.Ehinger et al. (2004). Plasmin(ogen)-binding alpha-enolase from Streptococcus pneumoniae: crystal structure and evaluation of plasmin(ogen)-binding sites. J Mol Biol, 343, 997. PubMed id: 15476816 DOI: 10.1016/j.jmb.2004.08.088
Date:
24-Aug-04     Release date:   22-Aug-05    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q97QS2  (ENO_STRPN) -  Enolase
Seq:
Struc:
434 a.a.
429 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: E.C.4.2.1.11  - Phosphopyruvate hydratase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: 2-phospho-D-glycerate = phosphoenolpyruvate + H2O
2-phospho-D-glycerate
= phosphoenolpyruvate
+ H(2)O
      Cofactor: Mg(2+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     extracellular region   4 terms 
  Biological process     pathogenesis   2 terms 
  Biochemical function     protein binding     5 terms  

 

 
    Added reference    
 
 
DOI no: 10.1016/j.jmb.2004.08.088 J Mol Biol 343:997 (2004)
PubMed id: 15476816  
 
 
Plasmin(ogen)-binding alpha-enolase from Streptococcus pneumoniae: crystal structure and evaluation of plasmin(ogen)-binding sites.
S.Ehinger, W.D.Schubert, S.Bergmann, S.Hammerschmidt, D.W.Heinz.
 
  ABSTRACT  
 
Alpha-enolases are ubiquitous cytoplasmic, glycolytic enzymes. In pathogenic bacteria, alpha-enolase doubles as a surface-displayed plasmin(ogen)-binder supporting virulence. The plasmin(ogen)-binding site was initially traced to the two C-terminal lysine residues. More recently, an internal nine-amino acid motif comprising residues 248 to 256 was identified with this function. We report the crystal structure of alpha-enolase from Streptococcus pneumoniae at 2.0A resolution, the first structure both of a plasminogen-binding and of an octameric alpha-enolase. While the dimer is structurally similar to other alpha-enolases, the octamer places the C-terminal lysine residues in an inaccessible, inter-dimer groove restricting the C-terminal lysine residues to a role in folding and oligomerization. The nine residue plasminogen-binding motif, by contrast, is exposed on the octamer surface revealing this as the primary site of interaction between alpha-enolase and plasminogen.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. The structure of an a-enolase monomer from S. pneumoniae affording a view along the barrel axis. The N-terminal domain (residues 1-143) is depicted in red/orange, the C-terminal barrel domain (residues 144-434) in blue/green and the Mg2+ as a pink sphere. This Figure as well as Figure 2, Figure 3, Figure 4 and Figure 5 were prepared using MOLSCRIPT.55
Figure 4.
Figure 4. (a) The a-enolase octamer viewed down the 4-fold axis. Secondary structure elements are colored as for Figure 1. (b) An enlarged section of (a) highlighting the dimer-dimer interface. (c) Surface representation of the octamer. The coloring emphasizes arrangement of monomers into dimers (dark blue/light blue, red/pink, etc.) and of dimers to form a tetramer of dimers with I4 symmetry. (d) Side view, following a rotation of 90° about the horizontal axis.
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (2004, 343, 997-0) copyright 2004.  
  Figures were selected by the author.  
 
 
    Author's comment    
 
  Apart from their dominant role as enzymes during glycolysis, alpha-enolases have been found to be actively secreted by numerous especially pathogenic bacteria. Secreted enolase binds to the surface of bacteria by an unknown mechanism and acts as an adhesin, binding and activating plasmin(ogen). In the absense of enolase, bacterial pathogenicity is severely impaired indicating this to be a vital element during infection. We have identified a novel, central motif 248-FYDKERKVY-256 in alpha-enolase as the primary plasminogen binding sequence and crystallographically demonstrate this motif to be freely accessible in the octameric assembly of this gram-positive enolase.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21272581 A.Gómez-Arreaza, H.Acosta, X.Barros-Álvarez, J.L.Concepción, F.Albericio, and L.Avilan (2011).
Leishmania mexicana: LACK (Leishmania homolog of receptors for activated C-kinase) is a plasminogen binding protein.
  Exp Parasitol, 127, 752-761.  
21261815 M.Capello, S.Ferri-Borgogno, P.Cappello, and F.Novelli (2011).
α-Enolase: a promising therapeutic and diagnostic tumor target.
  FEBS J, 278, 1064-1074.  
20098674 F.Karbassi, V.Quiros, V.Pancholi, and M.J.Kornblatt (2010).
Dissociation of the octameric enolase from S. pyogenes--one interface stabilizes another.
  PLoS One, 5, e8810.  
19473980 A.C.Tharp, M.Laha, P.Panizzi, M.W.Thompson, P.Fuentes-Prior, and P.E.Bock (2009).
Plasminogen Substrate Recognition by the Streptokinase-Plasminogen Catalytic Complex Is Facilitated by Arg253, Lys256, and Lys257 in the Streptokinase {beta}-Domain and Kringle 5 of the Substrate.
  J Biol Chem, 284, 19511-19521.  
19363026 A.J.Cork, S.Jergic, S.Hammerschmidt, B.Kobe, V.Pancholi, J.L.Benesch, C.V.Robinson, N.E.Dixon, J.A.Aquilina, and M.J.Walker (2009).
Defining the structural basis of human plasminogen binding by streptococcal surface enolase.
  J Biol Chem, 284, 17129-17137.  
19011901 A.K.Pandey, P.Jain, G.K.Podila, B.Tudzynski, and M.R.Davis (2009).
Cold induced Botrytis cinerea enolase (BcEnol-1) functions as a transcriptional regulator and is controlled by cAMP.
  Mol Genet Genomics, 281, 135-146.  
19001079 C.A.Brissette, K.Haupt, D.Barthel, A.E.Cooley, A.Bowman, C.Skerka, R.Wallich, P.F.Zipfel, P.Kraiczy, and B.Stevenson (2009).
Borrelia burgdorferi infection-associated surface proteins ErpP, ErpA, and ErpC bind human plasminogen.
  Infect Immun, 77, 300-306.  
19752236 D.D.Crane, S.L.Warner, and C.M.Bosio (2009).
A novel role for plasmin-mediated degradation of opsonizing antibody in the evasion of host immunity by virulent, but not attenuated, Francisella tularensis.
  J Immunol, 183, 4593-4600.  
19270100 J.Sha, T.E.Erova, R.A.Alyea, S.Wang, J.P.Olano, V.Pancholi, and A.K.Chopra (2009).
Surface-expressed enolase contributes to the pathogenesis of clinical isolate SSU of Aeromonas hydrophila.
  J Bacteriol, 191, 3095-3107.  
  19255486 J.Wang, Y.F.Zhou, L.F.Li, and X.D.Su (2009).
Crystallization and preliminary X-ray analysis of human liver alpha-enolase.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 65, 288-290.  
19574304 M.Candela, E.Biagi, M.Centanni, S.Turroni, M.Vici, F.Musiani, B.Vitali, S.Bergmann, S.Hammerschmidt, and P.Brigidi (2009).
Bifidobacterial enolase, a cell surface receptor for human plasminogen involved in the interaction with the host.
  Microbiology, 155, 3294-3303.  
18070889 C.Attali, C.Frolet, C.Durmort, J.Offant, T.Vernet, and A.M.Di Guilmi (2008).
Streptococcus pneumoniae choline-binding protein E interaction with plasminogen/plasmin stimulates migration across the extracellular matrix.
  Infect Immun, 76, 466-476.  
18560153 H.J.Kang, S.K.Jung, S.J.Kim, and S.J.Chung (2008).
Structure of human alpha-enolase (hENO1), a multifunctional glycolytic enzyme.
  Acta Crystallogr D Biol Crystallogr, 64, 651-657.
PDB code: 3b97
  18997349 H.Yamamoto, and N.Kunishima (2008).
Purification, crystallization and preliminary crystallographic study of the putative enolase MJ0232 from the hyperthermophilic archaeon Methanococcus jannaschii.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 64, 1087-1090.  
18757800 M.Esgleas, Y.Li, M.A.Hancock, J.Harel, J.D.Dubreuil, and M.Gottschalk (2008).
Isolation and characterization of alpha-enolase, a novel fibronectin-binding protein from Streptococcus suis.
  Microbiology, 154, 2668-2679.  
17307854 A.Knaust, M.V.Weber, S.Hammerschmidt, S.Bergmann, M.Frosch, and O.Kurzai (2007).
Cytosolic proteins contribute to surface plasminogen recruitment of Neisseria meningitidis.
  J Bacteriol, 189, 3246-3255.  
17289554 B.Terrier, N.Degand, P.Guilpain, A.Servettaz, L.Guillevin, and L.Mouthon (2007).
Alpha-enolase: a target of antibodies in infectious and autoimmune diseases.
  Autoimmun Rev, 6, 176-182.  
17653767 G.Vanegas, W.Quiñones, C.Carrasco-López, J.L.Concepción, F.Albericio, and L.Avilán (2007).
Enolase as a plasminogen binding protein in Leishmania mexicana.
  Parasitol Res, 101, 1511-1516.  
17827846 H.Yamada, N.Miura, W.Kitagawa, Y.Kashima, S.Matsui, N.Ozeki, K.Nishikawa, and H.Imai (2007).
Membranous nephropathy and pulmonary alveolar proteinosis.
  Intern Med, 46, 1441-1446.  
17892475 J.Antikainen, V.Kuparinen, K.Lähteenmäki, and T.K.Korhonen (2007).
Enolases from Gram-positive bacterial pathogens and commensal lactobacilli share functional similarity in virulence-associated traits.
  FEMS Immunol Med Microbiol, 51, 526-534.  
17557824 M.Candela, S.Bergmann, M.Vici, B.Vitali, S.Turroni, B.J.Eikmanns, S.Hammerschmidt, and P.Brigidi (2007).
Binding of human plasminogen to Bifidobacterium.
  J Bacteriol, 189, 5929-5936.  
16338163 S.Hammerschmidt (2006).
Adherence molecules of pathogenic pneumococci.
  Curr Opin Microbiol, 9, 12-20.  
16291690 B.A.Chromy, M.W.Choi, G.A.Murphy, A.D.Gonzales, C.H.Corzett, B.C.Chang, J.P.Fitch, and S.L.McCutchen-Maloney (2005).
Proteomic characterization of Yersinia pestis virulence.
  J Bacteriol, 187, 8172-8180.  
15908436 G.Garau, D.Lemaire, T.Vernet, O.Dideberg, and A.M.Di Guilmi (2005).
Crystal structure of phosphorylcholine esterase domain of the virulence factor choline-binding protein e from streptococcus pneumoniae: new structural features among the metallo-beta-lactamase superfamily.
  J Biol Chem, 280, 28591-28600.
PDB codes: 1wra 2v05
16321938 R.Iyer, N.S.Baliga, and A.Camilli (2005).
Catabolite control protein A (CcpA) contributes to virulence and regulation of sugar metabolism in Streptococcus pneumoniae.
  J Bacteriol, 187, 8340-8349.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.