PDBsum entry 1t1q

Go to PDB code: 
protein Protein-protein interface(s) links
Hormone/growth factor PDB id
Protein chains
21 a.a.
30 a.a. *
* Residue conservation analysis
PDB id:
Name: Hormone/growth factor
Title: Nmr structure of human insulin mutant his-b10-asp, val-b12-a b28-lys, lys-b29-pro, 15 structures
Structure: Insulin. Chain: a. Fragment: insulin a chain. Engineered: yes. Mutation: yes. Insulin. Chain: b. Fragment: insulin b chain. Engineered: yes
Source: Synthetic: yes. Other_details: the peptide was chemically synthesized. The of the peptide is naturally found in homo sapiens(human). Of the peptide is naturally found in homo sapiens(human)
NMR struc: 15 models
Authors: K.Huang,B.Xu,S.Q.Hu,Y.C.Chu,Q.X.Hua,J.Whittaker,S.H.Nakagawa Meyts,P.G.Katsoyannis,M.A.Weiss
Key ref:
K.Huang et al. (2004). How insulin binds: the B-chain alpha-helix contacts the L1 beta-helix of the insulin receptor. J Mol Biol, 341, 529-550. PubMed id: 15276842 DOI: 10.1016/j.jmb.2004.05.023
16-Apr-04     Release date:   10-Aug-04    
Go to PROCHECK summary

Protein chain
Pfam   ArchSchema ?
P01308  (INS_HUMAN) -  Insulin
110 a.a.
21 a.a.
Protein chain
Pfam   ArchSchema ?
P01308  (INS_HUMAN) -  Insulin
110 a.a.
30 a.a.*
Key:    PfamA domain  Secondary structure
* PDB and UniProt seqs differ at 4 residue positions (black crosses)


DOI no: 10.1016/j.jmb.2004.05.023 J Mol Biol 341:529-550 (2004)
PubMed id: 15276842  
How insulin binds: the B-chain alpha-helix contacts the L1 beta-helix of the insulin receptor.
K.Huang, B.Xu, S.Q.Hu, Y.C.Chu, Q.X.Hua, Y.Qu, B.Li, S.Wang, R.Y.Wang, S.H.Nakagawa, A.M.Theede, J.Whittaker, P.De Meyts, P.G.Katsoyannis, M.A.Weiss.
Binding of insulin to the insulin receptor plays a central role in the hormonal control of metabolism. Here, we investigate possible contact sites between the receptor and the conserved non-polar surface of the B-chain. Evidence is presented that two contiguous sites in an alpha-helix, Val(B12) and Tyr(B16), contact the receptor. Chemical synthesis is exploited to obtain non-standard substitutions in an engineered monomer (DKP-insulin). Substitution of Tyr(B16) by an isosteric photo-activatable derivative (para-azido-phenylalanine) enables efficient cross-linking to the receptor. Such cross-linking is specific and maps to the L1 beta-helix of the alpha-subunit. Because substitution of Val(B12) by larger side-chains markedly impairs receptor binding, cross-linking studies at B12 were not undertaken. Structure-function relationships are instead probed by side-chains of similar or smaller volume: respective substitution of Val(B12) by alanine, threonine, and alpha-aminobutyric acid leads to activities of 1(+/-0.1)%, 13(+/-6)%, and 14(+/-5)% (relative to DKP-insulin) without disproportionate changes in negative cooperativity. NMR structures are essentially identical with native insulin. The absence of transmitted structural changes suggests that the low activities of B12 analogues reflect local perturbation of a "high-affinity" hormone-receptor contact. By contrast, because position B16 tolerates alanine substitution (relative activity 34(+/-10)%), the contribution of this neighboring interaction is smaller. Together, our results support a model in which the B-chain alpha-helix, functioning as an essential recognition element, docks against the L1 beta-helix of the insulin receptor.
  Selected figure(s)  
Figure 1.
Figure 1. Structure of insulin and the insulin receptor (IR). (a) Ribbon model and (b) surface representation of human insulin. A and B chains are shown in dark and light gray, respectively. The central B-chain a-helix (B9-B19) is highlighted in red; the side-chains of ValB12 and TyrB16 are shown in green. In (b) the A7-B7 disulfide bridge is shown in yellow. Coordinates were obtained from the Protein Databank (accession number 4INS).[9.] (c) Schematic a[2]b[2] structure of IR. Boundaries of the 22 exons of the IR gene are shown at the left. Predicted boundaries of protein modules are indicated at the right. Orange arrowheads indicate N-glycosylation sites; green arrowheads indicate ligand-binding "hot spots" as identified by site-directed mutagenesis. (d) Chemical structure of para-azido-phenylalanine; only the side-chain is shown.
Figure 7.
Figure 7. Solution structures of (a) parent DKP-insulin and (b)-(d) B12 analogues. Stereo views of (a) DKP-insulin (PDB data bank accession code 1LNP), (b) Ala^B12-DKP-insulin, (c) Aba^B12-DKP-insulin, and (d) ThrB12-DKP-insulin. In each panel the A chain is shown in red; the B chain in blue; and the side-chains of B12 in black. Structures are aligned with respect to main-chain atoms of residues A2-A8, A13-A20 and B9-B19.
  The above figures are reprinted by permission from Elsevier: J Mol Biol (2004, 341, 529-550) copyright 2004.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20348418 B.J.Smith, K.Huang, G.Kong, S.J.Chan, S.Nakagawa, J.G.Menting, S.Q.Hu, J.Whittaker, D.F.Steiner, P.G.Katsoyannis, C.W.Ward, M.A.Weiss, and M.C.Lawrence (2010).
Structural resolution of a tandem hormone-binding element in the insulin receptor and its implications for design of peptide agonists.
  Proc Natl Acad Sci U S A, 107, 6771-6776.
PDB code: 3loh
20948967 M.Liu, L.Haataja, J.Wright, N.P.Wickramasinghe, Q.X.Hua, N.F.Phillips, F.Barbetti, M.A.Weiss, and P.Arvan (2010).
Mutant INS-gene induced diabetes of youth: proinsulin cysteine residues impose dominant-negative inhibition on wild-type proinsulin transport.
  PLoS One, 5, e13333.  
19101970 A.K.Petrus, D.G.Allis, R.P.Smith, T.J.Fairchild, and R.P.Doyle (2009).
Exploring the implications of vitamin B12 conjugation to insulin on insulin receptor binding.
  ChemMedChem, 4, 421-426.  
19416159 A.M.Svendsen, M.Vrecl, L.Knudsen, A.Heding, J.D.Wade, R.A.Bathgate, P.De Meyts, and J.Nøhr (2009).
Dimerization and negative cooperativity in the relaxin family peptide receptors.
  Ann N Y Acad Sci, 1160, 54-59.  
19321435 B.Xu, K.Huang, Y.C.Chu, S.Q.Hu, S.Nakagawa, S.Wang, R.Y.Wang, J.Whittaker, P.G.Katsoyannis, and M.A.Weiss (2009).
Decoding the Cryptic Active Conformation of a Protein by Synthetic Photoscanning: INSULIN INSERTS A DETACHABLE ARM BETWEEN RECEPTOR DOMAINS.
  J Biol Chem, 284, 14597-14608.  
19139090 C.L.Alvino, K.A.McNeil, S.C.Ong, C.Delaine, G.W.Booker, J.C.Wallace, J.Whittaker, and B.E.Forbes (2009).
A Novel Approach to Identify Two Distinct Receptor Binding Surfaces of Insulin-like Growth Factor II.
  J Biol Chem, 284, 7656-7664.  
19274663 C.W.Ward, and M.C.Lawrence (2009).
Ligand-induced activation of the insulin receptor: a multi-step process involving structural changes in both the ligand and the receptor.
  Bioessays, 31, 422-434.  
19321436 Q.X.Hua, B.Xu, K.Huang, S.Q.Hu, S.Nakagawa, W.Jia, S.Wang, J.Whittaker, P.G.Katsoyannis, and M.A.Weiss (2009).
Enhancing the Activity of a Protein by Stereospecific Unfolding: CONFORMATIONAL LIFE CYCLE OF INSULIN AND ITS EVOLUTIONARY ORIGINS.
  J Biol Chem, 284, 14586-14596.
PDB codes: 2k91 2k9r
19225456 V.V.Kiselyov, S.Versteyhe, L.Gauguin, and P.De Meyts (2009).
Harmonic oscillator model of the insulin and IGF1 receptors' allosteric binding and activation.
  Mol Syst Biol, 5, 243.  
19863112 W.Sajid, P.A.Holst, V.V.Kiselyov, A.S.Andersen, J.M.Conlon, C.Kristensen, T.Kjeldsen, J.Whittaker, S.J.Chan, and P.De Meyts (2009).
Structural basis of the aberrant receptor binding properties of hagfish and lamprey insulins.
  Biochemistry, 48, 11283-11295.  
18502759 L.Gauguin, C.Delaine, C.L.Alvino, K.A.McNeil, J.C.Wallace, B.E.Forbes, and P.De Meyts (2008).
Alanine scanning of a putative receptor binding surface of insulin-like growth factor-I.
  J Biol Chem, 283, 20821-20829.  
18991400 L.Whittaker, C.Hao, W.Fu, and J.Whittaker (2008).
High-affinity insulin binding: insulin interacts with two receptor ligand binding sites.
  Biochemistry, 47, 12900-12909.  
18989367 M.E.Rentería, N.S.Gandhi, P.Vinuesa, E.Helmerhorst, and R.L.Mancera (2008).
A comparative structural bioinformatics analysis of the insulin receptor family ectodomain based on phylogenetic information.
  PLoS ONE, 3, e3667.  
18391205 M.R.Brown, K.D.Clark, M.Gulia, Z.Zhao, S.F.Garczynski, J.W.Crim, R.J.Suderman, and M.R.Strand (2008).
An insulin-like peptide regulates egg maturation and metabolism in the mosquito Aedes aegypti.
  Proc Natl Acad Sci U S A, 105, 5716-5721.  
18640841 P.De Meyts (2008).
The insulin receptor: a prototype for dimeric, allosteric membrane receptors?
  Trends Biochem Sci, 33, 376-384.  
18332129 Q.X.Hua, S.H.Nakagawa, W.Jia, K.Huang, N.B.Phillips, S.Q.Hu, and M.A.Weiss (2008).
Design of an active ultrastable single-chain insulin analog: synthesis, structure, and therapeutic implications.
  J Biol Chem, 283, 14703-14716.
PDB codes: 2jzq 3bxq
18492668 Z.L.Wan, K.Huang, S.Q.Hu, J.Whittaker, and M.A.Weiss (2008).
The structure of a mutant insulin uncouples receptor binding from protein allostery. An electrostatic block to the TR transition.
  J Biol Chem, 283, 21198-21210.  
17410596 J.P.Mayer, F.Zhang, and R.D.DiMarchi (2007).
Insulin structure and function.
  Biopolymers, 88, 687-713.  
17884811 K.Huang, S.J.Chan, Q.X.Hua, Y.C.Chu, R.Y.Wang, B.Klaproth, W.Jia, J.Whittaker, P.De Meyts, S.H.Nakagawa, D.F.Steiner, P.G.Katsoyannis, and M.A.Weiss (2007).
The A-chain of insulin contacts the insert domain of the insulin receptor. Photo-cross-linking and mutagenesis of a diabetes-related crevice.
  J Biol Chem, 282, 35337-35349.
PDB codes: 2jum 2juu 2juv
16894147 M.Lou, T.P.Garrett, N.M.McKern, P.A.Hoyne, V.C.Epa, J.D.Bentley, G.O.Lovrecz, L.J.Cosgrove, M.J.Frenkel, and C.W.Ward (2006).
The first three domains of the insulin receptor differ structurally from the insulin-like growth factor 1 receptor in the regions governing ligand specificity.
  Proc Natl Acad Sci U S A, 103, 12429-12434.
PDB code: 2hr7
16864583 Q.X.Hua, J.P.Mayer, W.Jia, J.Zhang, and M.A.Weiss (2006).
The folding nucleus of the insulin superfamily: a flexible peptide model foreshadows the native state.
  J Biol Chem, 281, 28131-28142.  
16728398 Q.X.Hua, M.Liu, S.Q.Hu, W.Jia, P.Arvan, and M.A.Weiss (2006).
A conserved histidine in insulin is required for the foldability of human proinsulin: structure and function of an ALAB5 analog.
  J Biol Chem, 281, 24889-24899.
PDB code: 2h67
16762918 Q.X.Hua, S.Nakagawa, S.Q.Hu, W.Jia, S.Wang, and M.A.Weiss (2006).
Toward the active conformation of insulin: stereospecific modulation of a structural switch in the B chain.
  J Biol Chem, 281, 24900-24909.
PDB codes: 2hh4 2hho
16751187 S.H.Nakagawa, Q.X.Hua, S.Q.Hu, W.Jia, S.Wang, P.G.Katsoyannis, and M.A.Weiss (2006).
Chiral mutagenesis of insulin. Contribution of the B20-B23 beta-turn to activity and stability.
  J Biol Chem, 281, 22386-22396.  
15936977 A.Denley, L.J.Cosgrove, G.W.Booker, J.C.Wallace, and B.E.Forbes (2005).
Molecular interactions of the IGF system.
  Cytokine Growth Factor Rev, 16, 421-439.  
15742332 M.P.Del Borgo, R.A.Hughes, and J.D.Wade (2005).
Conformationally constrained single-chain peptide mimics of relaxin B-chain secondary structure.
  J Pept Sci, 11, 564-571.  
15551269 P.De Meyts (2004).
Insulin and its receptor: structure, function and evolution.
  Bioessays, 26, 1351-1362.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.