PDBsum entry 1s70

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Hydrolase PDB id
Protein chains
309 a.a. *
291 a.a. *
_MN ×2
Waters ×227
* Residue conservation analysis
PDB id:
Name: Hydrolase
Title: Complex between protein ser/thr phosphatase-1 (delta) and the myosin phosphatase targeting subunit 1 (mypt1)
Structure: Serine/threonine protein phosphatase pp1-beta (or delta) catalytic subunit. Chain: a. Synonym: pp-1b. Engineered: yes. Mutation: yes. 130 kda myosin-binding subunit of smooth muscle myosin phophatase (m130). Chain: b.
Source: Homo sapiens. Human. Organism_taxid: 9606. Gene: ppp1cb. Expressed in: escherichia coli. Expression_system_taxid: 562. Gallus gallus. Chicken. Organism_taxid: 9031.
Biol. unit: Dimer (from PQS)
2.70Å     R-factor:   0.223     R-free:   0.293
Authors: F.Kerff,M.Terrak,R.Dominguez
Key ref:
M.Terrak et al. (2004). Structural basis of protein phosphatase 1 regulation. Nature, 429, 780-784. PubMed id: 15164081 DOI: 10.1038/nature02582
28-Jan-04     Release date:   22-Jun-04    
Go to PROCHECK summary

Protein chain
Pfam   ArchSchema ?
P62207  (PP1B_CHICK) -  Serine/threonine-protein phosphatase PP1-beta catalytic subunit
327 a.a.
309 a.a.
Protein chain
Pfam   ArchSchema ?
Q90623  (MYPT1_CHICK) -  Protein phosphatase 1 regulatory subunit 12A
1004 a.a.
291 a.a.
Key:    PfamA domain  PfamB domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class 1: Chain A: E.C.  - Protein-serine/threonine phosphatase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: [a protein]-serine/threonine phosphate + H2O = [a protein]- serine/threonine + phosphate
[a protein]-serine/threonine phosphate
+ H(2)O
= [a protein]- serine/threonine
+ phosphate
   Enzyme class 2: Chain A: E.C.  - [Myosin-light-chain] phosphatase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: [Myosin light-chain] phosphate + H2O = [myosin light-chain] + phosphate
[Myosin light-chain] phosphate
+ H(2)O
= [myosin light-chain]
+ phosphate
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Biochemical function     hydrolase activity     1 term  


    Added reference    
DOI no: 10.1038/nature02582 Nature 429:780-784 (2004)
PubMed id: 15164081  
Structural basis of protein phosphatase 1 regulation.
M.Terrak, F.Kerff, K.Langsetmo, T.Tao, R.Dominguez.
The coordinated and reciprocal action of serine/threonine (Ser/Thr) protein kinases and phosphatases produces transient phosphorylation, a fundamental regulatory mechanism for many biological processes. The human genome encodes a far greater number of Ser/Thr protein kinases than of phosphatases. Protein phosphatase 1 (PP1), in particular, is ubiquitously distributed and regulates a broad range of cellular functions, including glycogen metabolism, cell-cycle progression and muscle relaxation. PP1 has evolved effective catalytic machinery but lacks substrate specificity. Substrate specificity is conferred upon PP1 through interactions with a large number of regulatory subunits. The regulatory subunits are generally unrelated, but most possess the RVxF motif, a canonical PP1-binding sequence. Here we reveal the crystal structure at 2.7 A resolution of the complex between PP1 and a 34-kDa N-terminal domain of the myosin phosphatase targeting subunit MYPT1. MYPT1 is the protein that regulates PP1 function in smooth muscle relaxation. Structural elements amino- and carboxy-terminal to the RVxF motif of MYPT1 are positioned in a way that leads to a pronounced reshaping of the catalytic cleft of PP1, contributing to the increased myosin specificity of this complex. The structure has general implications for the control of PP1 activity by other regulatory subunits.
  Selected figure(s)  
Figure 1.
Figure 1: General fold of the PP1 delta--MYPT1[1 -299] complex. a, Ribbon representation: PP1 ; -helices and loops (blue) and -strands (magenta); and MYPT1 (red). The two cations in the catalytic site are coloured orange. The ankyrin repeats of MYPT1 are numbered 1 to 8 from the N to the C terminus. The major contacts with PP1 involve three separate regions of MYPT1: the N-terminal arm, the RVxF motif and the second group of ankyrin repeats, which interact mainly with PP1 residues Tyr A305 and Tyr A307. b, Two surface representations of the complex, rotated by 90 degrees (PP1 , blue; MYPT1, red).
Figure 2.
Figure 2: Electrostatic surface representations of the PP1 delta--MYPT1[1 -299] complex. a -c, Surfaces of PP1 (a), MYPT1 (b) and their complex (c) calculated using identical parameters (red and blue indicate regions charged negatively and positively, respectively). The Y-shaped catalytic cleft of PP1 is composed of three grooves: hydrophobic, acidic and C-terminal. The 12 - 13 loop separates the acidic and the C-terminal grooves. The reshaping of the catalytic cleft of PP1 results from the binding of the N terminus of MYPT1 near the hydrophobic groove and the addition of the acidic cleft of the ankyrin repeats at the other end of the cleft. d, Sequences of the RLC around Ser 19 and the MYPT1 around the regulatory phosphorylation sites Thr 695 and Thr 850. Note the existing charge complementarity between these sequences and the catalytic cleft of myosin phosphatase.
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nature (2004, 429, 780-784) copyright 2004.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21750572 C.Wurzenberger, and D.W.Gerlich (2011).
Phosphatases: providing safe passage through mitotic exit.
  Nat Rev Mol Cell Biol, 12, 469-482.  
21464287 M.G.Gold, F.Stengel, P.J.Nygren, C.R.Weisbrod, J.E.Bruce, C.V.Robinson, D.Barford, and J.D.Scott (2011).
Architecture and dynamics of an A-kinase anchoring protein 79 (AKAP79) signaling complex.
  Proc Natl Acad Sci U S A, 108, 6426-6431.  
21288162 S.R.Pereira, V.T.Vasconcelos, and A.Antunes (2011).
The phosphoprotein phosphatase family of Ser/Thr phosphatases as principal targets of naturally occurring toxins.
  Crit Rev Toxicol, 41, 83.  
20694007 A.Hirschi, M.Cecchini, R.C.Steinhardt, M.R.Schamber, F.A.Dick, and S.M.Rubin (2010).
An overlapping kinase and phosphatase docking site regulates activity of the retinoblastoma protein.
  Nat Struct Mol Biol, 17, 1051-1057.
PDB code: 3n5u
20017541 A.Saraf, E.A.Oberg, and S.Strack (2010).
Molecular determinants for PP2A substrate specificity: charged residues mediate dephosphorylation of tyrosine hydroxylase by the PP2A/B' regulatory subunit.
  Biochemistry, 49, 986-995.  
20391537 D.Stapleton, C.Nelson, K.Parsawar, D.McClain, R.Gilbert-Wilson, E.Barker, B.Rudd, K.Brown, W.Hendrix, P.O'Donnell, and G.Parker (2010).
Analysis of hepatic glycogen-associated proteins.
  Proteomics, 10, 2320-2329.  
20042605 E.Scotto-Lavino, M.Garcia-Diaz, G.Du, and M.A.Frohman (2010).
Basis for the isoform-specific interaction of myosin phosphatase subunits protein phosphatase 1c beta and myosin phosphatase targeting subunit 1.
  J Biol Chem, 285, 6419-6424.  
20826336 J.A.Marsh, B.Dancheck, M.J.Ragusa, M.Allaire, J.D.Forman-Kay, and W.Peti (2010).
Structural diversity in free and bound states of intrinsically disordered protein phosphatase 1 regulators.
  Structure, 18, 1094-1103.  
21187329 K.Zeng, R.N.Bastos, F.A.Barr, and U.Gruneberg (2010).
Protein phosphatase 6 regulates mitotic spindle formation by controlling the T-loop phosphorylation state of Aurora A bound to its activator TPX2.
  J Cell Biol, 191, 1315-1332.  
20399103 M.Bollen, W.Peti, M.J.Ragusa, and M.Beullens (2010).
The extended PP1 toolkit: designed to create specificity.
  Trends Biochem Sci, 35, 450-458.  
20305656 M.J.Ragusa, B.Dancheck, D.A.Critton, A.C.Nairn, R.Page, and W.Peti (2010).
Spinophilin directs protein phosphatase 1 specificity by blocking substrate binding sites.
  Nat Struct Mol Biol, 17, 459-464.
PDB codes: 3egg 3egh 3hvq
20498639 V.Leone, G.Mansueto, G.M.Pierantoni, M.Tornincasa, F.Merolla, A.Cerrato, M.Santoro, M.Grieco, A.Scaloni, A.Celetti, and A.Fusco (2010).
CCDC6 represses CREB1 activity by recruiting histone deacetylase 1 and protein phosphatase 1.
  Oncogene, 29, 4341-4351.  
20826332 V.N.Uversky (2010).
Seven lessons from one IDP structural analysis.
  Structure, 18, 1069-1071.  
19389623 A.Hendrickx, M.Beullens, H.Ceulemans, T.Den Abt, A.Van Eynde, E.Nicolaescu, B.Lesage, and M.Bollen (2009).
Docking motif-guided mapping of the interactome of protein phosphatase-1.
  Chem Biol, 16, 365-371.  
19531490 A.Khromov, N.Choudhury, A.S.Stevenson, A.V.Somlyo, and M.Eto (2009).
Phosphorylation-dependent Autoinhibition of Myosin Light Chain Phosphatase Accounts for Ca2+ Sensitization Force of Smooth Muscle Contraction.
  J Biol Chem, 284, 21569-21579.  
19285938 D.M.Virshup, and S.Shenolikar (2009).
From promiscuity to precision: protein phosphatases get a makeover.
  Mol Cell, 33, 537-545.  
19245366 J.D.Webb, A.Murányi, C.W.Pugh, P.J.Ratcliffe, and M.L.Coleman (2009).
MYPT1, the targeting subunit of smooth-muscle myosin phosphatase, is a substrate for the asparaginyl hydroxylase factor inhibiting hypoxia-inducible factor (FIH).
  Biochem J, 420, 327-333.  
19835610 J.Guergnon, U.Derewenda, J.R.Edelson, and D.L.Brautigan (2009).
Mapping of protein phosphatase-6 association with its SAPS domain regulatory subunit using a model of helical repeats.
  BMC Biochem, 10, 24.  
19299564 J.L.McConnell, and B.E.Wadzinski (2009).
Targeting protein serine/threonine phosphatases for drug development.
  Mol Pharmacol, 75, 1249-1261.  
19846560 M.Eto (2009).
Regulation of cellular protein phosphatase-1 (PP1) by phosphorylation of the CPI-17 family, C-kinase-activated PP1 inhibitors.
  J Biol Chem, 284, 35273-35277.  
18498004 M.F.Olson, and E.Sahai (2009).
The actin cytoskeleton in cancer cell motility.
  Clin Exp Metastasis, 26, 273-287.  
19452551 N.Kowalsman, and M.Eisenstein (2009).
Combining interface core and whole interface descriptors in postscan processing of protein-protein docking models.
  Proteins, 77, 297-318.  
19273294 P.Nicolaou, and E.G.Kranias (2009).
Role of PP1 in the regulation of Ca cycling in cardiac physiology and pathophysiology.
  Front Biosci, 14, 3571-3585.  
19332797 S.Martínez-Martínez, L.Genescà, A.Rodríguez, A.Raya, E.Salichs, F.Were, M.D.López-Maderuelo, J.M.Redondo, and la Luna (2009).
The RCAN carboxyl end mediates calcineurin docking-dependent inhibition via a site that dictates binding to substrates and regulators.
  Proc Natl Acad Sci U S A, 106, 6117-6122.  
19701943 S.Mori, R.Iwaoka, M.Eto, and S.Y.Ohki (2009).
Solution structure of the inhibitory phosphorylation domain of myosin phosphatase targeting subunit 1.
  Proteins, 77, 732-735.
PDB code: 2kjy
18925649 X.J.Xie, W.Huang, C.Z.Xue, and Q.Wei (2009).
The nonconserved N-terminus of protein phosphatase 2B confers its properties to protein phosphatase 1.
  IUBMB Life, 61, 178-183.  
19242655 X.J.Xie, W.Huang, C.Z.Xue, and Q.Wei (2009).
The N-terminal domain influences the structure and property of protein phosphatase 1.
  Mol Cell Biochem, 327, 241-246.  
19879837 Y.Shi (2009).
Serine/threonine phosphatases: mechanism through structure.
  Cell, 139, 468-484.  
18596940 A.Stein, and P.Aloy (2008).
Contextual specificity in peptide-mediated protein interactions.
  PLoS ONE, 3, e2524.  
18954090 B.Dancheck, A.C.Nairn, and W.Peti (2008).
Detailed structural characterization of unbound protein phosphatase 1 inhibitors.
  Biochemistry, 47, 12346-12356.  
18488168 B.Wang, P.Zhang, and Q.Wei (2008).
Recent progress on the structure of Ser/Thr protein phosphatases.
  Sci China C Life Sci, 51, 487-494.  
18291321 E.Tappan, and A.R.Chamberlin (2008).
Activation of protein phosphatase 1 by a small molecule designed to bind to the enzyme's regulatory site.
  Chem Biol, 15, 167-174.  
18155661 F.Matsumura, and D.J.Hartshorne (2008).
Myosin phosphatase target subunit: Many roles in cell function.
  Biochem Biophys Res Commun, 369, 149-156.  
19000314 G.B.Moorhead, L.Trinkle-Mulcahy, M.Nimick, V.De Wever, D.G.Campbell, R.Gourlay, Y.W.Lam, and A.I.Lamond (2008).
Displacement affinity chromatography of protein phosphatase one (PP1) complexes.
  BMC Biochem, 9, 28.  
18480405 J.R.Larson, J.P.Bharucha, S.Ceaser, J.Salamon, C.J.Richardson, S.M.Rivera, and K.Tatchell (2008).
Protein phosphatase type 1 directs chitin synthesis at the bud neck in Saccharomyces cerevisiae.
  Mol Biol Cell, 19, 3040-3051.  
18216290 L.C.Carmody, A.J.Baucum, M.A.Bass, and R.J.Colbran (2008).
Selective targeting of the gamma1 isoform of protein phosphatase 1 to F-actin in intact cells requires multiple domains in spinophilin and neurabin.
  FASEB J, 22, 1660-1671.  
18951879 L.Zhang, Z.Qi, Y.Gao, and E.Y.Lee (2008).
Identification of the interaction sites of Inhibitor-3 for protein phosphatase-1.
  Biochem Biophys Res Commun, 377, 710-713.  
18627629 M.R.Logan, T.Nguyen, N.Szapiel, J.Knockleby, H.Por, M.Zadworny, M.Neszt, P.Harrison, H.Bussey, C.A.Mandato, J.Vogel, and G.Lesage (2008).
Genetic interaction network of the Saccharomyces cerevisiae type 1 phosphatase Glc7.
  BMC Genomics, 9, 336.  
18414734 R.Gaudet (2008).
A primer on ankyrin repeat function in TRP channels and beyond.
  Mol Biosyst, 4, 372-379.  
18840611 W.D.Cheung, K.Sakabe, M.P.Housley, W.B.Dias, and G.W.Hart (2008).
O-Linked {beta}-N-Acetylglucosaminyltransferase Substrate Specificity Is Regulated by Myosin Phosphatase Targeting and Other Interacting Proteins.
  J Biol Chem, 283, 33935-33941.  
18310074 X.Wang, B.Liu, N.Li, H.Li, J.Qiu, Y.Zhang, and X.Cao (2008).
IPP5, a novel protein inhibitor of protein phosphatase 1, promotes G1/S progression in a Thr-40-dependent manner.
  J Biol Chem, 283, 12076-12084.  
17085438 A.Saraf, D.M.Virshup, and S.Strack (2007).
Differential expression of the B'beta regulatory subunit of protein phosphatase 2A modulates tyrosine hydroxylase phosphorylation and catecholamine synthesis.
  J Biol Chem, 282, 573-580.  
17318227 G.B.Moorhead, L.Trinkle-Mulcahy, and A.Ulke-Lemée (2007).
Emerging roles of nuclear protein phosphatases.
  Nat Rev Mol Cell Biol, 8, 234-244.  
17545157 J.A.Gibbons, L.Kozubowski, K.Tatchell, and S.Shenolikar (2007).
Expression of human protein phosphatase-1 in Saccharomyces cerevisiae highlights the role of phosphatase isoforms in regulating eukaryotic functions.
  J Biol Chem, 282, 21838-21847.  
17513890 J.Kirchner, S.Gross, D.Bennett, and L.Alphey (2007).
Essential, overlapping and redundant roles of the Drosophila protein phosphatase 1 alpha and 1 beta genes.
  Genetics, 176, 273-281.  
17521420 J.L.Jiménez, B.Hegemann, J.R.Hutchins, J.M.Peters, and R.Durbin (2007).
A systematic comparative and structural analysis of protein phosphorylation sites based on the mtcPTM database.
  Genome Biol, 8, R90.  
17538233 K.Hirano (2007).
Current topics in the regulatory mechanism underlying the Ca2+ sensitization of the contractile apparatus in vascular smooth muscle.
  J Pharmacol Sci, 104, 109-115.  
17394030 M.Brylinski, M.Kochanczyk, E.Broniatowska, and I.Roterman (2007).
Localization of ligand binding site in proteins identified in silico.
  J Mol Model, 13, 665-675.  
18073109 M.Eto, T.Kitazawa, F.Matsuzawa, S.Aikawa, J.A.Kirkbride, N.Isozumi, Y.Nishimura, D.L.Brautigan, and S.Y.Ohki (2007).
Phosphorylation-induced conformational switching of CPI-17 produces a potent myosin phosphatase inhibitor.
  Structure, 15, 1591-1602.
PDB code: 2rlt
17803233 N.London, and O.Schueler-Furman (2007).
Assessing the energy landscape of CAPRI targets by FunHunt.
  Proteins, 69, 809-815.  
17803234 Vries, A.D.van Dijk, M.Krzeminski, M.van Dijk, A.Thureau, V.Hsu, T.Wassenaar, and A.M.Bonvin (2007).
HADDOCK versus HADDOCK: new features and performance of HADDOCK2.0 on the CAPRI targets.
  Proteins, 69, 726-733.  
17511879 S.L.Winter, L.Bosnoyan-Collins, D.Pinnaduwage, and I.L.Andrulis (2007).
The interaction of PP1 with BRCA1 and analysis of their expression in breast tumors.
  BMC Cancer, 7, 85.  
17636256 T.D.Hurley, J.Yang, L.Zhang, K.D.Goodwin, Q.Zou, M.Cortese, A.K.Dunker, and A.A.DePaoli-Roach (2007).
Structural basis for regulation of protein phosphatase 1 by inhibitor-2.
  J Biol Chem, 282, 28874-28883.
PDB codes: 2o8a 2o8g
17444519 T.M.Cheng, T.L.Blundell, and J.Fernandez-Recio (2007).
pyDock: electrostatics and desolvation for effective scoring of rigid-body protein-protein docking.
  Proteins, 68, 503-515.  
17079133 A.Reményi, M.C.Good, and W.A.Lim (2006).
Docking interactions in protein kinase and phosphatase networks.
  Curr Opin Struct Biol, 16, 676-685.  
16920702 J.Yong, I.Tan, L.Lim, and T.Leung (2006).
Phosphorylation of myosin phosphatase targeting subunit 3 (MYPT3) and regulation of protein phosphatase 1 by protein kinase A.
  J Biol Chem, 281, 31202-31211.  
17084073 M.G.Gold, D.Barford, and D.Komander (2006).
Lining the pockets of kinases and phosphatases.
  Curr Opin Struct Biol, 16, 693-701.  
16629905 T.Oguri, A.Inoko, H.Shima, I.Izawa, N.Arimura, T.Yamaguchi, N.Inagaki, K.Kaibuchi, K.Kikuchi, and M.Inagaki (2006).
Vimentin-Ser82 as a memory phosphorylation site in astrocytes.
  Genes Cells, 11, 531-540.  
16962311 V.Neduva, and R.B.Russell (2006).
Peptides mediating interaction networks: new leads at last.
  Curr Opin Biotechnol, 17, 465-471.  
17055435 Y.Xing, Y.Xu, Y.Chen, P.D.Jeffrey, Y.Chao, Z.Lin, Z.Li, S.Strack, J.B.Stock, and Y.Shi (2006).
Structure of protein phosphatase 2A core enzyme bound to tumor-inducing toxins.
  Cell, 127, 341-353.
PDB codes: 2ie3 2ie4
15981252 A.D.van Dijk, Vries, C.Dominguez, H.Chen, H.X.Zhou, and A.M.Bonvin (2005).
Data-driven docking: HADDOCK's adventures in CAPRI.
  Proteins, 60, 232-238.  
15981253 C.J.Camacho (2005).
Modeling side-chains using molecular dynamics improve recognition of binding region in CAPRI targets.
  Proteins, 60, 245-251.  
15802647 C.Wang, O.Schueler-Furman, and D.Baker (2005).
Improved side-chain modeling for protein-protein docking.
  Protein Sci, 14, 1328-1339.  
15981255 C.Zhang, S.Liu, and Y.Zhou (2005).
Docking prediction using biological information, ZDOCK sampling technique, and clustering guided by the DFIRE statistical energy function.
  Proteins, 60, 314-318.  
15981246 D.Law, M.Hotchko, and L.Ten Eyck (2005).
Progress in computation and amide hydrogen exchange for prediction of protein-protein complexes.
  Proteins, 60, 302-307.  
15981272 D.Mustard, and D.W.Ritchie (2005).
Docking essential dynamics eigenstructures.
  Proteins, 60, 269-274.  
15981268 E.Ben-Zeev, N.Kowalsman, A.Ben-Shimon, D.Segal, T.Atarot, O.Noivirt, T.Shay, and M.Eisenstein (2005).
Docking to single-domain and multiple-domain proteins: old and new challenges.
  Proteins, 60, 195-201.  
15981258 G.R.Smith, P.W.Fitzjohn, C.S.Page, and P.A.Bates (2005).
Incorporation of flexibility into rigid-body docking: applications in rounds 3-5 of CAPRI.
  Proteins, 60, 263-268.  
15981245 G.Terashi, M.Takeda-Shitaka, D.Takaya, K.Komatsu, and H.Umeyama (2005).
Searching for protein-protein interaction sites and docking by the methods of molecular dynamics, grid scoring, and the pairwise interaction potential of amino acid residues.
  Proteins, 60, 289-295.  
16080151 H.Chen, and H.X.Zhou (2005).
Prediction of interface residues in protein-protein complexes by a consensus neural network method: test against NMR data.
  Proteins, 61, 21-35.  
15703180 J.A.Gibbons, D.C.Weiser, and S.Shenolikar (2005).
Importance of a surface hydrophobic pocket on protein phosphatase-1 catalytic subunit in recognizing cellular regulators.
  J Biol Chem, 280, 15903-15911.  
15981266 J.Fernández-Recio, R.Abagyan, and M.Totrov (2005).
Improving CAPRI predictions: optimized desolvation for rigid-body docking.
  Proteins, 60, 308-313.  
15659362 J.Janin (2005).
Assessing predictions of protein-protein interaction: the CAPRI experiment.
  Protein Sci, 14, 278-283.  
15981267 J.Janin (2005).
The targets of CAPRI rounds 3-5.
  Proteins, 60, 170-175.  
15981263 K.Wiehe, B.Pierce, J.Mintseris, W.W.Tong, R.Anderson, R.Chen, and Z.Weng (2005).
ZDOCK and RDOCK performance in CAPRI rounds 3, 4, and 5.
  Proteins, 60, 207-213.  
15981262 M.D.Daily, D.Masica, A.Sivasubramanian, S.Somarouthu, and J.J.Gray (2005).
CAPRI rounds 3-5 reveal promising successes and future challenges for RosettaDock.
  Proteins, 60, 181-186.  
16106448 M.Eto, J.A.Kirkbride, and D.L.Brautigan (2005).
Assembly of MYPT1 with protein phosphatase-1 in fibroblasts redirects localization and reorganizes the actin cytoskeleton.
  Cell Motil Cytoskeleton, 62, 100-109.  
15780597 M.Gallego, and D.M.Virshup (2005).
Protein serine/threonine phosphatases: life, death, and sleeping.
  Curr Opin Cell Biol, 17, 197-202.  
15981270 M.Zacharias (2005).
ATTRACT: protein-protein docking in CAPRI using a reduced protein model.
  Proteins, 60, 252-256.  
15981249 O.Schueler-Furman, C.Wang, and D.Baker (2005).
Progress in protein-protein docking: atomic resolution predictions in the CAPRI experiment using RosettaDock with an improved treatment of side-chain flexibility.
  Proteins, 60, 187-194.  
15981271 P.Carter, V.I.Lesk, S.A.Islam, and M.J.Sternberg (2005).
Protein-protein docking using 3D-Dock in rounds 3, 4, and 5 of CAPRI.
  Proteins, 60, 281-288.  
15981261 R.Méndez, R.Leplae, M.F.Lensink, and S.J.Wodak (2005).
Assessment of CAPRI predictions in rounds 3-5 shows progress in docking procedures.
  Proteins, 60, 150-169.  
15981265 S.R.Comeau, S.Vajda, and C.J.Camacho (2005).
Performance of the first protein docking server ClusPro in CAPRI rounds 3-5.
  Proteins, 60, 239-244.  
16131488 T.Ammosova, M.Jerebtsova, M.Beullens, B.Lesage, A.Jackson, F.Kashanchi, W.Southerland, V.R.Gordeuk, M.Bollen, and S.Nekhai (2005).
Nuclear targeting of protein phosphatase-1 by HIV-1 Tat protein.
  J Biol Chem, 280, 36364-36371.  
16279839 V.Neduva, R.Linding, I.Su-Angrand, A.Stark, Masi, T.J.Gibson, J.Lewis, L.Serrano, and R.B.Russell (2005).
Systematic discovery of new recognition peptides mediating protein interaction networks.
  PLoS Biol, 3, e405.  
15280359 J.T.Maynes, K.R.Perreault, M.M.Cherney, H.A.Luu, M.N.James, and C.F.Holmes (2004).
Crystal structure and mutagenesis of a protein phosphatase-1:calcineurin hybrid elucidate the role of the beta12-beta13 loop in inhibitor binding.
  J Biol Chem, 279, 43198-43206.
PDB code: 1u32
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.