PDBsum entry 1pes

Go to PDB code: 
protein Protein-protein interface(s) links
DNA-binding PDB id
Protein chains
31 a.a. *
* Residue conservation analysis
PDB id:
Name: DNA-binding
Title: Nmr solution structure of the tetrameric minimum transforming domain of p53
Structure: Tumor suppressor p53. Chain: a, b, c, d. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Gene: human.
NMR struc: 1 models
Authors: W.Lee,T.S.Harvey,Y.Yin,P.Yau,D.Litchfield,C.H.Arrowsmith
Key ref: W.Lee et al. (1994). Solution structure of the tetrameric minimum transforming domain of p53. Nat Struct Biol, 1, 877-890. PubMed id: 7773777
24-Nov-94     Release date:   07-Feb-95    
Go to PROCHECK summary

Protein chains
Pfam   ArchSchema ?
P04637  (P53_HUMAN) -  Cellular tumor antigen p53
393 a.a.
31 a.a.
Key:    PfamA domain  Secondary structure

 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     nucleus   1 term 
  Biological process     apoptotic process   3 terms 
  Biochemical function     DNA binding     2 terms  


Nat Struct Biol 1:877-890 (1994)
PubMed id: 7773777  
Solution structure of the tetrameric minimum transforming domain of p53.
W.Lee, T.S.Harvey, Y.Yin, P.Yau, D.Litchfield, C.H.Arrowsmith.
We report the solution structure of the minimum transforming domain (residues 303-366) of human p53 (p53tet) determined by multidimensional NMR spectroscopy. This domain contains a number of important functions associated with p53 activity including transformation, oligomerization, nuclear localization and a phosphorylation site for p34/cdc2 kinase. p53tet forms a symmetric dimer of dimers that is significantly different from a recent structure reported for a shorter construct of this domain. Phosphorylation of Ser 315 has only minor structural consequences, as this region of the protein is unstructured. Modelling based on the p53tet structure suggests possible modes of interaction between adjacent domains in full-length p53 as well as modes of interaction with DNA.

Literature references that cite this PDB file's key reference

  PubMed id Reference
21172423 A.S.Bayden, V.A.Yakovlev, P.R.Graves, R.B.Mikkelsen, and G.E.Kellogg (2011).
Factors influencing protein tyrosine nitration--structure-based predictive models.
  Free Radic Biol Med, 50, 749-762.  
21335238 G.B.Deutsch, E.M.Zielonka, D.Coutandin, T.A.Weber, B.Schäfer, J.Hannewald, L.M.Luh, F.G.Durst, M.Ibrahim, J.Hoffmann, F.H.Niesen, A.Sentürk, H.Kunkel, B.Brutschy, E.Schleiff, S.Knapp, A.Acker-Palmer, M.Grez, F.McKeon, and V.Dötsch (2011).
DNA damage in oocytes induces a switch of the quality control factor TAp63α from dimer to tetramer.
  Cell, 144, 566-576.  
21338609 N.Khazanov, and Y.Levy (2011).
Sliding of p53 along DNA can be modulated by its oligomeric state and by cross-talks between its constituent domains.
  J Mol Biol, 408, 335-355.  
21178074 R.Melero, S.Rajagopalan, M.Lázaro, A.C.Joerger, T.Brandt, D.B.Veprintsev, G.Lasso, D.Gil, S.H.Scheres, J.M.Carazo, A.R.Fersht, and M.Valle (2011).
Electron microscopy studies on the quaternary structure of p53 reveal different binding modes for p53 tetramers in complex with DNA.
  Proc Natl Acad Sci U S A, 108, 557-562.  
21522129 T.J.Petty, S.Emamzadah, L.Costantino, I.Petkova, E.S.Stavridi, J.G.Saven, E.Vauthey, and T.D.Halazonetis (2011).
An induced fit mechanism regulates p53 DNA binding kinetics to confer sequence specificity.
  EMBO J, 30, 2167-2176.
PDB codes: 3q01 3q05 3q06
  20516128 A.C.Joerger, and A.R.Fersht (2010).
The tumor suppressor p53: from structures to drug discovery.
  Cold Spring Harb Perspect Biol, 2, a000919.  
20696896 D.Coutandin, H.D.Ou, F.Löhr, and V.Dötsch (2010).
Tracing the protectors path from the germ line to the genome.
  Proc Natl Acad Sci U S A, 107, 15318-15325.  
21086029 P.W.Chun, and M.S.Lewis (2010).
Planck-Benzinger thermal work function: thermodynamic characterization of the carboxy-terminus of p53 peptide fragments.
  Protein J, 29, 617-630.  
19815500 A.C.Joerger, S.Rajagopalan, E.Natan, D.B.Veprintsev, C.V.Robinson, and A.R.Fersht (2009).
Structural evolution of p53, p63, and p73: implication for heterotetramer formation.
  Proc Natl Acad Sci U S A, 106, 17705-17710.
PDB codes: 2wqi 2wqj 2wtt
19763140 D.Coutandin, F.Löhr, F.H.Niesen, T.Ikeya, T.A.Weber, B.Schäfer, E.M.Zielonka, A.N.Bullock, A.Yang, P.Güntert, S.Knapp, F.McKeon, H.D.Ou, and V.Dötsch (2009).
Conformational stability and activity of p73 require a second helix in the tetramerization domain.
  Cell Death Differ, 16, 1582-1589.
PDB code: 2kby
19933326 F.Huang, S.Rajagopalan, G.Settanni, R.J.Marsh, D.A.Armoogum, N.Nicolaou, A.J.Bain, E.Lerner, E.Haas, L.Ying, and A.R.Fersht (2009).
Multiple conformations of full-length p53 detected with single-molecule fluorescence resonance energy transfer.
  Proc Natl Acad Sci U S A, 106, 20758-20763.  
20030809 T.Brandt, M.Petrovich, A.C.Joerger, and D.B.Veprintsev (2009).
Conservation of DNA-binding specificity and oligomerisation properties within the p53 family.
  BMC Genomics, 10, 628.  
18781628 T.Nomura, R.Kamada, I.Ito, Y.Chuman, Y.Shimohigashi, and K.Sakaguchi (2009).
Oxidation of methionine residue at hydrophobic core destabilizes p53 tetrameric structure.
  Biopolymers, 91, 78-84.  
19580521 X.Cai, and Z.M.Yuan (2009).
Stochastic modeling and simulation of the p53-MDM2/MDMX loop.
  J Comput Biol, 16, 917-933.  
18410249 A.C.Joerger, and A.R.Fersht (2008).
Structural biology of the tumor suppressor p53.
  Annu Rev Biochem, 77, 557-582.  
17972286 D.F.Lowry, A.Stancik, R.M.Shrestha, and G.W.Daughdrill (2008).
Modeling the accessible conformations of the intrinsically unstructured transactivation domain of p53.
  Proteins, 71, 587-598.  
18714371 J.J.Jordan, D.Menendez, A.Inga, M.Nourredine, D.Bell, and M.A.Resnick (2008).
Noncanonical DNA motifs as transactivation targets by wild type and mutant p53.
  PLoS Genet, 4, e1000104.  
18753130 J.R.Whiteford, S.Ko, W.Lee, and J.R.Couchman (2008).
Structural and cell adhesion properties of zebrafish syndecan-4 are shared with higher vertebrates.
  J Biol Chem, 283, 29322-29330.  
18621913 M.M.García-Alai, H.Tidow, E.Natan, F.M.Townsley, D.B.Veprintsev, and A.R.Fersht (2008).
The novel p53 isoform "delta p53" is a misfolded protein and does not bind the p21 promoter site.
  Protein Sci, 17, 1671-1678.  
18391200 M.Wells, H.Tidow, T.J.Rutherford, P.Markwick, M.R.Jensen, E.Mylonas, D.I.Svergun, M.Blackledge, and A.R.Fersht (2008).
Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain.
  Proc Natl Acad Sci U S A, 105, 5762-5767.  
18076077 P.Mora, R.J.Carbajo, A.Pineda-Lucena, M.M.Sánchez del Pino, and E.Pérez-Payá (2008).
Solvent-exposed residues located in the beta-sheet modulate the stability of the tetramerization domain of p53--a structural and combinatorial approach.
  Proteins, 71, 1670-1685.
PDB codes: 2j0z 2j10 2j11
18189286 R.Gabizon, M.Mor, M.M.Rosenberg, L.Britan, Z.Hayouka, M.Kotler, D.E.Shalev, and A.Friedler (2008).
Using peptides to study the interaction between the p53 tetramerization domain and HIV-1 Tat.
  Biopolymers, 90, 105-116.  
18940924 S.Gordo, V.Martos, E.Santos, M.Menéndez, C.Bo, E.Giralt, and Mendoza (2008).
Stability and structural recovery of the tetramerization domain of p53-R337H mutant induced by a designed templating ligand.
  Proc Natl Acad Sci U S A, 105, 16426-16431.  
17965191 A.J.McCluskey, G.M.Poon, and J.Gariépy (2007).
A rapid and universal tandem-purification strategy for recombinant proteins.
  Protein Sci, 16, 2726-2732.  
17290219 C.J.Matheny, M.E.Speck, P.R.Cushing, Y.Zhou, T.Corpora, M.Regan, M.Newman, L.Roudaia, C.L.Speck, T.L.Gu, S.M.Griffey, J.H.Bushweller, and N.A.Speck (2007).
Disease mutations in RUNX1 and RUNX2 create nonfunctional, dominant-negative, or hypomorphic alleles.
  EMBO J, 26, 1163-1175.  
17581633 H.D.Ou, F.Löhr, V.Vogel, W.Mäntele, and V.Dötsch (2007).
Structural evolution of C-terminal domains in the p53 family.
  EMBO J, 26, 3463-3473.
PDB codes: 2rp4 2rp5
17620598 H.Tidow, R.Melero, E.Mylonas, S.M.Freund, J.G.Grossmann, J.M.Carazo, D.I.Svergun, M.Valle, and A.R.Fersht (2007).
Quaternary structures of tumor suppressor p53 and a specific p53 DNA complex.
  Proc Natl Acad Sci U S A, 104, 12324-12329.  
17391014 H.Xie, S.Vucetic, L.M.Iakoucheva, C.J.Oldfield, A.K.Dunker, V.N.Uversky, and Z.Obradovic (2007).
Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions.
  J Proteome Res, 6, 1882-1898.  
17298945 L.Kaustov, J.Lukin, A.Lemak, S.Duan, M.Ho, R.Doherty, L.Z.Penn, and C.H.Arrowsmith (2007).
The conserved CPH domains of Cul7 and PARC are protein-protein interaction modules that bind the tetramerization domain of p53.
  J Biol Chem, 282, 11300-11307.
PDB code: 2jng
18087040 R.S.Foo, Y.J.Nam, M.J.Ostreicher, M.D.Metzl, R.S.Whelan, C.F.Peng, A.W.Ashton, W.Fu, K.Mani, S.F.Chin, E.Provenzano, I.Ellis, N.Figg, S.Pinder, M.R.Bennett, C.Caldas, and R.N.Kitsis (2007).
Regulation of p53 tetramerization and nuclear export by ARC.
  Proc Natl Acad Sci U S A, 104, 20826-20831.  
17900613 T.Z.Lwin, J.J.Durant, and D.Bashford (2007).
A fluid salt-bridging cluster and the stabilization of p53.
  J Mol Biol, 373, 1334-1347.  
17640907 Z.Shakked (2007).
Quaternary structure of p53: the light at the end of the tunnel.
  Proc Natl Acad Sci U S A, 104, 12231-12232.  
16461914 D.B.Veprintsev, S.M.Freund, A.Andreeva, S.E.Rutledge, H.Tidow, J.M.Cañadillas, C.M.Blair, and A.R.Fersht (2006).
Core domain interactions in full-length p53 in solution.
  Proc Natl Acad Sci U S A, 103, 2115-2119.  
16757565 H.You, K.Yamamoto, and T.W.Mak (2006).
Regulation of transactivation-independent proapoptotic activity of p53 by FOXO3a.
  Proc Natl Acad Sci U S A, 103, 9051-9056.  
20141510 J.Deng, R.Dayam, and N.Neamati (2006).
Patented small molecule inhibitors of p53-MDM2 interaction.
  Expert Opin Ther Pat, 16, 165-188.  
16983711 L.Römer, C.Klein, A.Dehner, H.Kessler, and J.Buchner (2006).
p53--a natural cancer killer: structural insights and therapeutic concepts.
  Angew Chem Int Ed Engl, 45, 6440-6460.  
16793544 M.Kitayner, H.Rozenberg, N.Kessler, D.Rabinovich, L.Shaulov, T.E.Haran, and Z.Shakked (2006).
Structural basis of DNA recognition by p53 tetramers.
  Mol Cell, 22, 741-753.
PDB codes: 2ac0 2ady 2ahi 2ata
16460008 Y.Higashimoto, Y.Asanomi, S.Takakusagi, M.S.Lewis, K.Uosaki, S.R.Durell, C.W.Anderson, E.Appella, and K.Sakaguchi (2006).
Unfolding, aggregation, and amyloid formation by the tetramerization domain from mutant p53 associated with lung cancer.
  Biochemistry, 45, 1608-1619.  
16291740 Y.Kawaguchi, A.Ito, E.Appella, and T.P.Yao (2006).
Charge modification at multiple C-terminal lysine residues regulates p53 oligomerization and its nucleus-cytoplasm trafficking.
  J Biol Chem, 281, 1394-1400.  
16035029 A.Dehner, C.Klein, S.Hansen, L.Müller, J.Buchner, M.Schwaiger, and H.Kessler (2005).
Cooperative binding of p53 to DNA: regulation by protein-protein interactions through a double salt bridge.
  Angew Chem Int Ed Engl, 44, 5247-5251.  
16138303 A.Dehner, and H.Kessler (2005).
Diffusion NMR spectroscopy: folding and aggregation of domains in p53.
  Chembiochem, 6, 1550-1565.  
16260757 C.Galea, P.Bowman, and R.W.Kriwacki (2005).
Disruption of an intermonomer salt bridge in the p53 tetramerization domain results in an increased propensity to form amyloid fibrils.
  Protein Sci, 14, 2993-3003.  
15824059 P.D.Vise, B.Baral, A.J.Latos, and G.W.Daughdrill (2005).
NMR chemical shift and relaxation measurements provide evidence for the coupled folding and binding of the p53 transactivation domain.
  Nucleic Acids Res, 33, 2061-2077.  
16007150 T.Kawaguchi, S.Kato, K.Otsuka, G.Watanabe, T.Kumabe, T.Tominaga, T.Yoshimoto, and C.Ishioka (2005).
The relationship among p53 oligomer formation, structure and transcriptional activity using a comprehensive missense mutation library.
  Oncogene, 24, 6976-6981.  
15863617 W.Feng, J.F.Long, and M.Zhang (2005).
A unified assembly mode revealed by the structures of tetrameric L27 domain complexes formed by mLin-2/mLin-7 and Patj/Pals1 scaffold proteins.
  Proc Natl Acad Sci U S A, 102, 6861-6866.
PDB codes: 1y74 1y76
15509798 K.G.McLure, M.Takagi, and M.B.Kastan (2004).
NAD+ modulates p53 DNA binding specificity and function.
  Mol Cell Biol, 24, 9958-9967.  
15558054 N.Issaeva, P.Bozko, M.Enge, M.Protopopova, L.G.Verhoef, M.Masucci, A.Pramanik, and G.Selivanova (2004).
Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors.
  Nat Med, 10, 1321-1328.  
12433927 R.D.Brokx, E.Bolewska-Pedyczak, and J.Gariépy (2003).
A stable human p53 heterotetramer based on constructive charge interactions within the tetramerization domain.
  J Biol Chem, 278, 2327-2332.  
12496278 S.R.Leliveld, Y.H.Zhang, J.L.Rohn, M.H.Noteborn, and J.P.Abrahams (2003).
Apoptin induces tumor-specific apoptosis as a globular multimer.
  J Biol Chem, 278, 9042-9051.  
11805092 C.D.Nicholls, K.G.McLure, M.A.Shields, and P.W.Lee (2002).
Biogenesis of p53 involves cotranslational dimerization of monomers and posttranslational dimerization of dimers. Implications on the dominant negative effect.
  J Biol Chem, 277, 12937-12945.  
11753428 E.L.DiGiammarino, A.S.Lee, C.Cadwell, W.Zhang, B.Bothner, R.C.Ribeiro, G.Zambetti, and R.W.Kriwacki (2002).
A novel mechanism of tumorigenesis involving pH-dependent destabilization of a mutant p53 tetramer.
  Nat Struct Biol, 9, 12-16.  
11917017 J.D.Wright, S.Y.Noskov, and C.Lim (2002).
Factors governing loss and rescue of DNA binding upon single and double mutations in the p53 core domain.
  Nucleic Acids Res, 30, 1563-1574.  
12220179 J.Zimmermann, D.Labudde, T.Jarchau, U.Walter, H.Oschkinat, and L.J.Ball (2002).
Relaxation, equilibrium oligomerization, and molecular symmetry of the VASP (336-380) EVH2 tetramer.
  Biochemistry, 41, 11143-11151.  
12111723 M.Ikura, M.Osawa, and J.B.Ames (2002).
The role of calcium-binding proteins in the control of transcription: structure to function.
  Bioessays, 24, 625-636.  
11524676 A.Ayed, F.A.Mulder, G.S.Yi, Y.Lu, L.E.Kay, and C.H.Arrowsmith (2001).
Latent and active p53 are identical in conformation.
  Nat Struct Biol, 8, 756-760.  
11222313 A.R.Völkel, and J.Noolandi (2001).
Meanfield approach to the thermodynamics of protein-solvent systems with application to p53.
  Biophys J, 80, 1524-1537.  
11713288 J.Gu, L.Nie, D.Wiederschain, and Z.M.Yuan (2001).
Identification of p53 sequence elements that are required for MDM2-mediated nuclear export.
  Mol Cell Biol, 21, 8533-8546.  
11559355 J.L.Neira, and M.G.Mateu (2001).
Hydrogen exchange of the tetramerization domain of the human tumour suppressor p53 probed by denaturants and temperature.
  Eur J Biochem, 268, 4868-4877.  
11456484 J.Shin, W.Lee, D.Lee, B.K.Koo, I.Han, Y.Lim, A.Woods, J.R.Couchman, and E.S.Oh (2001).
Solution structure of the dimeric cytoplasmic domain of syndecan-4.
  Biochemistry, 40, 8471-8478.
PDB code: 1ejp
10801461 A.Komeili, and E.K.O'Shea (2000).
Nuclear transport and transcription.
  Curr Opin Cell Biol, 12, 355-360.  
11025541 B.Nölting, and K.Andert (2000).
Mechanism of protein folding.
  Proteins, 41, 288-298.  
10944184 J.Noolandi, T.S.Davison, A.R.Volkel, X.Nie, C.Kay, and C.H.Arrowsmith (2000).
A meanfield approach to the thermodynamics of a protein-solvent system with application to the oligomerization of the tumor suppressor p53.
  Proc Natl Acad Sci U S A, 97, 9955-9960.  
11087311 R.B.Hill, D.P.Raleigh, A.Lombardi, and W.F.DeGrado (2000).
De novo design of helical bundles as models for understanding protein folding and function.
  Acc Chem Res, 33, 745-754.  
  10523638 A.L.Okorokov, and J.Milner (1999).
An ATP/ADP-dependent molecular switch regulates the stability of p53-DNA complexes.
  Mol Cell Biol, 19, 7501-7510.  
  9891077 C.J.Di Como, C.Gaiddon, and C.Prives (1999).
p73 function is inhibited by tumor-derived p53 mutants in mammalian cells.
  Mol Cell Biol, 19, 1438-1449.  
  10493578 E.S.Stavridi, N.H.Chehab, L.C.Caruso, and T.D.Halazonetis (1999).
Change in oligomerization specificity of the p53 tetramerization domain by hydrophobic amino acid substitutions.
  Protein Sci, 8, 1773-1779.  
  10207063 G.Selivanova, L.Ryabchenko, E.Jansson, V.Iotsova, and K.G.Wiman (1999).
Reactivation of mutant p53 through interaction of a C-terminal peptide with the core domain.
  Mol Cell Biol, 19, 3395-3402.  
  10211819 I.Matsumura, and A.D.Ellington (1999).
In vitro evolution of thermostable p53 variants.
  Protein Sci, 8, 731-740.  
  10091657 J.A.Hauer, P.Barthe, S.S.Taylor, J.Parello, and A.Padilla (1999).
Two well-defined motifs in the cAMP-dependent protein kinase inhibitor (PKIalpha) correlate with inhibitory and nuclear export function.
  Protein Sci, 8, 545-553.  
10075936 J.M.Stommel, N.D.Marchenko, G.S.Jimenez, U.M.Moll, T.J.Hope, and G.M.Wahl (1999).
A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking.
  EMBO J, 18, 1660-1672.  
  9891054 L.Liu, D.M.Scolnick, R.C.Trievel, H.B.Zhang, R.Marmorstein, T.D.Halazonetis, and S.L.Berger (1999).
p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage.
  Mol Cell Biol, 19, 1202-1209.  
10097082 M.G.Mateu, and A.R.Fersht (1999).
Mutually compensatory mutations during evolution of the tetramerization domain of tumor suppressor p53 lead to impaired hetero-oligomerization.
  Proc Natl Acad Sci U S A, 96, 3595-3599.  
10358050 N.Shinobu, T.Maeda, T.Aso, T.Ito, T.Kondo, K.Koike, and M.Hatakeyama (1999).
Physical interaction and functional antagonism between the RNA polymerase II elongation factor ELL and p53.
  J Biol Chem, 274, 17003-17010.  
10601314 P.Verdino, W.Keller, H.Strohmaier, K.Bischof, H.Lindner, and G.Koraimann (1999).
The essential transfer protein TraM binds to DNA as a tetramer.
  J Biol Chem, 274, 37421-37428.  
10202145 S.Y.Shieh, Y.Taya, and C.Prives (1999).
DNA damage-inducible phosphorylation of p53 at N-terminal sites including a novel site, Ser20, requires tetramerization.
  EMBO J, 18, 1815-1823.  
10373484 T.S.Davison, C.Vagner, M.Kaghad, A.Ayed, D.Caput, and C.H.Arrowsmith (1999).
p73 and p63 are homotetramers capable of weak heterotypic interactions with each other but not with p53.
  J Biol Chem, 274, 18709-18714.  
9766574 C.Rollenhagen, and P.Chène (1998).
Characterization of p53 mutants identified in human tumors with a missense mutation in the tetramerization domain.
  Int J Cancer, 78, 372-376.  
9582338 D.Lee, E.S.Oh, A.Woods, J.R.Couchman, and W.Lee (1998).
Solution structure of a syndecan-4 cytoplasmic domain and its interaction with phosphatidylinositol 4,5-bisphosphate.
  J Biol Chem, 273, 13022-13029.  
9628871 K.G.McLure, and P.W.Lee (1998).
How p53 binds DNA as a tetramer.
  EMBO J, 17, 3342-3350.  
9582268 M.G.Mateu, and A.R.Fersht (1998).
Nine hydrophobic side chains are key determinants of the thermodynamic stability and oligomerization status of tumour suppressor p53 tetramerization domain.
  EMBO J, 17, 2748-2758.  
9235949 A.M.Fourie, T.R.Hupp, D.P.Lane, B.C.Sang, M.S.Barbosa, J.F.Sambrook, and M.J.Gething (1997).
HSP70 binding sites in the tumor suppressor protein p53.
  J Biol Chem, 272, 19471-19479.  
9254608 K.Sakaguchi, H.Sakamoto, M.S.Lewis, C.W.Anderson, J.W.Erickson, E.Appella, and D.Xie (1997).
Phosphorylation of serine 392 stabilizes the tetramer formation of tumor suppressor protein p53.
  Biochemistry, 36, 10117-10124.  
9321402 M.McCoy, E.S.Stavridi, J.L.Waterman, A.M.Wieczorek, S.J.Opella, and T.D.Halazonetis (1997).
Hydrophobic side-chain size is a determinant of the three-dimensional structure of the p53 oligomerization domain.
  EMBO J, 16, 6230-6236.
PDB code: 1a1u
9235985 X.Chang, A.M.Jorgensen, P.Bardrum, and J.J.Led (1997).
Solution structures of the R6 human insulin hexamer,.
  Biochemistry, 36, 9409-9422.
PDB codes: 1ai0 1aiy
8622923 A.C.Manna, K.S.Pai, D.E.Bussiere, S.W.White, and D.Bastia (1996).
The dimer-dimer interaction surface of the replication terminator protein of Bacillus subtilis and termination of DNA replication.
  Proc Natl Acad Sci U S A, 93, 3253-3258.  
8768898 A.J.Wand, and S.W.Englander (1996).
Protein complexes studied by NMR spectroscopy.
  Curr Opin Biotechnol, 7, 403-408.  
  8562328 C.C.Harris (1996).
The 1995 Walter Hubert Lecture--molecular epidemiology of human cancer: insights from the mutational analysis of the p53 tumour-suppressor gene.
  Br J Cancer, 73, 261-269.  
8805532 R.T.Sauer (1996).
Lac repressor at last.
  Structure, 4, 219-222.  
8672531 T.M.Gottlieb, and M.Oren (1996).
p53 in growth control and neoplasia.
  Biochim Biophys Acta, 1287, 77.  
8639605 T.M.Handel, and P.J.Domaille (1996).
Heteronuclear (1H, 13C, 15N) NMR assignments and solution structure of the monocyte chemoattractant protein-1 (MCP-1) dimer.
  Biochemistry, 35, 6569-6584.
PDB codes: 1dom 1don
  7628457 A.Kharrat, M.J.Macias, T.J.Gibson, M.Nilges, and A.Pastore (1995).
Structure of the dsRNA binding domain of E. coli RNase III.
  EMBO J, 14, 3572-3584.  
  8575189 A.M.Gronenborn, and G.M.Clore (1995).
Structures of protein complexes by multidimensional heteronuclear magnetic resonance spectroscopy.
  Crit Rev Biochem Mol Biol, 30, 351-385.  
7600571 J.Jayaraman, and C.Prives (1995).
Activation of p53 sequence-specific DNA binding by short single strands of DNA requires the p53 C-terminus.
  Cell, 81, 1021-1029.  
7567980 P.Balagurumoorthy, H.Sakamoto, M.S.Lewis, N.Zambrano, G.M.Clore, A.M.Gronenborn, E.Appella, and R.E.Harrington (1995).
Four p53 DNA-binding domain peptides bind natural p53-response elements and bend the DNA.
  Proc Natl Acad Sci U S A, 92, 8591-8595.  
  7744010 R.Ficner, U.H.Sauer, G.Stier, and D.Suck (1995).
Three-dimensional structure of the bifunctional protein PCD/DCoH, a cytoplasmic enzyme interacting with transcription factor HNF1.
  EMBO J, 14, 2034-2042.  
  7663341 R.T.Clubb, J.G.Omichinski, K.Sakaguchi, E.Appella, A.M.Gronenborn, and G.M.Clore (1995).
Backbone dynamics of the oligomerization domain of p53 determined from 15N NMR relaxation measurements.
  Protein Sci, 4, 855-862.  
  7651437 S.K.Thukral, Y.Lu, G.C.Blain, T.S.Harvey, and V.L.Jacobsen (1995).
Discrimination of DNA binding sites by mutant p53 proteins.
  Mol Cell Biol, 15, 5196-5202.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.