spacer
spacer

PDBsum entry 1o6b

Go to PDB code: 
protein ligands metals links
Transferase PDB id
1o6b
Jmol
Contents
Protein chain
163 a.a. *
Ligands
PO4
ADP
Metals
_MG
_CL
Waters ×113
* Residue conservation analysis
PDB id:
1o6b
Name: Transferase
Title: Crystal structure of phosphopantetheine adenylyltransferase
Structure: Phosphopantetheine adenylyltransferase. Chain: a. Synonym: pantetheine-phosphate adenylyltransferase, ppat, d coa pyrophosphorylase. Engineered: yes
Source: Bacillus subtilis. Organism_taxid: 1423. Gene: coad, bsu15020. Expressed in: escherichia coli. Expression_system_taxid: 562
Biol. unit: Hexamer (from PQS)
Resolution:
2.20Å     R-factor:   0.229     R-free:   0.275
Authors: Structural Genomix
Key ref:
J.Badger et al. (2005). Structural analysis of a set of proteins resulting from a bacterial genomics project. Proteins, 60, 787-796. PubMed id: 16021622 DOI: 10.1002/prot.20541
Date:
03-Nov-03     Release date:   25-Nov-03    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
O34797  (COAD_BACSU) -  Phosphopantetheine adenylyltransferase
Seq:
Struc:
161 a.a.
163 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 3 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: E.C.2.7.7.3  - Pantetheine-phosphate adenylyltransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

      Pathway:
Coenzyme A Biosynthesis (late stages)
      Reaction: ATP + pantetheine 4'-phosphate = diphosphate + 3'-dephospho-CoA
ATP
Bound ligand (Het Group name = ADP)
matches with 87.10% similarity
+ pantetheine 4'-phosphate
=
diphosphate
Bound ligand (Het Group name = PO4)
matches with 55.56% similarity
+ 3'-dephospho-CoA
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     cytoplasm   1 term 
  Biological process     biosynthetic process   2 terms 
  Biochemical function     catalytic activity     6 terms  

 

 
    reference    
 
 
DOI no: 10.1002/prot.20541 Proteins 60:787-796 (2005)
PubMed id: 16021622  
 
 
Structural analysis of a set of proteins resulting from a bacterial genomics project.
J.Badger, J.M.Sauder, J.M.Adams, S.Antonysamy, K.Bain, M.G.Bergseid, S.G.Buchanan, M.D.Buchanan, Y.Batiyenko, J.A.Christopher, S.Emtage, A.Eroshkina, I.Feil, E.B.Furlong, K.S.Gajiwala, X.Gao, D.He, J.Hendle, A.Huber, K.Hoda, P.Kearins, C.Kissinger, B.Laubert, H.A.Lewis, J.Lin, K.Loomis, D.Lorimer, G.Louie, M.Maletic, C.D.Marsh, I.Miller, J.Molinari, H.J.Muller-Dieckmann, J.M.Newman, B.W.Noland, B.Pagarigan, F.Park, T.S.Peat, K.W.Post, S.Radojicic, A.Ramos, R.Romero, M.E.Rutter, W.E.Sanderson, K.D.Schwinn, J.Tresser, J.Winhoven, T.A.Wright, L.Wu, J.Xu, T.J.Harris.
 
  ABSTRACT  
 
The targets of the Structural GenomiX (SGX) bacterial genomics project were proteins conserved in multiple prokaryotic organisms with no obvious sequence homolog in the Protein Data Bank of known structures. The outcome of this work was 80 structures, covering 60 unique sequences and 49 different genes. Experimental phase determination from proteins incorporating Se-Met was carried out for 45 structures with most of the remainder solved by molecular replacement using members of the experimentally phased set as search models. An automated tool was developed to deposit these structures in the Protein Data Bank, along with the associated X-ray diffraction data (including refined experimental phases) and experimentally confirmed sequences. BLAST comparisons of the SGX structures with structures that had appeared in the Protein Data Bank over the intervening 3.5 years since the SGX target list had been compiled identified homologs for 49 of the 60 unique sequences represented by the SGX structures. This result indicates that, for bacterial structures that are relatively easy to express, purify, and crystallize, the structural coverage of gene space is proceeding rapidly. More distant sequence-structure relationships between the SGX and PDB structures were investigated using PDB-BLAST and Combinatorial Extension (CE). Only one structure, SufD, has a truly unique topology compared to all folds in the PDB.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. Ribbon diagrams[54] of the eleven structures described in the Results and Discussion section: (A) monomer from the dapE structure (1VGY), (B) homodimer from the nudE structure (1VHG), (C) monomer from the DUS structure (1VHN), (D) monomer from the ysdC structure, 1VHE, (E) monomer from the frwX structure, 1VHO, (F) monomer from the perB structure (1VIZ), (G) monomer from the plsX structure (1VI1), (H) monomer from the yqgF structure (1VHX), (I) monomer from the yigZ structure (1VI7), (J) monomer from the YiiM structure (1O65), (K) the novel sufD structure (1VH4) with the homodimer interface in the center.
 
  The above figure is reprinted by permission from John Wiley & Sons, Inc.: Proteins (2005, 60, 787-796) copyright 2005.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
22505259 A.T.Brunger, D.Das, A.M.Deacon, J.Grant, T.C.Terwilliger, R.J.Read, P.D.Adams, M.Levitt, and G.F.Schröder (2012).
Application of DEN refinement and automated model building to a difficult case of molecular-replacement phasing: the structure of a putative succinyl-diaminopimelate desuccinylase from Corynebacterium glutamicum.
  Acta Crystallogr D Biol Crystallogr, 68, 391-403.
PDB code: 3tx8
21543842 C.Björkelid, T.Bergfors, L.M.Henriksson, A.L.Stern, T.Unge, S.L.Mowbray, and T.A.Jones (2011).
Structural and functional studies of mycobacterial IspD enzymes.
  Acta Crystallogr D Biol Crystallogr, 67, 403-414.
PDB codes: 2xwl 2xwm 2xwn
19691449 A.Fatehullah, C.Doherty, G.Pivato, G.Allen, L.Devine, J.Nelson, and D.J.Timson (2010).
Interactions of the 67 kDa laminin receptor and its precursor with laminin.
  Biosci Rep, 30, 73-79.  
20032312 A.V.Kajava, U.Baxa, and A.C.Steven (2010).
Beta arcades: recurring motifs in naturally occurring and disease-related amyloid fibrils.
  FASEB J, 24, 1311-1319.  
20138056 B.P.Nocek, D.M.Gillner, Y.Fan, R.C.Holz, and A.Joachimiak (2010).
Structural basis for catalysis by the mono- and dimetalated forms of the dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase.
  J Mol Biol, 397, 617-626.
PDB codes: 3ic1 3isz
20305088 E.Karaca, A.S.Melquiond, S.J.de Vries, P.L.Kastritis, and A.M.Bonvin (2010).
Building macromolecular assemblies by information-driven docking: introducing the HADDOCK multibody docking server.
  Mol Cell Proteomics, 9, 1784-1794.  
20877901 L.Cipolla, L.Gabrielli, D.Bini, L.Russo, and N.Shaikh (2010).
Kdo: a critical monosaccharide for bacteria viability.
  Nat Prod Rep, 27, 1618-1629.  
19917666 N.Kurochkina, T.Yardeni, and M.Huizing (2010).
Molecular modeling of the bifunctional enzyme UDP-GlcNAc 2-epimerase/ManNAc kinase and predictions of structural effects of mutations associated with HIBM and sialuria.
  Glycobiology, 20, 322-337.  
18712420 D.M.Gillner, D.L.Bienvenue, B.P.Nocek, A.Joachimiak, V.Zachary, B.Bennett, and R.C.Holz (2009).
The dapE-encoded N-succinyl-L: ,L: -diaminopimelic acid desuccinylase from Haemophilus influenzae contains two active-site histidine residues.
  J Biol Inorg Chem, 14, 1.  
19361433 K.Wada, N.Sumi, R.Nagai, K.Iwasaki, T.Sato, K.Suzuki, Y.Hasegawa, S.Kitaoka, Y.Minami, F.W.Outten, Y.Takahashi, and K.Fukuyama (2009).
Molecular dynamism of Fe-S cluster biosynthesis implicated by the structure of the SufC(2)-SufD(2) complex.
  J Mol Biol, 387, 245-258.
PDB code: 2zu0
19074383 S.Baur, J.Marles-Wright, S.Buckenmaier, R.J.Lewis, and W.Vollmer (2009).
Synthesis of CDP-activated ribitol for teichoic acid precursors in Streptococcus pneumoniae.
  J Bacteriol, 191, 1200-1210.
PDB codes: 2vsh 2vsi
18338382 A.Angelini, L.Cendron, S.Goncalves, G.Zanotti, and L.Terradot (2008).
Structural and enzymatic characterization of HP0496, a YbgC thioesterase from Helicobacter pylori.
  Proteins, 72, 1212-1221.
PDB code: 2pzh
18413861 A.Petrovic, C.T.Davis, K.Rangachari, B.Clough, R.J.Wilson, and J.F.Eccleston (2008).
Hydrodynamic characterization of the SufBC and SufCD complexes and their interaction with fluorescent adenosine nucleotides.
  Protein Sci, 17, 1264-1274.  
18322036 C.Ayala-Castro, A.Saini, and F.W.Outten (2008).
Fe-S cluster assembly pathways in bacteria.
  Microbiol Mol Biol Rev, 72, 110.  
18755835 E.Purta, K.H.Kaminska, J.M.Kasprzak, J.M.Bujnicki, and S.Douthwaite (2008).
YbeA is the m3Psi methyltransferase RlmH that targets nucleotide 1915 in 23S rRNA.
  RNA, 14, 2234-2244.  
18227433 F.R.Salsbury, S.T.Knutson, L.B.Poole, and J.S.Fetrow (2008).
Functional site profiling and electrostatic analysis of cysteines modifiable to cysteine sulfenic acid.
  Protein Sci, 17, 299-312.  
19018107 H.J.Yoon, M.J.Ku, B.Mikami, and S.W.Suh (2008).
Structure of 3-deoxy-manno-octulosonate cytidylyltransferase from Haemophilus influenzae complexed with the substrate 3-deoxy-manno-octulosonate in the beta-configuration.
  Acta Crystallogr D Biol Crystallogr, 64, 1292-1294.
PDB code: 3duv
18063583 K.V.Jamieson, J.Wu, S.R.Hubbard, and D.Meruelo (2008).
Crystal structure of the human laminin receptor precursor.
  J Biol Chem, 283, 3002-3005.
PDB code: 3bch
18188181 L.M.Velloso, S.S.Bhaskaran, R.Schuch, V.A.Fischetti, and C.E.Stebbins (2008).
A structural basis for the allosteric regulation of non-hydrolysing UDP-GlcNAc 2-epimerases.
  EMBO Rep, 9, 199-205.
PDB code: 3beo
18596200 M.W.Vetting, D.C.Bareich, M.Yu, and J.S.Blanchard (2008).
Crystal structure of RimI from Salmonella typhimurium LT2, the GNAT responsible for N(alpha)-acetylation of ribosomal protein S18.
  Protein Sci, 17, 1781-1790.
PDB codes: 2cnm 2cns 2cnt
18491919 P.Smith, P.H.Szu, C.Bui, H.W.Liu, and S.C.Tsai (2008).
Structure and mutagenic conversion of E1 dehydrase: at the crossroads of dehydration, amino transfer, and epimerization.
  Biochemistry, 47, 6329-6341.  
18461181 R.M.Ward, S.Erdin, T.A.Tran, D.M.Kristensen, A.M.Lisewski, and O.Lichtarge (2008).
De-orphaning the structural proteome through reciprocal comparison of evolutionarily important structural features.
  PLoS ONE, 3, e2136.  
18039767 T.Wakamatsu, N.Nakagawa, S.Kuramitsu, and R.Masui (2008).
Structural basis for different substrate specificities of two ADP-ribose pyrophosphatases from Thermus thermophilus HB8.
  J Bacteriol, 190, 1108-1117.
PDB codes: 2yvm 2yvn 2yvo 2yvp
17675380 D.Leduc, A.Battesti, and E.Bouveret (2007).
The hotdog thioesterase EntH (YbdB) plays a role in vivo in optimal enterobactin biosynthesis by interacting with the ArCP domain of EntB.
  J Bacteriol, 189, 7112-7126.  
17350958 G.Layer, S.A.Gaddam, C.N.Ayala-Castro, S.Ollagnier-de Choudens, D.Lascoux, M.Fontecave, and F.W.Outten (2007).
SufE transfers sulfur from SufS to SufB for iron-sulfur cluster assembly.
  J Biol Chem, 282, 13342-13350.  
17872509 G.N.Basturea, and M.P.Deutscher (2007).
Substrate specificity and properties of the Escherichia coli 16S rRNA methyltransferase, RsmE.
  RNA, 13, 1969-1976.  
17189250 H.Matsuoka, K.Hirooka, and Y.Fujita (2007).
Organization and function of the YsiA regulon of Bacillus subtilis involved in fatty acid degradation.
  J Biol Chem, 282, 5180-5194.  
17873050 J.R.Miller, J.Ohren, R.W.Sarver, W.T.Mueller, P.de Dreu, H.Case, and V.Thanabal (2007).
Phosphopantetheine adenylyltransferase from Escherichia coli: investigation of the kinetic mechanism and role in regulation of coenzyme A biosynthesis.
  J Bacteriol, 189, 8196-8205.  
17338813 K.L.Tkaczuk, S.Dunin-Horkawicz, E.Purta, and J.M.Bujnicki (2007).
Structural and evolutionary bioinformatics of the SPOUT superfamily of methyltransferases.
  BMC Bioinformatics, 8, 73.  
17919287 Y.Fujita, H.Matsuoka, and K.Hirooka (2007).
Regulation of fatty acid metabolism in bacteria.
  Mol Microbiol, 66, 829-839.  
17526524 Y.L.Lai, S.C.Yen, S.H.Yu, and J.K.Hwang (2007).
pKNOT: the protein KNOT web server.
  Nucleic Acids Res, 35, W420-W424.  
17535911 Z.Lin, L.C.Johnson, H.Weissbach, N.Brot, M.O.Lively, and W.T.Lowther (2007).
Free methionine-(R)-sulfoxide reductase from Escherichia coli reveals a new GAF domain function.
  Proc Natl Acad Sci U S A, 104, 9597-9602.  
17051231 G.E.Schujman, and D.de Mendoza (2006).
Solving an old puzzle in phospholipid biosynthesis.
  Nat Chem Biol, 2, 573-574.  
17075135 G.W.Buchko, S.Ni, H.Robinson, E.A.Welsh, H.B.Pakrasi, and M.A.Kennedy (2006).
Characterization of two potentially universal turn motifs that shape the repeated five-residues fold--crystal structure of a lumenal pentapeptide repeat protein from Cyanothece 51142.
  Protein Sci, 15, 2579-2595.
PDB codes: 2f3l 2g0y
16460560 M.von Grotthuss, D.Plewczynski, K.Ginalski, L.Rychlewski, and E.I.Shakhnovich (2006).
PDB-UF: database of predicted enzymatic functions for unannotated protein structures from structural genomics.
  BMC Bioinformatics, 7, 53.  
16949372 Y.J.Lu, Y.M.Zhang, K.D.Grimes, J.Qi, R.E.Lee, and C.O.Rock (2006).
Acyl-phosphates initiate membrane phospholipid synthesis in Gram-positive pathogens.
  Mol Cell, 23, 765-772.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.