PDBsum entry 1n12

Go to PDB code: 
protein Protein-protein interface(s) links
Chaperone PDB id
Protein chains
138 a.a. *
11 a.a. *
Waters ×140
* Residue conservation analysis
PDB id:
Name: Chaperone
Title: Crystal structure of the pape (n-terminal-deleted) pilus subunit bound to a peptide corresponding to the n-terminal extension of the papk pilus subunit (residues 1-11) from uropathogenic e. Coli
Structure: Mature fimbrial protein pape. Chain: a, c. Fragment: residue 25-173, residue 26-36 deleted. Engineered: yes. Mutation: yes. Peptide corresponding to the n-terminal extension of protein papk. Chain: b, d. Fragment: residue 22-32.
Source: Escherichia coli. Organism_taxid: 562. Expressed in: escherichia coli. Expression_system_taxid: 562. Synthetic: yes. Other_details: synthesized peptide
Biol. unit: Dimer (from PQS)
1.87Å     R-factor:   0.208     R-free:   0.249
Authors: F.G.Sauer,J.S.Pinkner,G.Waksman,S.J.Hultgren
Key ref:
F.G.Sauer et al. (2002). Chaperone priming of pilus subunits facilitates a topological transition that drives fiber formation. Cell, 111, 543-551. PubMed id: 12437927 DOI: 10.1016/S0092-8674(02)01050-4
16-Oct-02     Release date:   11-Dec-02    
Go to PROCHECK summary

Protein chains
Pfam   ArchSchema ?
P08407  (PAPE_ECOLX) -  Fimbrial protein PapE
173 a.a.
138 a.a.*
Protein chains
Pfam   ArchSchema ?
P42191  (PRSK_ECOLX) -  Protein PrsK
177 a.a.
11 a.a.
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     pilus   1 term 
  Biological process     cell adhesion   1 term 


DOI no: 10.1016/S0092-8674(02)01050-4 Cell 111:543-551 (2002)
PubMed id: 12437927  
Chaperone priming of pilus subunits facilitates a topological transition that drives fiber formation.
F.G.Sauer, J.S.Pinkner, G.Waksman, S.J.Hultgren.
Periplasmic chaperones direct the assembly of adhesive, multi-subunit pilus fibers that play critical roles in bacterial pathogenesis. Pilus assembly occurs via a donor strand exchange mechanism in which the N-terminal extension of one subunit replaces the chaperone G(1) strand that transiently occupies a groove in the neighboring subunit. Here, we show that the chaperone primes the subunit for assembly by holding the groove in an open, activated conformation. During donor strand exchange, the subunit undergoes a topological transition that triggers the closure of the groove and seals the N-terminal extension in place. It is this topological transition, made possible only by the priming action of the chaperone that drives subunit assembly into the fiber.
  Selected figure(s)  
Figure 3.
Figure 3. Donor Strand Exchange at High Resolution(A) Ribbon diagrams of PapE with complementing strands before (left, from the PapD[His]PapE[Ntd] complex) and after (right, from the PapE[Ntd]K[Nte] complex) donor strand exchange. PapE[Ntd] is in cyan, the chaperone G[1] strand is in yellow, and the K[Nte] peptide is in red. The N and C termini and the A1, A2, and F strands of PapE[Ntd] are labeled. Note the positions of the N and C termini of PapE[Ntd] before (open groove) and after (closed groove) donor strand exchange.(B) Donor strand exchange topology. Arrows indicate strands. In the chaperone-subunit complex (left), the chaperone G[1] strand (yellow) runs parallel to the PapE[Ntd] F strand to complete its Ig fold in a non-canonical manner. After donor strand exchange (right), the PapK N-terminal extension (red) runs anti-parallel to the F strand to yield a canonical Ig fold. Dashed lines indicate disordered regions and the diagonal lines at either end of the chaperone G[1] strand indicate additional protein not shown.
Figure 6.
Figure 6. Anchoring Interaction in the Chaperone Cleft and a Model of Subunits in a Pilus(A) Ribbon diagram of the PapD[His]PapE[Ntd] complex. PapD[His] is in yellow, PapE[Ntd] is in blue. Strands are labeled in magenta. The conserved Arg 8 and Lys 112 residues in the chaperone cleft interact with the C-terminal carboxylate (COO^−) of the subunit at the end of the F strand, anchoring it in the cleft and properly positioning the F strand in relation to the chaperone G[1] strand.(B) Topology model of three subunits in a pilus tip fibrillum. Arrows indicate strands. Each subunit donates its N-terminal extension (red) to complete the immunoglobulin-like fold of the preceding subunit in the pilus. Diagonal lines indicate additional protein not shown.
  The above figures are reprinted by permission from Cell Press: Cell (2002, 111, 543-551) copyright 2002.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21091863 C.Giraud, C.S.Bernard, V.Calderon, L.Yang, A.Filloux, S.Molin, G.Fichant, C.Bordi, and Bentzmann (2011).
The PprA-PprB two-component system activates CupE, the first non-archetypal Pseudomonas aeruginosa chaperone-usher pathway system assembling fimbriae.
  Environ Microbiol, 13, 666-683.  
21637253 G.Phan, H.Remaut, T.Wang, W.J.Allen, K.F.Pirker, A.Lebedev, N.S.Henderson, S.Geibel, E.Volkan, J.Yan, M.B.Kunze, J.S.Pinkner, B.Ford, C.W.Kay, H.Li, S.J.Hultgren, D.G.Thanassi, and G.Waksman (2011).
Crystal structure of the FimD usher bound to its cognate FimC-FimH substrate.
  Nature, 474, 49-53.
PDB codes: 3ohn 3rfz
20831445 I.Azimi, J.W.Wong, and P.J.Hogg (2011).
Control of mature protein function by allosteric disulfide bonds.
  Antioxid Redox Signal, 14, 113-126.  
21299650 N.S.Henderson, T.W.Ng, I.Talukder, and D.G.Thanassi (2011).
Function of the usher N-terminus in catalysing pilus assembly.
  Mol Microbiol, 79, 954-967.  
20070257 A.T.Rêgo, V.Chandran, and G.Waksman (2010).
Two-step and one-step secretion mechanisms in Gram-negative bacteria: contrasting the type IV secretion system and the chaperone-usher pathway of pilus biogenesis.
  Biochem J, 425, 475-488.  
20118254 B.Ford, A.T.Rêgo, T.J.Ragan, J.Pinkner, K.Dodson, P.C.Driscoll, S.Hultgren, and G.Waksman (2010).
Structural homology between the C-terminal domain of the PapC usher and its plug.
  J Bacteriol, 192, 1824-1831.
PDB codes: 2kt6 3l48
20132020 G.Chao, X.Jiao, X.Zhou, F.Wang, Z.Yang, J.Huang, Z.Pan, L.Zhou, and X.Qian (2010).
Distribution of genes encoding four pathogenicity islands (VPaIs), T6SS, biofilm, and type I pilus in food and clinical strains of Vibrio parahaemolyticus in China.
  Foodborne Pathog Dis, 7, 649-658.  
20378353 K.A.Kline, K.W.Dodson, M.G.Caparon, and S.J.Hultgren (2010).
A tale of two pili: assembly and function of pili in bacteria.
  Trends Microbiol, 18, 224-232.  
20199591 Q.Li, T.W.Ng, K.W.Dodson, S.S.So, K.M.Bayle, J.S.Pinkner, S.Scarlata, S.J.Hultgren, and D.G.Thanassi (2010).
The differential affinity of the usher for chaperone-subunit complexes is required for assembly of complete pili.
  Mol Microbiol, 76, 159-172.  
19820722 G.Waksman, and S.J.Hultgren (2009).
Structural biology of the chaperone-usher pathway of pilus biogenesis.
  Nat Rev Microbiol, 7, 765-774.  
19356973 H.Li, and D.G.Thanassi (2009).
Use of a combined cryo-EM and X-ray crystallography approach to reveal molecular details of bacterial pilus assembly by the chaperone/usher pathway.
  Curr Opin Microbiol, 12, 326-332.  
19390146 I.Van Molle, K.Moonens, L.Buts, A.Garcia-Pino, S.Panjikar, L.Wyns, H.De Greve, and J.Bouckaert (2009).
The F4 fimbrial chaperone FaeE is stable as a monomer that does not require self-capping of its pilin-interactive surfaces.
  Acta Crystallogr D Biol Crystallogr, 65, 411-420.
PDB codes: 3f65 3f6i 3f6l
19565578 M.Castelain, E.Koutris, M.Andersson, K.Wiklund, O.Björnham, S.Schedin, and O.Axner (2009).
Characterization of the biomechanical properties of T4 pili expressed by Streptococcus pneumoniae--a comparison between helix-like and open coil-like pili.
  Chemphyschem, 10, 1533-1540.  
18996015 N.Pinotsis, P.Abrusci, K.Djinović-Carugo, and M.Wilmanns (2009).
Terminal assembly of sarcomeric filaments by intermolecular beta-sheet formation.
  Trends Biochem Sci, 34, 33-39.  
20018753 S.L.Chen, C.S.Hung, J.S.Pinkner, J.N.Walker, C.K.Cusumano, Z.Li, J.Bouckaert, J.I.Gordon, and S.J.Hultgren (2009).
Positive selection identifies an in vivo role for FimH during urinary tract infection in addition to mannose binding.
  Proc Natl Acad Sci U S A, 106, 22439-22444.  
19726681 W.Kress, H.Mutschler, and E.Weber-Ban (2009).
Both ATPase domains of ClpA are critical for processing of stable protein structures.
  J Biol Chem, 284, 31441-31452.  
19380723 Y.Huang, B.S.Smith, L.X.Chen, R.H.Baxter, and J.Deisenhofer (2009).
Insights into pilus assembly and secretion from the structure and functional characterization of usher PapC.
  Proc Natl Acad Sci U S A, 106, 7403-7407.
PDB code: 3fip
19081060 C.Manzano, C.Contreras-Martel, L.El Mortaji, T.Izoré, D.Fenel, T.Vernet, G.Schoehn, A.M.Di Guilmi, and A.Dessen (2008).
Sortase-mediated pilus fiber biogenesis in Streptococcus pneumoniae.
  Structure, 16, 1838-1848.
PDB codes: 2w1j 2w1k
18400183 C.Puorger, O.Eidam, G.Capitani, D.Erilov, M.G.Grütter, and R.Glockshuber (2008).
Infinite kinetic stability against dissociation of supramolecular protein complexes through donor strand complementation.
  Structure, 16, 631-642.
PDB codes: 3bfq 3bfw
19000824 D.Verger, R.J.Rose, E.Paci, G.Costakes, T.Daviter, S.Hultgren, H.Remaut, A.E.Ashcroft, S.E.Radford, and G.Waksman (2008).
Structural determinants of polymerization reactivity of the P pilus adaptor subunit PapF.
  Structure, 16, 1724-1731.
PDB code: 2w07
18279345 H.Chandra, P.Khandelwal, A.Khattri, and N.Banerjee (2008).
Type 1 fimbriae of insecticidal bacterium Xenorhabdus nematophila is necessary for growth and colonization of its symbiotic host nematode Steinernema carpocapsiae.
  Environ Microbiol, 10, 1285-1295.  
18485872 H.Remaut, C.Tang, N.S.Henderson, J.S.Pinkner, T.Wang, S.J.Hultgren, D.G.Thanassi, G.Waksman, and H.Li (2008).
Fiber formation across the bacterial outer membrane by the chaperone/usher pathway.
  Cell, 133, 640-652.
PDB code: 2vqi
18310330 L.M.Runco, S.Myrczek, J.B.Bliska, and D.G.Thanassi (2008).
Biogenesis of the fraction 1 capsule and analysis of the ultrastructure of Yersinia pestis.
  J Bacteriol, 190, 3381-3385.  
18181116 M.Andersson, O.Axner, F.Almqvist, B.E.Uhlin, and E.Fällman (2008).
Physical properties of biopolymers assessed by optical tweezers: analysis of folding and refolding of bacterial pili.
  Chemphyschem, 9, 221-235.  
18369105 M.Nishiyama, T.Ishikawa, H.Rechsteiner, and R.Glockshuber (2008).
Reconstitution of pilus assembly reveals a bacterial outer membrane catalyst.
  Science, 320, 376-379.  
17554533 R.A.Lugmaier, S.Schedin, F.Kühner, and M.Benoit (2008).
Dynamic restacking of Escherichia Coli P-pili.
  Eur Biophys J, 37, 111-120.  
18485865 R.Daniels, and S.Normark (2008).
Twin ushers guide pili across the bacterial outer membrane.
  Cell, 133, 574-576.  
18668121 R.Fronzes, H.Remaut, and G.Waksman (2008).
Architectures and biogenesis of non-flagellar protein appendages in Gram-negative bacteria.
  EMBO J, 27, 2271-2280.  
18728178 R.J.Rose, D.Verger, T.Daviter, H.Remaut, E.Paci, G.Waksman, A.E.Ashcroft, and S.E.Radford (2008).
Unraveling the molecular basis of subunit specificity in P pilus assembly by mass spectrometry.
  Proc Natl Acad Sci U S A, 105, 12873-12878.  
17576202 A.Zavialov, G.Zav'yalova, T.Korpela, and V.Zav'yalov (2007).
FGL chaperone-assembled fimbrial polyadhesins: anti-immune armament of Gram-negative bacterial pathogens.
  FEMS Microbiol Rev, 31, 478-514.  
17378923 D.Munera, S.Hultgren, and L.A.Fernández (2007).
Recognition of the N-terminal lectin domain of FimH adhesin by the usher FimD is required for type 1 pilus biogenesis.
  Mol Microbiol, 64, 333-346.  
17511517 D.Verger, E.Bullitt, S.J.Hultgren, and G.Waksman (2007).
Crystal structure of the P pilus rod subunit PapA.
  PLoS Pathog, 3, e73.
PDB codes: 2uy6 2uy7
17897374 J.M.Budzik, L.A.Marraffini, and O.Schneewind (2007).
Assembly of pili on the surface of Bacillus cereus vegetative cells.
  Mol Microbiol, 66, 495-510.  
17293418 S.Ruer, S.Stender, A.Filloux, and Bentzmann (2007).
Assembly of fimbrial structures in Pseudomonas aeruginosa: functionality and specificity of chaperone-usher machineries.
  J Bacteriol, 189, 3547-3555.  
17302815 S.T.Poole, A.L.McVeigh, R.P.Anantha, L.H.Lee, Y.M.Akay, E.A.Pontzer, D.A.Scott, E.Bullitt, and S.J.Savarino (2007).
Donor strand complementation governs intersubunit interaction of fimbriae of the alternate chaperone pathway.
  Mol Microbiol, 63, 1372-1384.  
17496084 Y.M.Lee, K.W.Dodson, and S.J.Hultgren (2007).
Adaptor function of PapF depends on donor strand exchange in P-pilus biogenesis of Escherichia coli.
  J Bacteriol, 189, 5276-5283.  
17082819 D.Verger, E.Miller, H.Remaut, G.Waksman, and S.Hultgren (2006).
Molecular mechanism of P pilus termination in uropathogenic Escherichia coli.
  EMBO Rep, 7, 1228-1232.
PDB code: 2j2z
16950852 E.Miller, T.Garcia, S.Hultgren, and A.F.Oberhauser (2006).
The mechanical properties of E. coli type 1 pili measured by atomic force microscopy techniques.
  Biophys J, 91, 3848-3856.  
16828554 H.Remaut, and G.Waksman (2006).
Protein-protein interaction through beta-strand addition.
  Trends Biochem Sci, 31, 436-444.  
16793551 H.Remaut, R.J.Rose, T.J.Hannan, S.J.Hultgren, S.E.Radford, A.E.Ashcroft, and G.Waksman (2006).
Donor-strand exchange in chaperone-assisted pilus assembly proceeds through a concerted beta strand displacement mechanism.
  Mol Cell, 22, 831-842.
PDB codes: 2cny 2cnz 2co1 2co2 2co3 2co4 2co6 2co7
17098869 J.S.Pinkner, H.Remaut, F.Buelens, E.Miller, V.Aberg, N.Pemberton, M.Hedenström, A.Larsson, P.Seed, G.Waksman, S.J.Hultgren, and F.Almqvist (2006).
Rationally designed small compounds inhibit pilus biogenesis in uropathogenic bacteria.
  Proc Natl Acad Sci U S A, 103, 17897-17902.
PDB code: 2j7l
17661687 K.J.Wright, and S.J.Hultgren (2006).
Sticky fibers and uropathogenesis: bacterial adhesins in the urinary tract.
  Future Microbiol, 1, 75-87.  
16767077 M.Vetsch, D.Erilov, N.Molière, M.Nishiyama, O.Ignatov, and R.Glockshuber (2006).
Mechanism of fibre assembly through the chaperone-usher pathway.
  EMBO Rep, 7, 734-738.  
16421447 R.Jedrzejczak, Z.Dauter, M.Dauter, R.Piatek, B.Zalewska, M.Mróz, K.Bury, B.Nowicki, and J.Kur (2006).
Structure of DraD invasin from uropathogenic Escherichia coli: a dimer with swapped beta-tails.
  Acta Crystallogr D Biol Crystallogr, 62, 157-164.
PDB code: 2axw
16573686 S.S.So, and D.G.Thanassi (2006).
Analysis of the requirements for pilus biogenesis at the outer membrane usher and the function of the usher C-terminus.
  Mol Microbiol, 60, 364-375.  
17002656 V.M.Chen, and P.J.Hogg (2006).
Allosteric disulfide bonds in thrombosis and thrombolysis.
  J Thromb Haemost, 4, 2533-2541.  
16782819 X.Q.Mu, and E.Bullitt (2006).
Structure and assembly of P-pili: a protruding hinge region used for assembly of a bacterial adhesion filament.
  Proc Natl Acad Sci U S A, 103, 9861-9866.  
15694857 A.L.Kau, D.A.Hunstad, and S.J.Hultgren (2005).
Interaction of uropathogenic Escherichia coli with host uroepithelium.
  Curr Opin Microbiol, 8, 54-59.  
15629938 A.Z.Nevesinjac, and T.L.Raivio (2005).
The Cpx envelope stress response affects expression of the type IV bundle-forming pili of enteropathogenic Escherichia coli.
  J Bacteriol, 187, 672-686.  
15642263 C.A.Nelson, A.Pekosz, C.A.Lee, M.S.Diamond, and D.H.Fremont (2005).
Structure and intracellular targeting of the SARS-coronavirus Orf7a accessory protein.
  Structure, 13, 75-85.
PDB code: 1xak
16303867 D.D.Isaac, J.S.Pinkner, S.J.Hultgren, and T.J.Silhavy (2005).
The extracytoplasmic adaptor protein CpxP is degraded with substrate by DegP.
  Proc Natl Acad Sci U S A, 102, 17775-17779.  
16012171 E.Durand, G.Michel, R.Voulhoux, J.Kürner, A.Bernadac, and A.Filloux (2005).
XcpX controls biogenesis of the Pseudomonas aeruginosa XcpT-containing pseudopilus.
  J Biol Chem, 280, 31378-31389.  
15592451 E.Fällman, S.Schedin, J.Jass, B.E.Uhlin, and O.Axner (2005).
The unfolding of the P pili quaternary structure by stretching is reversible, not plastic.
  EMBO Rep, 6, 52-56.  
15659162 J.Bouckaert, J.Berglund, M.Schembri, E.De Genst, L.Cools, M.Wuhrer, C.S.Hung, J.Pinkner, R.Slättegård, A.Zavialov, D.Choudhury, S.Langermann, S.J.Hultgren, L.Wyns, P.Klemm, S.Oscarson, S.D.Knight, and H.De Greve (2005).
Receptor binding studies disclose a novel class of high-affinity inhibitors of the Escherichia coli FimH adhesin.
  Mol Microbiol, 55, 441-455.
PDB codes: 1tr7 1uwf
15968039 M.Kostakioti, C.L.Newman, D.G.Thanassi, and C.Stathopoulos (2005).
Mechanisms of protein export across the bacterial outer membrane.
  J Bacteriol, 187, 4306-4314.  
15920478 M.Nishiyama, R.Horst, O.Eidam, T.Herrmann, O.Ignatov, M.Vetsch, P.Bettendorff, I.Jelesarov, M.G.Grütter, K.Wüthrich, R.Glockshuber, and G.Capitani (2005).
Structural basis of chaperone-subunit complex recognition by the type 1 pilus assembly platform FimD.
  EMBO J, 24, 2075-2086.
PDB codes: 1zdv 1zdx 1ze3
15618148 R.Piatek, B.Zalewska, O.Kolaj, M.Ferens, B.Nowicki, and J.Kur (2005).
Molecular aspects of biogenesis of Escherichia coli Dr Fimbriae: characterization of DraB-DraE complexes.
  Infect Immun, 73, 135-145.  
16240004 V.Aberg, M.Hedenström, J.S.Pinkner, S.J.Hultgren, and F.Almqvist (2005).
C-Terminal properties are important for ring-fused 2-pyridones that interfere with the chaperone function in uropathogenic E. coli.
  Org Biomol Chem, 3, 3886-3892.  
15797867 Y.H.Lee, O.O.Kolade, K.Nomura, D.N.Arvidson, and S.Y.He (2005).
Use of dominant-negative HrpA mutants to dissect Hrp pilus assembly and type III secretion in Pseudomonas syringae pv. tomato.
  J Biol Chem, 280, 21409-21417.  
15049806 A.P.Pugsley, O.Francetic, A.J.Driessen, and Lorenzo (2004).
Getting out: protein traffic in prokaryotes.
  Mol Microbiol, 52, 3.  
15331605 D.Pettigrew, K.L.Anderson, J.Billington, E.Cota, P.Simpson, P.Urvil, F.Rabuzin, P.Roversi, B.Nowicki, L.du Merle, C.Le Bouguénec, S.Matthews, and S.M.Lea (2004).
High resolution studies of the Afa/Dr adhesin DraE and its interaction with chloramphenicol.
  J Biol Chem, 279, 46851-46857.
PDB codes: 1usq 1usz 1ut1 1ut2
15093830 H.Remaut, and G.Waksman (2004).
Structural biology of bacterial pathogenesis.
  Curr Opin Struct Biol, 14, 161-170.  
15583129 J.G.Bann, J.S.Pinkner, C.Frieden, and S.J.Hultgren (2004).
Catalysis of protein folding by chaperones in pathogenic bacteria.
  Proc Natl Acad Sci U S A, 101, 17389-17393.  
15327779 K.L.Anderson, J.Billington, D.Pettigrew, E.Cota, P.Simpson, P.Roversi, H.A.Chen, P.Urvil, L.du Merle, P.N.Barlow, M.E.Medof, R.A.Smith, B.Nowicki, C.Le Bouguénec, S.M.Lea, and S.Matthews (2004).
An atomic resolution model for assembly, architecture, and function of the Dr adhesins.
  Mol Cell, 15, 647-657.
PDB code: 1rxl
15071372 M.Cazzola, C.P.Page, and M.G.Matera (2004).
Alternative and/or integrative therapies for pneumonia under development.
  Curr Opin Pulm Med, 10, 204-210.  
15372038 M.Vetsch, C.Puorger, T.Spirig, U.Grauschopf, E.U.Weber-Ban, and R.Glockshuber (2004).
Pilus chaperones represent a new type of protein-folding catalyst.
  Nature, 431, 329-333.  
15485883 N.S.Henderson, S.S.So, C.Martin, R.Kulkarni, and D.G.Thanassi (2004).
Topology of the outer membrane usher PapC determined by site-directed fluorescence labeling.
  J Biol Chem, 279, 53747-53754.  
15375127 P.Khandelwal, D.Choudhury, A.Birah, M.K.Reddy, G.P.Gupta, and N.Banerjee (2004).
Insecticidal pilin subunit from the insect pathogen Xenorhabdus nematophila.
  J Bacteriol, 186, 6465-6476.  
14762006 R.Zilhão, M.Serrano, R.Isticato, E.Ricca, C.P.Moran, and A.O.Henriques (2004).
Interactions among CotB, CotG, and CotH during assembly of the Bacillus subtilis spore coat.
  J Bacteriol, 186, 1110-1119.  
15292133 T.W.Ng, L.Akman, M.Osisami, and D.G.Thanassi (2004).
The usher N terminus is the initial targeting site for chaperone-subunit complexes and participates in subsequent pilus biogenesis events.
  J Bacteriol, 186, 5321-5331.  
15205435 Y.M.Lee, P.A.DiGiuseppe, T.J.Silhavy, and S.J.Hultgren (2004).
P pilus assembly motif necessary for activation of the CpxRA pathway by PapE in Escherichia coli.
  J Bacteriol, 186, 4326-4337.  
12787500 A.V.Zavialov, J.Berglund, A.F.Pudney, L.J.Fooks, T.M.Ibrahim, S.MacIntyre, and S.D.Knight (2003).
Structure and biogenesis of the capsular F1 antigen from Yersinia pestis: preserved folding energy drives fiber formation.
  Cell, 113, 587-596.
PDB codes: 1p5u 1p5v
12623012 F.Rousseau, J.W.Schymkowitz, and L.S.Itzhaki (2003).
The unfolding story of three-dimensional domain swapping.
  Structure, 11, 243-251.  
14622427 H.Ton-That, and O.Schneewind (2003).
Assembly of pili on the surface of Corynebacterium diphtheriae.
  Mol Microbiol, 50, 1429-1438.  
14656432 J.Li, X.Qian, and B.Sha (2003).
The crystal structure of the yeast Hsp40 Ydj1 complexed with its peptide substrate.
  Structure, 11, 1475-1483.
PDB code: 1nlt
12864853 L.Buts, J.Bouckaert, E.De Genst, R.Loris, S.Oscarson, M.Lahmann, J.Messens, E.Brosens, L.Wyns, and H.De Greve (2003).
The fimbrial adhesin F17-G of enterotoxigenic Escherichia coli has an immunoglobulin-like lectin domain that binds N-acetylglucosamine.
  Mol Microbiol, 49, 705-715.
PDB codes: 1o9v 1o9w 1o9z
12700251 M.M.Barnhart, F.G.Sauer, J.S.Pinkner, and S.J.Hultgren (2003).
Chaperone-subunit-usher interactions required for donor strand exchange during bacterial pilus assembly.
  J Bacteriol, 185, 2723-2730.  
12776175 P.C.Stirling, V.F.Lundin, and M.R.Leroux (2003).
Getting a grip on non-native proteins.
  EMBO Rep, 4, 565-570.  
12787495 S.Behrens (2003).
Periplasmic chaperones--preservers of subunit folding energy for organelle assembly.
  Cell, 113, 556-557.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.