spacer
spacer

PDBsum entry 1m4y

Go to PDB code: 
protein metals Protein-protein interface(s) links
Hydrolase PDB id
1m4y

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
171 a.a. *
Metals
_NA ×3
Waters ×198
* Residue conservation analysis
PDB id:
1m4y
Name: Hydrolase
Title: Crystal structure of hslv from thermotoga maritima
Structure: Atp-dependent protease hslv. Chain: a, b, c. Fragment: three protomers. Engineered: yes
Source: Thermotoga maritima. Organism_taxid: 2336. Expressed in: escherichia coli. Expression_system_taxid: 562
Biol. unit: Dodecamer (from PDB file)
Resolution:
2.10Å     R-factor:   0.192     R-free:   0.229
Authors: H.K.Song,R.Ramachandran,M.B.Bochtler,C.Hartmann,M.K.Azim,R.Huber
Key ref: H.K.Song et al. (2003). Isolation and characterization of the prokaryotic proteasome homolog HslVU (ClpQY) from Thermotoga maritima and the crystal structure of HslV. Biophys Chem, 100, 437-452. PubMed id: 12646382 DOI: 10.1016/S0301-4622(02)00297-1
Date:
05-Jul-02     Release date:   06-May-03    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q9WYZ1  (HSLV_THEMA) -  ATP-dependent protease subunit HslV from Thermotoga maritima (strain ATCC 43589 / DSM 3109 / JCM 10099 / NBRC 100826 / MSB8)
Seq:
Struc:
176 a.a.
171 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.3.4.25.2  - HslU--HslV peptidase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1016/S0301-4622(02)00297-1 Biophys Chem 100:437-452 (2003)
PubMed id: 12646382  
 
 
Isolation and characterization of the prokaryotic proteasome homolog HslVU (ClpQY) from Thermotoga maritima and the crystal structure of HslV.
H.K.Song, M.Bochtler, M.K.Azim, C.Hartmann, R.Huber, R.Ramachandran.
 
  ABSTRACT  
 
Heat-shock locus VU (HslVU) is an ATP-dependent proteolytic system and a prokaryotic homolog of the proteasome. It consists of HslV, the protease, and HslU, the ATPase and chaperone. We have cloned, sequenced and expressed both protein components from the hyperthermophile Thermotoga maritima. T. maritima HslU hydrolyzes a variety of nucleotides in a temperature-dependent manner, with the optimum lying between 75 and 80 degrees C. It is also nucleotide-unspecific for activation of HslV against amidolytic and caseinolytic activity. The Escherichia coli and T. maritima HslU proteins mutually stimulate HslV proteins from both sources, suggesting a conserved activation mechanism. The crystal structure of T. maritima HslV was determined and refined to 2.1-A resolution. The structure of the dodecameric enzyme is well conserved compared to those from E. coli and Haemophilus influenzae. A comparison of known HslV structures confirms the presence of a cation-binding site, although its exact role in the proteolytic mechanism of HslV remains unclear. Amongst factors responsible for the thermostability of T. maritima HslV, extensive ionic interactions/salt-bridge networks, which occur specifically in the T. maritima enzyme in comparison to its mesophilic counterparts, seem to play an important role.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
19374766 D.Gangwar, M.K.Kalita, D.Gupta, V.S.Chauhan, and A.Mohmmed (2009).
A systematic classification of Plasmodium falciparum P-loop NTPases: structural and functional correlation.
  Malar J, 8, 69.  
19241473 G.Misra, A.Aggarwal, D.Dube, M.S.Zaman, Y.Singh, and R.Ramachandran (2009).
Crystal structure of the Bacillus anthracis nucleoside diphosphate kinase and its characterization reveals an enzyme adapted to perform under stress conditions.
  Proteins, 76, 496-506.
PDB code: 2vu5
18582897 J.A.Yakamavich, T.A.Baker, and R.T.Sauer (2008).
Asymmetric nucleotide transactions of the HslUV protease.
  J Mol Biol, 380, 946-957.  
17979190 S.H.Rho, H.H.Park, G.B.Kang, Y.J.Im, M.S.Kang, B.K.Lim, I.S.Seong, J.Seol, C.H.Chung, J.Wang, and S.H.Eom (2008).
Crystal structure of Bacillus subtilis CodW, a noncanonical HslV-like peptidase with an impaired catalytic apparatus.
  Proteins, 71, 1020-1026.
PDB codes: 2z3a 2z3b
17114253 L.S.Madding, J.K.Michel, K.R.Shockley, S.B.Conners, K.L.Epting, M.R.Johnson, and R.M.Kelly (2007).
Role of the beta1 subunit in the function and stability of the 20S proteasome in the hyperthermophilic archaeon Pyrococcus furiosus.
  J Bacteriol, 189, 583-590.  
17522969 M.K.Azim, and S.Noor (2007).
Characterization of protomer interfaces in HslV protease; the bacterial homologue of 20S proteasome.
  Protein J, 26, 213-219.  
17064285 S.B.Conners, E.F.Mongodin, M.R.Johnson, C.I.Montero, K.E.Nelson, and R.M.Kelly (2006).
Microbial biochemistry, physiology, and biotechnology of hyperthermophilic Thermotoga species.
  FEMS Microbiol Rev, 30, 872-905.  
15678420 M.Groll, M.Bochtler, H.Brandstetter, T.Clausen, and R.Huber (2005).
Molecular machines for protein degradation.
  Chembiochem, 6, 222-256.  
15802652 M.K.Azim, W.Goehring, H.K.Song, R.Ramachandran, M.Bochtler, and P.Goettig (2005).
Characterization of the HslU chaperone affinity for HslV protease.
  Protein Sci, 14, 1357-1362.  
14675543 M.Groll, and T.Clausen (2003).
Molecular shredders: how proteasomes fulfill their role.
  Curr Opin Struct Biol, 13, 665-673.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer