spacer
spacer

PDBsum entry 1lf3

Go to PDB code: 
protein ligands links
Hydrolase PDB id
1lf3

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
331 a.a. *
Ligands
EH5
Waters ×52
* Residue conservation analysis
PDB id:
1lf3
Name: Hydrolase
Title: Crystal structure of plasmepsin ii from p falciparum in complex with inhibitor eh58
Structure: Plasmepsin 2. Chain: a. Fragment: residues 123-453. Engineered: yes
Source: Plasmodium falciparum. Malaria parasite p. Falciparum. Organism_taxid: 5833. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Dimer (from PQS)
Resolution:
2.70Å     R-factor:   0.178     R-free:   0.224
Authors: O.A.Asojo,S.V.Gulnik,E.Afonina,B.Yu,J.A.Ellman,T.S.Haque,A.M.Silva
Key ref:
O.A.Asojo et al. (2003). Novel uncomplexed and complexed structures of plasmepsin II, an aspartic protease from Plasmodium falciparum. J Mol Biol, 327, 173-181. PubMed id: 12614616 DOI: 10.1016/S0022-2836(03)00036-6
Date:
10-Apr-02     Release date:   10-Oct-02    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P46925  (PLM2_PLAFX) -  Plasmepsin II from Plasmodium falciparum (isolate HB3)
Seq:
Struc:
453 a.a.
331 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.3.4.23.39  - plasmepsin Ii.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Hydrolysis of the bonds linking certain hydrophobic residues in hemoglobin or globin. Also cleaves small molecules substrates such as Ala-Leu-Glu-Arg-Thr-Phe-|-Phe(NO(2))-Ser-Phe-Pro-Thr.

 

 
DOI no: 10.1016/S0022-2836(03)00036-6 J Mol Biol 327:173-181 (2003)
PubMed id: 12614616  
 
 
Novel uncomplexed and complexed structures of plasmepsin II, an aspartic protease from Plasmodium falciparum.
O.A.Asojo, S.V.Gulnik, E.Afonina, B.Yu, J.A.Ellman, T.S.Haque, A.M.Silva.
 
  ABSTRACT  
 
Malaria remains a human disease of global significance and a major cause of high infant mortality in endemic nations. Parasites of the genus Plasmodium cause the disease by degrading human hemoglobin as a source of amino acids for their growth and maturation. Hemoglobin degradation is initiated by aspartic proteases, termed plasmepsins, with a cleavage at the alpha-chain between residues Phe33 and Leu34. Plasmepsin II is one of the four catalytically active plasmepsins that has been identified in the food vacuole of Plasmodium falciparum. Novel crystal structures of uncomplexed plasmepsin II as well as the complex with a potent inhibitor have been refined with data extending to resolution limits of 1.9A and 2.7A, and to R factors of 17% and 18%, respectively. The inhibitor, N-(3-[(2-benzo[1,3]dioxol-5-yl-ethyl)[3-(1-methyl-3-oxo-1,3-dihydro-isoindol-2-yl)-propionyl]-amino]-1-benzyl-2-(hydroxypropyl)-4-benzyloxy-3,5-dimethoxy-benzamide, belongs to a family of potent non-peptidic inhibitors that have large P1' groups. Such inhibitors could not be modeled into the binding cavity of the structure of plasmepsin II in complex with pepstatin A. Our structures reveal that the binding cavities of the new complex and uncomplexed plasmepsin II are considerably more open than that of the pepstatin A complex, allowing for larger heterocyclic groups in the P1', P2' and P2 positions. Both complexed and uncomplexed plasmepsin II crystallized in space group P2, with one monomer in the asymmetric unit. The structures show extensive interlocking of monomers around the crystallographic axis of symmetry, with areas in excess of 2300A(2) buried at the interface, and a loop of one monomer interacting with the binding cavity of the 2-fold related monomer. Electron density for this loop is only fully ordered in the complexed structure.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. Ribbon diagram of the complex of plasmepsin II with EH58 showing disulfide bridges, catalytic dyad, inhibitor, flap, flexible loop and proline-rich loop in red, magenta, white, blue, yellow and green, respectively.
Figure 4.
Figure 4. Surface representations of a monomer of (a) uncomplexed Plm II and Plm II in complex with (b) EH58 and (c) pepstatin A, with the binding cavity of the complex with pepstatin A revealing a much tighter embrace of the inhibitor.
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (2003, 327, 173-181) copyright 2003.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21354139 A.Mendoza, S.Pérez-Silanes, M.Quiliano, A.Pabón, S.Galiano, G.González, G.Garavito, M.Zimic, A.Vaisberg, I.Aldana, A.Monge, and E.Deharo (2011).
Aryl piperazine and pyrrolidine as antimalarial agents. Synthesis and investigation of structure-activity relationships.
  Exp Parasitol, 128, 97.  
21521654 P.Bhaumik, Y.Horimoto, H.Xiao, T.Miura, K.Hidaka, Y.Kiso, A.Wlodawer, R.Y.Yada, and A.Gustchina (2011).
Crystal structures of the free and inhibited forms of plasmepsin I (PMI) from Plasmodium falciparum.
  J Struct Biol, 175, 73-84.
PDB codes: 3qrv 3qs1
20839299 P.A.Valiente, A.Gil, P.R.Batista, E.R.Caffarena, T.Pons, and P.G.Pascutti (2010).
New parameterization approaches of the LIE method to improve free energy calculations of PlmII-Inhibitors complexes.
  J Comput Chem, 31, 2723-2734.  
20112327 T.Luksch, A.Blum, N.Klee, W.E.Diederich, C.A.Sotriffer, and G.Klebe (2010).
Pyrrolidine derivatives as plasmepsin inhibitors: binding mode analysis assisted by molecular dynamics simulations of a highly flexible protein.
  ChemMedChem, 5, 443-454.  
19237752 A.H.Robbins, B.M.Dunn, M.Agbandje-McKenna, and R.McKenna (2009).
Crystallographic evidence for noncoplanar catalytic aspartic acids in plasmepsin II resides in the Protein Data Bank.
  Acta Crystallogr D Biol Crystallogr, 65, 294-296.
PDB code: 3f9q
19883329 D.L.Gardiner, T.S.Skinner-Adams, C.L.Brown, K.T.Andrews, C.M.Stack, J.S.McCarthy, J.P.Dalton, and K.R.Trenholme (2009).
Plasmodium falciparum: new molecular targets with potential for antimalarial drug development.
  Expert Rev Anti Infect Ther, 7, 1087-1098.  
19715320 J.C.Kwan, E.A.Eksioglu, C.Liu, V.J.Paul, and H.Luesch (2009).
Grassystatins A-C from marine cyanobacteria, potent cathepsin E inhibitors that reduce antigen presentation.
  J Med Chem, 52, 5732-5747.  
19360125 N.Sturm, E.Jortzik, B.M.Mailu, S.Koncarevic, M.Deponte, K.Forchhammer, S.Rahlfs, and K.Becker (2009).
Identification of proteins targeted by the thioredoxin superfamily in Plasmodium falciparum.
  PLoS Pathog, 5, e1000383.  
19285084 P.Bhaumik, H.Xiao, C.L.Parr, Y.Kiso, A.Gustchina, R.Y.Yada, and A.Wlodawer (2009).
Crystal structures of the histo-aspartic protease (HAP) from Plasmodium falciparum.
  J Mol Biol, 388, 520-540.
PDB codes: 3fns 3fnt 3fnu
19271776 P.Liu, M.R.Marzahn, A.H.Robbins, H.Gutiérrez-de-Terán, D.Rodríguez, S.H.McClung, S.M.Stevens, C.A.Yowell, J.B.Dame, R.McKenna, and B.M.Dunn (2009).
Recombinant plasmepsin 1 from the human malaria parasite plasmodium falciparum: enzymatic characterization, active site inhibitor design, and structural analysis.
  Biochemistry, 48, 4086-4099.
PDB code: 2r9b
19472268 R.Friedman, and A.Caflisch (2009).
Discovery of plasmepsin inhibitors by fragment-based docking and consensus scoring.
  ChemMedChem, 4, 1317-1326.  
18672695 M.E.Popov, M.A.Sten'gach, and N.S.Andreeva (2008).
[Modeling of substrate and inhibitory complexes of histidine-aspartic protease]
  Bioorg Khim, 34, 422-429.  
17918177 M.Zürcher, T.Gottschalk, S.Meyer, D.Bur, and F.Diederich (2008).
Exploring the flap pocket of the antimalarial target plasmepsin II: the "55 % rule" applied to enzymes.
  ChemMedChem, 3, 237-240.  
18442137 P.A.Valiente, P.R.Batista, A.Pupo, T.Pons, A.Valencia, and P.G.Pascutti (2008).
Predicting functional residues in Plasmodium falciparum plasmepsins by combining sequence and structural analysis with molecular dynamics simulations.
  Proteins, 73, 440-457.  
18498105 R.Friedman, and A.Caflisch (2008).
Pepsinogen-like activation intermediate of plasmepsin II revealed by molecular dynamics analysis.
  Proteins, 73, 814-827.  
18954462 T.A.Binkowski, and A.Joachimiak (2008).
Protein functional surfaces: global shape matching and local spatial alignments of ligand binding sites.
  BMC Struct Biol, 8, 45.  
18752222 T.Luksch, N.S.Chan, S.Brass, C.A.Sotriffer, G.Klebe, and W.E.Diederich (2008).
Computer-aided design and synthesis of nonpeptidic plasmepsin II and IV inhibitors.
  ChemMedChem, 3, 1323-1336.  
18004881 R.E.Moose, J.C.Clemente, L.R.Jackson, M.Ngo, K.Wooten, R.Chang, A.Bennett, S.Chakraborty, C.A.Yowell, J.B.Dame, M.Agbandje-McKenna, and B.M.Dunn (2007).
Analysis of binding interactions of pepsin inhibitor-3 to mammalian and malarial aspartic proteases.
  Biochemistry, 46, 14198-14205.  
16307463 C.Binkert, M.Frigerio, A.Jones, S.Meyer, C.Pesenti, L.Prade, F.Viani, and M.Zanda (2006).
Replacement of isobutyl by trifluoromethyl in pepstatin A selectively affects inhibition of aspartic proteinases.
  Chembiochem, 7, 181-186.  
16502446 F.Hof, A.Schütz, C.Fäh, S.Meyer, D.Bur, J.Liu, D.E.Goldberg, and F.Diederich (2006).
Starving the malaria parasite: inhibitors active against the aspartic proteases plasmepsins I, II, and IV.
  Angew Chem Int Ed Engl, 45, 2138-2141.  
16510971 J.C.Clemente, L.Govindasamy, A.Madabushi, S.Z.Fisher, R.E.Moose, C.A.Yowell, K.Hidaka, T.Kimura, Y.Hayashi, Y.Kiso, M.Agbandje-McKenna, J.B.Dame, B.M.Dunn, and R.McKenna (2006).
Structure of the aspartic protease plasmepsin 4 from the malarial parasite Plasmodium malariae bound to an allophenylnorstatine-based inhibitor.
  Acta Crystallogr D Biol Crystallogr, 62, 246-252.
PDB code: 2anl
17040901 J.Liu, E.S.Istvan, and D.E.Goldberg (2006).
Hemoglobin-degrading plasmepsin II is active as a monomer.
  J Biol Chem, 281, 38682-38688.  
16838300 K.Ersmark, B.Samuelsson, and A.Hallberg (2006).
Plasmepsins as potential targets for new antimalarial therapy.
  Med Res Rev, 26, 626-666.  
16436721 K.T.Andrews, D.P.Fairlie, P.K.Madala, J.Ray, D.M.Wyatt, P.M.Hilton, L.A.Melville, L.Beattie, D.L.Gardiner, R.C.Reid, M.J.Stoermer, T.Skinner-Adams, C.Berry, and J.S.McCarthy (2006).
Potencies of human immunodeficiency virus protease inhibitors in vitro against Plasmodium falciparum and in vivo against murine malaria.
  Antimicrob Agents Chemother, 50, 639-648.  
16892380 S.Weik, T.Luksch, A.Evers, J.Böttcher, C.A.Sotriffer, A.Hasilik, H.G.Löffler, G.Klebe, and J.Rademann (2006).
The potential of P1 site alterations in peptidomimetic protease inhibitors as suggested by virtual screening and explored by the use of C-C-coupling reagents.
  ChemMedChem, 1, 445-457.  
16054370 D.Muthas, D.Nöteberg, Y.A.Sabnis, E.Hamelink, L.Vrang, B.Samuelsson, A.Karlén, and A.Hallberg (2005).
Synthesis, biological evaluation, and modeling studies of inhibitors aimed at the malarial proteases plasmepsins I and II.
  Bioorg Med Chem, 13, 5371-5390.  
15574427 E.S.Istvan, and D.E.Goldberg (2005).
Distal substrate interactions enhance plasmepsin activity.
  J Biol Chem, 280, 6890-6896.  
15840589 L.Prade, A.F.Jones, C.Boss, S.Richard-Bildstein, S.Meyer, C.Binkert, and D.Bur (2005).
X-ray structure of plasmepsin II complexed with a potent achiral inhibitor.
  J Biol Chem, 280, 23837-23843.
PDB code: 2bju
16138859 M.M.Kesavulu, A.S.Prakasha Gowda, T.N.Ramya, N.Surolia, and K.Suguna (2005).
Plasmepsin inhibitors: design, synthesis, inhibitory studies and crystal structure analysis.
  J Pept Res, 66, 211-219.  
15491999 A.L.Omara-Opyene, P.A.Moura, C.R.Sulsona, J.A.Bonilla, C.A.Yowell, H.Fujioka, D.A.Fidock, and J.B.Dame (2004).
Genetic disruption of the Plasmodium falciparum digestive vacuole plasmepsins demonstrates their functional redundancy.
  J Biol Chem, 279, 54088-54096.  
15229889 E.Alexov (2004).
Calculating proton uptake/release and binding free energy taking into account ionization and conformation changes induced by protein-inhibitor association: application to plasmepsin, cathepsin D and endothiapepsin-pepstatin complexes.
  Proteins, 56, 572-584.  
15103632 N.Andreeva, P.Bogdanovich, I.Kashparov, M.Popov, and M.Stengach (2004).
Is histoaspartic protease a serine protease with a pepsin-like fold?
  Proteins, 55, 705-710.
PDB code: 1qyj
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer