spacer
spacer

PDBsum entry 1ldt

Go to PDB code: 
protein metals Protein-protein interface(s) links
Complex (hydrolase/inhibitor) PDB id
1ldt

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
223 a.a. *
46 a.a. *
Metals
_CA
Waters ×149
* Residue conservation analysis
PDB id:
1ldt
Name: Complex (hydrolase/inhibitor)
Title: Complex of leech-derived tryptase inhibitor with porcine trypsin
Structure: Trypsin. Chain: t. Tryptase inhibitor. Chain: l. Synonym: ldti. Engineered: yes. Other_details: leech-derived tryptase inhibitor
Source: Sus scrofa. Pig. Organism_taxid: 9823. Organ: bean. Hirudo medicinalis. Medicinal leech. Organism_taxid: 6421. Expressed in: saccharomyces cerevisiae. Expression_system_taxid: 4932.
Biol. unit: Monomer (from PDB file)
Resolution:
1.90Å     R-factor:   0.197    
Authors: M.T.Stubbs
Key ref:
M.T.Stubbs et al. (1997). The three-dimensional structure of recombinant leech-derived tryptase inhibitor in complex with trypsin. Implications for the structure of human mast cell tryptase and its inhibition. J Biol Chem, 272, 19931-19937. PubMed id: 9242660 DOI: 10.1074/jbc.272.32.19931
Date:
15-May-97     Release date:   20-May-98    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P00761  (TRYP_PIG) -  Trypsin from Sus scrofa
Seq:
Struc:
231 a.a.
223 a.a.
Protein chain
Pfam   ArchSchema ?
P80424  (LDTI_HIRME) -  Leech-derived tryptase inhibitor C from Hirudo medicinalis
Seq:
Struc:
46 a.a.
46 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: Chain T: E.C.3.4.21.4  - trypsin.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Preferential cleavage: Arg-|-Xaa, Lys-|-Xaa.

 

 
DOI no: 10.1074/jbc.272.32.19931 J Biol Chem 272:19931-19937 (1997)
PubMed id: 9242660  
 
 
The three-dimensional structure of recombinant leech-derived tryptase inhibitor in complex with trypsin. Implications for the structure of human mast cell tryptase and its inhibition.
M.T.Stubbs, R.Morenweiser, J.Stürzebecher, M.Bauer, W.Bode, R.Huber, G.P.Piechottka, G.Matschiner, C.P.Sommerhoff, H.Fritz, E.A.Auerswald.
 
  ABSTRACT  
 
The x-ray crystal structure of recombinant leech-derived tryptase inhibitor (rLDTI) has been solved to a resolution of 1.9 A in complex with porcine trypsin. The nonclassical Kazal-type inhibitor exhibits the same overall architecture as that observed in solution and in rhodniin. The complex reveals structural aspects of the mast cell proteinase tryptase. The conformation of the binding region of rLDTI suggests that tryptase has a restricted active site cleft. The basic amino terminus of rLDTI, apparently flexible from previous NMR measurements, approaches the 148-loop of trypsin. This loop has an acidic equivalent in tryptase, suggesting that the basic amino terminus could make favorable electrostatic interactions with the tryptase molecule. A series of rLDTI variants constructed to probe this hypothesis confirmed that the amino-terminal Lys-Lys sequence plays a role in inhibition of human lung tryptase but not of trypsin or chymotrypsin. The location of such an acidic surface patch is in accordance with the known low molecular weight inhibitors of tryptase.
 
  Selected figure(s)  
 
Figure 1.
Fig. 1. Experimental electron density in the vicinity of the active site in standard orientation (see Fig. 3). The binding of LDTI (green) to trypsin (orange) causes the side chain of Tyr217 to flip outwards. This is a result of the conformation of the^ disulfide Cys4I-Cys29I ("I" suffix used to distinguish inhibitor residue numbers from those of trypsin). This figure was prepared using the program O (30).
Figure 3.
Fig. 3. Schematic road map of human tryptase. A, view of LDTI's binding loop (green sticks) in the active site cleft of trypsin (orange sticks), displayed together with trypsin's Connolly dot surface (figure prepared using MAIN (58)). Loops contributing to the border of the active site are labeled. B, sequence of corresponding loops of human tryptase in the vicinity of the active site (white^ triangle). Green circles, hydrophobic residues; red, acidic residues; blue, basic residues; light blue, other polar residues. The positions of two large insertions with respect to trypsin are shaded. The^ 9-residue insertion between trypsin residues 175 and 176 would^ occlude the active site of tryptase to the west. The acidic 148-loop could receive the basic amino terminus of LDTI and basic groups of low molecular weight inhibitors. See "Discussion" for details.
 
  The above figures are reprinted by permission from the ASBMB: J Biol Chem (1997, 272, 19931-19937) copyright 1997.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20812859 J.L.Arolas, and S.Ventura (2011).
Protease inhibitors as models for the study of oxidative folding.
  Antioxid Redox Signal, 14, 97.  
19820233 D.Pantoja-Uceda, J.L.Arolas, F.X.Aviles, J.Santoro, S.Ventura, and C.P.Sommerhoff (2009).
Deciphering the structural basis that guides the oxidative folding of leech-derived tryptase inhibitor.
  J Biol Chem, 284, 35612-35620.
PDB codes: 2kmo 2kmp 2kmq 2kmr
19328852 M.Neira Oviedo, J.M.Ribeiro, A.Heyland, L.VanEkeris, T.Moroz, and P.J.Linser (2009).
The salivary transcriptome of Anopheles gambiae (Diptera: Culicidae) larvae: A microarray-based analysis.
  Insect Biochem Mol Biol, 39, 382-394.  
18795369 Y.Li, Y.Q.Qian, W.M.Ma, and W.J.Yang (2009).
Inhibition mechanism and the effects of structure on activity of male reproduction-related peptidase inhibitor Kazal-type (MRPINK) of Macrobrachium rosenbergii.
  Mar Biotechnol (NY), 11, 252-259.  
17968569 A.Iddamalgoda, Q.T.Le, K.Ito, K.Tanaka, H.Kojima, and H.Kido (2008).
Mast cell tryptase and photoaging: possible involvement in the degradation of extra cellular matrix and basement membrane proteins.
  Arch Dermatol Res, 300, S69-S76.  
18393768 I.P.Baskova, E.S.Kostrjukova, M.A.Vlasova, O.V.Kharitonova, S.A.Levitskiy, L.L.Zavalova, S.A.Moshkovskii, and V.N.Lazarev (2008).
Proteins and peptides of the salivary gland secretion of medicinal leeches Hirudo verbana, H. medicinalis, and H. orientalis.
  Biochemistry (Mosc), 73, 315-320.  
18004973 J.L.Arolas, S.Bronsoms, F.X.Aviles, S.Ventura, and C.P.Sommerhoff (2008).
Oxidative folding of leech-derived tryptase inhibitor via native disulfide-bonded intermediates.
  Antioxid Redox Signal, 10, 77-86.  
18058774 O.Avrutina, H.U.Schmoldt, D.Gabrijelcic-Geiger, A.Wentzel, H.Frauendorf, C.P.Sommerhoff, U.Diederichsen, and H.Kolmar (2008).
Head-to-tail cyclized cystine-knot peptides by a combined recombinant and chemical route of synthesis.
  Chembiochem, 9, 33-37.  
18207082 T.C.Assumpção, I.M.Francischetti, J.F.Andersen, A.Schwarz, J.M.Santana, and J.M.Ribeiro (2008).
An insight into the sialome of the blood-sucking bug Triatoma infestans, a vector of Chagas' disease.
  Insect Biochem Mol Biol, 38, 213-232.  
17367301 I.P.Baskova, L.L.Zavalova, E.S.Kostrjukova, G.A.Titova, V.N.Lazarev, and V.G.Zgoda (2007).
Proteomic analysis methods for characterization of proteins from the salivary gland secretions of the medicinal leech during different seasons.
  Biochemistry (Mosc), 72, 219-225.  
16967183 J.X.Cao, J.Q.Dai, Z.M.Dai, G.L.Yin, and W.J.Yang (2007).
A male reproduction-related Kazal-type peptidase inhibitor gene in the prawn, Macrobrachium rosenbergii: molecular characterization and expression patterns.
  Mar Biotechnol (NY), 9, 45-55.  
17976011 Y.González, T.Pons, J.Gil, V.Besada, M.Alonso-del-Rivero, A.S.Tanaka, M.S.Araujo, and M.A.Chávez (2007).
Characterization and comparative 3D modeling of CmPI-II, a novel 'non-classical' Kazal-type inhibitor from the marine snail Cenchritis muricatus (Mollusca).
  Biol Chem, 388, 1183-1194.  
16131759 R.Krätzner, J.E.Debreczeni, T.Pape, T.R.Schneider, A.Wentzel, H.Kolmar, G.M.Sheldrick, and I.Uson (2005).
Structure of Ecballium elaterium trypsin inhibitor II (EETI-II): a rigid molecular scaffold.
  Acta Crystallogr D Biol Crystallogr, 61, 1255-1262.
PDB codes: 1h9h 1h9i 1w7z
11847280 A.Heifetz, E.Katchalski-Katzir, and M.Eisenstein (2002).
Electrostatics in protein-protein docking.
  Protein Sci, 11, 571-587.  
  11906611 D.Scarpi, J.D.McBride, and R.J.Leatherbarrow (2002).
Inhibition of human beta-tryptase by Bowman-Birk inhibitor derived peptides.
  J Pept Res, 59, 90-93.  
12186551 H.Hemmi, T.Yoshida, T.Kumazaki, N.Nemoto, J.Hasegawa, F.Nishioka, Y.Kyogoku, H.Yokosawa, and Y.Kobayashi (2002).
Solution structure of ascidian trypsin inhibitor determined by nuclear magnetic resonance spectroscopy.
  Biochemistry, 41, 10657-10664.
PDB code: 1iw4
11154069 F.Erba, L.Fiorucci, C.P.Sommerhoff, M.Coletta, and F.Ascoli (2000).
Kinetic and thermodynamic analysis of leech-derived tryptase inhibitor interaction with bovine tryptase and bovine trypsin.
  Biol Chem, 381, 1117-1122.  
10771427 U.Rester, M.Moser, R.Huber, and W.Bode (2000).
L-Isoaspartate 115 of porcine beta-trypsin promotes crystallization of its complex with bdellastasin.
  Acta Crystallogr D Biol Crystallogr, 56, 581-588.
PDB code: 1eja
10500112 C.P.Sommerhoff, W.Bode, P.J.Pereira, M.T.Stubbs, J.Stürzebecher, G.P.Piechottka, G.Matschiner, and A.Bergner (1999).
The structure of the human betaII-tryptase tetramer: fo(u)r better or worse.
  Proc Natl Acad Sci U S A, 96, 10984-10991.  
10102985 H.Czapinska, and J.Otlewski (1999).
Structural and energetic determinants of the S1-site specificity in serine proteases.
  Eur J Biochem, 260, 571-595.  
10542076 T.Niimi, H.Yokoyama, A.Goto, K.Beck, and Y.Kitagawa (1999).
A Drosophila gene encoding multiple splice variants of Kazal-type serine protease inhibitor-like proteins with potential destinations of mitochondria, cytosol and the secretory pathway.
  Eur J Biochem, 266, 282-292.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer