PDBsum entry 1l7q

Go to PDB code: 
protein ligands links
Hydrolase PDB id
Protein chain
571 a.a. *
Waters ×583
* Residue conservation analysis
PDB id:
Name: Hydrolase
Title: Ser117ala mutant of bacterial cocaine esterase coce
Structure: Cocaine esterase. Chain: a. Synonym: coce. Engineered: yes. Mutation: yes
Source: Rhodococcus sp. Mb1. Organism_taxid: 51612. Expressed in: escherichia coli. Expression_system_taxid: 562
Biol. unit: Dimer (from PQS)
1.76Å     R-factor:   0.183     R-free:   0.204
Authors: J.M.Turner,N.A.Larsen,A.Basran,C.F.Barbas Iii,N.C.Bruce, I.A.Wilson,R.A.Lerner
Key ref:
J.M.Turner et al. (2002). Biochemical characterization and structural analysis of a highly proficient cocaine esterase. Biochemistry, 41, 12297-12307. PubMed id: 12369817 DOI: 10.1021/bi026131p
16-Mar-02     Release date:   11-Feb-03    
Go to PROCHECK summary

Protein chain
Pfam   ArchSchema ?
Q9L9D7  (COCE_RHOSM) -  Cocaine esterase
574 a.a.
571 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: E.C.  - Cocaine esterase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Cocaine + H2O = ecgonine methyl ester + benzoate
+ H(2)O
= ecgonine methyl ester
+ benzoate
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     cytoplasm   1 term 
  Biological process     metabolic process   3 terms 
  Biochemical function     hydrolase activity     3 terms  


DOI no: 10.1021/bi026131p Biochemistry 41:12297-12307 (2002)
PubMed id: 12369817  
Biochemical characterization and structural analysis of a highly proficient cocaine esterase.
J.M.Turner, N.A.Larsen, A.Basran, C.F.Barbas, N.C.Bruce, I.A.Wilson, R.A.Lerner.
The bacterial cocaine esterase, cocE, hydrolyzes cocaine faster than any other reported cocaine esterase. Hydrolysis of the cocaine benzoyl ester follows Michaelis-Menten kinetics with k(cat) = 7.8 s(-1) and K(M) = 640 nM. A similar rate is observed for hydrolysis of cocaethylene, a more potent cocaine metabolite that has been observed in patients who concurrently abuse cocaine and alcohol. The high catalytic proficiency, lack of observable product inhibition, and ability to hydrolyze both cocaine and cocaethylene make cocE an attractive candidate for rapid cocaine detoxification in an emergency setting. Recently, we determined the crystal structure of this enzyme, and showed that it is a serine carboxylesterase, with a catalytic triad formed by S117, H287, and D259 within a hydrophobic active site, and an oxyanion hole formed by the backbone amide of Y118 and the Y44 hydroxyl. The only enzyme previously known to use a Tyr side chain to form the oxyanion hole is prolyl oligopeptidase, but the Y44F mutation of cocE has a more deleterious effect on the specificity rate constant (k(cat)/K(M)) than the analogous Y473F mutation of prolyl oligopeptidase. Kinetic studies on a series of cocE mutants both validate the proposed mechanism, and reveal the relative contributions of active site residues toward substrate recognition and catalysis. Inspired by the anionic binding pocket of the cocaine binding antibody GNC92H2, we found that a Q55E mutation within the active site of cocE results in a modest (2-fold) improvement in K(M), but a 14-fold loss of k(cat). The pH rate profile of cocE was fit to the ionization of two groups (pK(a1) = 7.7; pK(a2) = 10.4) that likely represent titration of H287 and Y44, respectively. We also describe the crystal structures of both S117A and Y44F mutants of cocE. Finally, urea denaturation studies of cocE by fluorescence and circular dichroism show two unfolding transitions (0.5-0.6 M and 3.2-3.7 M urea), with the first transition likely representing pertubation of the active site.

Literature references that cite this PDB file's key reference

  PubMed id Reference
21289605 G.T.Collins, K.A.Carey, D.Narasimhan, J.Nichols, A.A.Berlin, N.W.Lukacs, R.K.Sunahara, J.H.Woods, and M.C.Ko (2011).
Amelioration of the cardiovascular effects of cocaine in rhesus monkeys by a long-acting mutant form of cocaine esterase.
  Neuropsychopharmacology, 36, 1047-1059.  
20436035 D.Narasimhan, M.R.Nance, D.Gao, M.C.Ko, J.Macdonald, P.Tamburi, D.Yoon, D.M.Landry, J.H.Woods, C.G.Zhan, J.J.Tesmer, and R.K.Sunahara (2010).
Structural analysis of thermostabilizing mutations of cocaine esterase.
  Protein Eng Des Sel, 23, 537-547.
PDB codes: 3i2f 3i2g 3i2h 3i2i 3i2j 3i2k
19857534 J.B.Park, Y.M.Kwon, T.Y.Lee, R.Brim, M.C.Ko, R.K.Sunahara, J.H.Woods, and V.C.Yang (2010).
PEGylation of bacterial cocaine esterase for protection against protease digestion and immunogenicity.
  J Control Release, 142, 174-179.  
18987161 D.Gao, D.L.Narasimhan, J.Macdonald, R.Brim, M.C.Ko, D.W.Landry, J.H.Woods, R.K.Sunahara, and C.G.Zhan (2009).
Thermostable variants of cocaine esterase for long-time protection against cocaine toxicity.
  Mol Pharmacol, 75, 318-323.  
19710369 G.T.Collins, R.L.Brim, D.Narasimhan, M.C.Ko, R.K.Sunahara, C.G.Zhan, and J.H.Woods (2009).
Cocaine esterase prevents cocaine-induced toxicity and the ongoing intravenous self-administration of cocaine in rats.
  J Pharmacol Exp Ther, 331, 445-455.  
19642701 J.Liu, A.Hamza, and C.G.Zhan (2009).
Fundamental reaction mechanism and free energy profile for (-)-cocaine hydrolysis catalyzed by cocaine esterase.
  J Am Chem Soc, 131, 11964-11975.  
19217723 M.C.Ko, D.Narasimhan, A.A.Berlin, N.W.Lukacs, R.K.Sunahara, and J.H.Woods (2009).
Effects of cocaine esterase following its repeated administration with cocaine in mice.
  Drug Alcohol Depend, 101, 202-209.  
18710224 F.Zheng, W.Yang, M.C.Ko, J.Liu, H.Cho, D.Gao, M.Tong, H.H.Tai, J.H.Woods, and C.G.Zhan (2008).
Most efficient cocaine hydrolase designed by virtual screening of transition states.
  J Am Chem Soc, 130, 12148-12155.  
18199998 S.Brimijoin, Y.Gao, J.J.Anker, L.A.Gliddon, D.Lafleur, R.Shah, Q.Zhao, M.Singh, and M.E.Carroll (2008).
A cocaine hydrolase engineered from human butyrylcholinesterase selectively blocks cocaine toxicity and reinstatement of drug seeking in rats.
  Neuropsychopharmacology, 33, 2715-2725.  
18163883 T.M.Streit, A.Borazjani, S.E.Lentz, M.Wierdl, P.M.Potter, S.R.Gwaltney, and M.K.Ross (2008).
Evaluation of the 'side door' in carboxylesterase-mediated catalysis and inhibition.
  Biol Chem, 389, 149-162.  
18514640 Y.Gao, D.LaFleur, R.Shah, Q.Zhao, M.Singh, and S.Brimijoin (2008).
An albumin-butyrylcholinesterase for cocaine toxicity and addiction: catalytic and pharmacokinetic properties.
  Chem Biol Interact, 175, 83-87.  
17084858 K.M.McKenzie, J.M.Mee, C.J.Rogers, M.S.Hixon, G.F.Kaufmann, and K.D.Janda (2007).
Identification and characterization of single chain anti-cocaine catalytic antibodies.
  J Mol Biol, 365, 722-731.  
17114567 M.C.Ko, L.D.Bowen, D.Narasimhan, A.A.Berlin, N.W.Lukacs, R.K.Sunahara, Z.D.Cooper, and J.H.Woods (2007).
Cocaine esterase: interactions with cocaine and immune responses in mice.
  J Pharmacol Exp Ther, 320, 926-933.  
16847603 C.Zimmer, T.Platz, N.Cadez, F.Giffhorn, and G.W.Kohring (2006).
A cold active (2R,3R)-(-)-di-O-benzoyl-tartrate hydrolyzing esterase from Rhodotorula mucilaginosa.
  Appl Microbiol Biotechnol, 73, 132-140.  
16377627 T.R.Barends, J.J.Polderman-Tijmes, P.A.Jekel, C.Williams, G.Wybenga, D.B.Janssen, and B.W.Dijkstra (2006).
Acetobacter turbidans alpha-amino acid ester hydrolase: how a single mutation improves an antibiotic-producing enzyme.
  J Biol Chem, 281, 5804-5810.
PDB codes: 1nx9 1ryy 2b4k 2b9v
16011362 C.J.Rogers, J.M.Mee, G.F.Kaufmann, T.J.Dickerson, and K.D.Janda (2005).
Toward cocaine esterase therapeutics.
  J Am Chem Soc, 127, 10016-10017.  
12684501 T.R.Barends, J.J.Polderman-Tijmes, P.A.Jekel, C.M.Hensgens, Vries, D.B.Janssen, and B.W.Dijkstra (2003).
The sequence and crystal structure of the alpha-amino acid ester hydrolase from Xanthomonas citri define a new family of beta-lactam antibiotic acylases.
  J Biol Chem, 278, 23076-23084.
PDB code: 1mpx
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.