spacer
spacer

PDBsum entry 1ikv

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Transferase PDB id
1ikv

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
556 a.a. *
404 a.a. *
Ligands
EFZ
* Residue conservation analysis
PDB id:
1ikv
Name: Transferase
Title: K103n mutant HIV-1 reverse transcriptase in complex with efivarenz
Structure: Pol polyprotein. Chain: a. Synonym: reverse transcriptase. Engineered: yes. Mutation: yes. Pol polyprotein. Chain: b. Synonym: reverse transcriptase. Engineered: yes.
Source: Human immunodeficiency virus 1. Organism_taxid: 11676. Gene: bh10. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Tetramer (from PQS)
Resolution:
3.00Å     R-factor:   0.228     R-free:   0.294
Authors: J.Lindberg,T.Unge
Key ref:
J.Lindberg et al. (2002). Structural basis for the inhibitory efficacy of efavirenz (DMP-266), MSC194 and PNU142721 towards the HIV-1 RT K103N mutant. Eur J Biochem, 269, 1670-1677. PubMed id: 11895437 DOI: 10.1046/j.1432-1327.2002.02811.x
Date:
07-May-01     Release date:   06-Jun-01    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P03366  (POL_HV1B1) -  Gag-Pol polyprotein from Human immunodeficiency virus type 1 group M subtype B (isolate BH10)
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1447 a.a.
556 a.a.*
Protein chain
Pfam   ArchSchema ?
P03366  (POL_HV1B1) -  Gag-Pol polyprotein from Human immunodeficiency virus type 1 group M subtype B (isolate BH10)
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1447 a.a.
404 a.a.
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class 1: Chains A, B: E.C.2.7.7.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 2: Chains A, B: E.C.2.7.7.49  - RNA-directed Dna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
DNA(n)
+ 2'-deoxyribonucleoside 5'-triphosphate
= DNA(n+1)
+ diphosphate
   Enzyme class 3: Chains A, B: E.C.2.7.7.7  - DNA-directed Dna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
DNA(n)
+ 2'-deoxyribonucleoside 5'-triphosphate
= DNA(n+1)
+ diphosphate
   Enzyme class 4: Chains A, B: E.C.3.1.-.-
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 5: Chains A, B: E.C.3.1.13.2  - exoribonuclease H.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Exonucleolytic cleavage to 5'-phosphomonoester oligonucleotides in both 5'- to 3'- and 3'- to 5'-directions.
   Enzyme class 6: Chains A, B: E.C.3.1.26.13  - retroviral ribonuclease H.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 7: Chains A, B: E.C.3.4.23.16  - HIV-1 retropepsin.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Specific for a P1 residue that is hydrophobic, and P1' variable, but often Pro.
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1046/j.1432-1327.2002.02811.x Eur J Biochem 269:1670-1677 (2002)
PubMed id: 11895437  
 
 
Structural basis for the inhibitory efficacy of efavirenz (DMP-266), MSC194 and PNU142721 towards the HIV-1 RT K103N mutant.
J.Lindberg, S.Sigurdsson, S.Löwgren, H.O.Andersson, C.Sahlberg, R.Noréen, K.Fridborg, H.Zhang, T.Unge.
 
  ABSTRACT  
 
The K103N substitution is a frequently observed HIV-1 RT mutation in patients who do not respond to combination-therapy. The drugs Efavirenz, MSC194 and PNU142721 belong to the recent generation of NNRTIs characterized by an improved resistance profile to the most common single point mutations within HIV-1 RT, including the K103N mutation. In the present study we present structural observations from Efavirenz in complex with wild-type protein and the K103N mutant and PNU142721 and MSC194 in complex with the K103N mutant. The structures unanimously indicate that the K103N substitution induces only minor positional adjustments of the three inhibitors and the residues lining the binding pocket. Thus, compared to the corresponding wild-type structures, these inhibitors bind to the mutant in a conservative mode rather than through major rearrangements. The structures implicate that the reduced inhibitory efficacy should be attributed to the changes in the chemical environment in the vicinity of the substituted N103 residue. This is supported by changes in hydrophobic and electrostatic interactions to the inhibitors between wild-type and K103N mutant complexes. These potent inhibitors accommodate to the K103N mutation by forming new interactions to the N103 side chain. Our results are consistent with the proposal by Hsiou et al. [Hsiou, Y., Ding, J., Das, K., Clark, A.D. Jr, Boyer, P.L., Lewi, P., Janssen, P.A., Kleim, J.P., Rosner, M., Hughes, S.H. & Arnold, E. (2001) J. Mol. Biol. 309, 437-445] that inhibitors with good activity against the K103N mutant would be expected to have favorable interactions with the mutant asparagines side chain, thereby compensating for resistance caused by stabilization of the mutant enzyme due to a hydrogen-bond network involving the N103 and Y188 side chains.
 
  Selected figure(s)  
 
Figure 1.
Fig. 1. Structures of NNRTIs. Chemical structure of the NNRTIs (A) Efavirenz, (B) PNU142721, and (C) MSC194. Atom numbering was included for clarification of Table 3 Go-.
Figure 3.
Fig. 3. Superimposition of Efavirenz bound to wild-type and K103N mutant RT NNIBPs. Stereoview of the superimposition of Efavirenz bound to the NNIBP of wild-type RT and the K103N mutant. Residue side chains characteristic of the NNIBP are included from each inhibitor complex and colored green for wild-type and maroon for the K103N mutant. The superimposition was carried out using all atoms from the residues within 4.0 Å from the inhibitors (V189, K101, K103N, V179, Y181, Y188, F227, W229, L234, H235, Y318 and E138).
 
  The above figures are reprinted by permission from the Federation of European Biochemical Societies: Eur J Biochem (2002, 269, 1670-1677) copyright 2002.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21134218 Z.Li, H.Zhang, Y.Li, J.Zhang, and H.F.Chen (2011).
Drug resistant mechanism of diaryltriazine analog inhibitors of HIV-1 reverse transcriptase using molecular dynamics simulation and 3D-QSAR.
  Chem Biol Drug Des, 77, 63-74.  
19901096 A.G.Marcelin, P.Flandre, D.Descamps, L.Morand-Joubert, C.Charpentier, J.Izopet, M.A.Trabaud, H.Saoudin, C.Delaugerre, C.Tamalet, J.Cottalorda, M.Bouvier-Alias, D.Bettinger, G.Dos Santos, A.Ruffault, C.Alloui, C.Henquell, S.Rogez, F.Barin, A.Signori-Schmuck, S.Vallet, B.Masquelier, V.Calvez, C.Alloui, D.Bettinger, G.Anies, B.Masquelier, S.Vallet, C.Henquell, M.Bouvier-Alias, G.Dos Santos, A.Signori-Schmuck, S.Rogez, P.Andre, J.C.Tardy, M.A.Trabaud, C.Tamalet, B.Montes, J.Cottalorda, D.Descamps, F.Brun-Vézinet, C.Charpentier, M.L.Chaix, S.Fourati, A.G.Marcelin, V.Calvez, P.Flandre, L.Morand-Joubert, C.Delaugerre, A.Ruffault, A.Maillard, T.Bourlet, H.Saoudin, J.Izopet, F.Barin, O.Bouchaud, B.Hoen, M.Dupon, P.Morlat, D.Neau, M.Garré, V.Bellein, C.Jacomet, Y.Lévy, S.Dominguez, A.Cabié, P.Leclercq, P.Weinbreck, L.Cotte, I.Poizot-Martin, I.Ravaud, J.Reynes, P.Dellamonica, P.Yeni, R.Landman, L.Weiss, C.Piketty, J.P.Viard, C.Katlama, A.Simon, P.M.Girard, J.L.Meynard, J.M.Molina, M.T.Goeger-Sow, I.Lamaury, C.Michelet, F.Lucht, B.Marchou, P.Massip, and J.M.Besnier (2010).
Factors associated with virological response to etravirine in nonnucleoside reverse transcriptase inhibitor-experienced HIV-1-infected patients.
  Antimicrob Agents Chemother, 54, 72-77.  
  20011151 A.J.Kandathil, A.P.Joseph, R.Kannangai, N.Srinivasan, O.C.Abraham, S.A.Pulimood, and G.Sridharan (2010).
HIV reverse transcriptase: Structural interpretation of drug resistant genetic variants from India.
  Bioinformation, 4, 36-45.  
20160632 H.Gatanaga, H.Ode, A.Hachiya, T.Hayashida, H.Sato, M.Takiguchi, and S.Oka (2010).
Impact of human leukocyte antigen-B*51-restricted cytotoxic T-lymphocyte pressure on mutation patterns of nonnucleoside reverse transcriptase inhibitor resistance.
  AIDS, 24, F15-F22.  
20124001 H.Gatanaga, H.Ode, A.Hachiya, T.Hayashida, H.Sato, and S.Oka (2010).
Combination of V106I and V179D polymorphic mutations in human immunodeficiency virus type 1 reverse transcriptase confers resistance to efavirenz and nevirapine but not etravirine.
  Antimicrob Agents Chemother, 54, 1596-1602.  
20484498 H.P.Su, Y.Yan, G.S.Prasad, R.F.Smith, C.L.Daniels, P.D.Abeywickrema, J.C.Reid, H.M.Loughran, M.Kornienko, S.Sharma, J.A.Grobler, B.Xu, V.Sardana, T.J.Allison, P.D.Williams, P.L.Darke, D.J.Hazuda, and S.Munshi (2010).
Structural basis for the inhibition of RNase H activity of HIV-1 reverse transcriptase by RNase H active site-directed inhibitors.
  J Virol, 84, 7625-7633.
PDB codes: 3lp0 3lp1 3lp2 3lp3
20376302 K.Singh, B.Marchand, K.A.Kirby, E.Michailidis, and S.G.Sarafianos (2010).
Structural Aspects of Drug Resistance and Inhibition of HIV-1 Reverse Transcriptase.
  Viruses, 2, 606-638.  
20039714 V.A.Braz, L.A.Holladay, and M.D.Barkley (2010).
Efavirenz binding to HIV-1 reverse transcriptase monomers and dimers.
  Biochemistry, 49, 601-610.  
19374380 S.E.Nichols, R.A.Domaoal, V.V.Thakur, J.Tirado-Rives, K.S.Anderson, and W.L.Jorgensen (2009).
Discovery of wild-type and Y181C mutant non-nucleoside HIV-1 reverse transcriptase inhibitors using virtual screening with multiple protein structures.
  J Chem Inf Model, 49, 1272-1279.  
19637180 Y.M.Loksha, E.B.Pedersen, R.Loddo, and P.La Colla (2009).
Synthesis and anti-HIV-1 activity of 1-substiuted 6-(3-cyanobenzoyl) and [(3-cyanophenyl)fluoromethyl]-5-ethyl-uracils.
  Arch Pharm (Weinheim), 342, 501-506.  
18230722 K.Das, J.D.Bauman, A.D.Clark, Y.V.Frenkel, P.J.Lewi, A.J.Shatkin, S.H.Hughes, and E.Arnold (2008).
High-resolution structures of HIV-1 reverse transcriptase/TMC278 complexes: strategic flexibility explains potency against resistance mutations.
  Proc Natl Acad Sci U S A, 105, 1466-1471.
PDB codes: 2zd1 2ze2 3bgr
18081133 M.Radi, C.Falciani, L.Contemori, E.Petricci, G.Maga, A.Samuele, S.Zanoli, M.Terrazas, M.Castria, A.Togninelli, J.A.Esté, I.Clotet-Codina, M.Armand-Ugón, and M.Botta (2008).
A multidisciplinary approach for the identification of novel HIV-1 non-nucleoside reverse transcriptase inhibitors: S-DABOCs and DAVPs.
  ChemMedChem, 3, 573-593.  
18338369 P.Srivab, and S.Hannongbua (2008).
A study of the binding energies of efavirenz to wild-type and K103N/Y181C HIV-1 reverse transcriptase based on the ONIOM method.
  ChemMedChem, 3, 803-811.  
16911530 J.Ren, C.E.Nichols, A.Stamp, P.P.Chamberlain, R.Ferris, K.L.Weaver, S.A.Short, and D.K.Stammers (2006).
Structural insights into mechanisms of non-nucleoside drug resistance for HIV-1 reverse transcriptases mutated at codons 101 or 138.
  FEBS J, 273, 3850-3860.
PDB codes: 2hnd 2hny 2hnz
16957991 J.Ruan, K.Chen, J.A.Tuszynski, and L.A.Kurgan (2006).
Quantitative analysis of the conservation of the tertiary structure of protein segments.
  Protein J, 25, 301-315.  
16897578 Z.Zhang, M.Zheng, L.Du, J.Shen, X.Luo, W.Zhu, and H.Jiang (2006).
Towards discovering dual functional inhibitors against both wild type and K103N mutant HIV-1 reverse transcriptases: molecular docking and QSAR studies on 4,1-benzoxazepinone analogues.
  J Comput Aided Mol Des, 20, 281-293.  
15544453 N.Sluis-Cremer, N.A.Temiz, and I.Bahar (2004).
Conformational changes in HIV-1 reverse transcriptase induced by nonnucleoside reverse transcriptase inhibitor binding.
  Curr HIV Res, 2, 323-332.  
15113918 Y.Gao, E.Paxinos, J.Galovich, R.Troyer, H.Baird, M.Abreha, C.Kityo, P.Mugyenyi, C.Petropoulos, and E.J.Arts (2004).
Characterization of a subtype D human immunodeficiency virus type 1 isolate that was obtained from an untreated individual and that is highly resistant to nonnucleoside reverse transcriptase inhibitors.
  J Virol, 78, 5390-5401.  
12966539 A.Malmsten, X.W.Shao, K.Aperia, G.E.Corrigan, E.Sandström, C.F.Källander, T.Leitner, and J.S.Gronowitz (2003).
HIV-1 viral load determination based on reverse transcriptase activity recovered from human plasma.
  J Med Virol, 71, 347-359.  
12770866 L.Shen, J.Shen, X.Luo, F.Cheng, Y.Xu, K.Chen, E.Arnold, J.Ding, and H.Jiang (2003).
Steered molecular dynamics simulation on the binding of NNRTI to HIV-1 RT.
  Biophys J, 84, 3547-3563.  
12824784 X.W.Shao, A.Malmsten, J.Lennerstrand, A.Sönnerborg, T.Unge, J.S.Gronowitz, and C.F.Källander (2003).
Use of HIV-1 reverse transcriptase recovered from human plasma for phenotypic drug susceptibility testing.
  AIDS, 17, 1463-1471.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer