spacer
spacer

PDBsum entry 1gtr

Go to PDB code: 
protein dna_rna ligands links
Complex (ligase/tRNA) PDB id
1gtr
Jmol
Contents
Protein chain
529 a.a. *
DNA/RNA
Ligands
ATP
Waters ×231
* Residue conservation analysis
PDB id:
1gtr
Name: Complex (ligase/tRNA)
Title: Structural basis of anticodon loop recognition by glutaminyl synthetase
Structure: RNA (74-mer). Chain: b. Engineered: yes. Glutaminyl-tRNA synthetase. Chain: a. Engineered: yes
Source: Synthetic: yes. Escherichia coli. Organism_taxid: 562
Resolution:
2.50Å     R-factor:   0.210    
Authors: M.A.Rould,J.J.Perona,T.A.Steitz
Key ref: M.A.Rould et al. (1991). Structural basis of anticodon loop recognition by glutaminyl-tRNA synthetase. Nature, 352, 213-218. PubMed id: 1857417 DOI: 10.1038/352213a0
Date:
15-Sep-93     Release date:   07-Feb-95    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P00962  (SYQ_ECOLI) -  Glutamine--tRNA ligase
Seq:
Struc:
 
Seq:
Struc:
554 a.a.
529 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.6.1.1.18  - Glutamine--tRNA ligase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: ATP + L-glutamine + tRNA(Gln) = AMP + diphosphate + L-glutaminyl- tRNA(Gln)
ATP
Bound ligand (Het Group name = ATP)
corresponds exactly
+ L-glutamine
+ tRNA(Gln)
= AMP
+ diphosphate
+ L-glutaminyl- tRNA(Gln)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     cytoplasm   1 term 
  Biological process     translation   5 terms 
  Biochemical function     nucleotide binding     6 terms  

 

 
    reference    
 
 
DOI no: 10.1038/352213a0 Nature 352:213-218 (1991)
PubMed id: 1857417  
 
 
Structural basis of anticodon loop recognition by glutaminyl-tRNA synthetase.
M.A.Rould, J.J.Perona, T.A.Steitz.
 
  ABSTRACT  
 
The refined crystal structure of Escherichia coli glutaminyl transfer RNA synthetase complexed with transfer RNA(Gln) and ATP reveals that the structure of the anticodon loop of the enzyme-bound tRNA(Gln) differs extensively from that of the known crystal structures of uncomplexed tRNA molecules. The anticodon stem is extended by two non-Watson-Crick base pairs, leaving the three anti-codon bases unpaired and splayed out to bind snugly into three separate complementary pockets in the protein. These interactions suggest that the entire anticodon loop provides essential sites for glutaminyl tRNA synthetase discrimination among tRNA molecules.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
21397189 A.Rodríguez-Hernández, and J.J.Perona (2011).
Heat maps for intramolecular communication in an RNP enzyme encoding glutamine.
  Structure, 19, 386-396.  
20139416 M.G.Gagnon, Y.I.Boutorine, and S.V.Steinberg (2010).
Recurrent RNA motifs as probes for studying RNA-protein interactions in the ribosome.
  Nucleic Acids Res, 38, 3441-3453.  
20601684 O.Nureki, P.O'Donoghue, N.Watanabe, A.Ohmori, H.Oshikane, Y.Araiso, K.Sheppard, D.Söll, and R.Ishitani (2010).
Structure of an archaeal non-discriminating glutamyl-tRNA synthetase: a missing link in the evolution of Gln-tRNAGln formation.
  Nucleic Acids Res, 38, 7286-7297.
PDB code: 3aii
21119764 R.Giegé, and C.Sauter (2010).
Biocrystallography: past, present, future.
  HFSP J, 4, 109-121.  
19847269 K.Nakanishi, L.Bonnefond, S.Kimura, T.Suzuki, R.Ishitani, and O.Nureki (2009).
Structural basis for translational fidelity ensured by transfer RNA lysidine synthetase.
  Nature, 461, 1144-1148.
PDB codes: 3a2k 3hj7
17317626 E.C.Guth, and C.S.Francklyn (2007).
Kinetic discrimination of tRNA identity by the conserved motif 2 loop of a class II aminoacyl-tRNA synthetase.
  Mol Cell, 25, 531-542.  
17580114 H.Li (2007).
Complexes of tRNA and maturation enzymes: shaping up for translation.
  Curr Opin Struct Biol, 17, 293-301.  
17447878 I.A.Vasil'eva, and N.A.Moor (2007).
Interaction of aminoacyl-tRNA synthetases with tRNA: general principles and distinguishing characteristics of the high-molecular-weight substrate recognition.
  Biochemistry (Mosc), 72, 247-263.  
16415880 H.C.Losey, A.J.Ruthenburg, and G.L.Verdine (2006).
Crystal structure of Staphylococcus aureus tRNA adenosine deaminase TadA in complex with RNA.
  Nat Struct Mol Biol, 13, 153-159.
PDB code: 2b3j
16772402 J.Fukunaga, S.Ohno, K.Nishikawa, and T.Yokogawa (2006).
A base pair at the bottom of the anticodon stem is reciprocally preferred for discrimination of cognate tRNAs by Escherichia coli lysyl- and glutaminyl-tRNA synthetases.
  Nucleic Acids Res, 34, 3181-3188.  
16871614 J.Noeske, C.Richter, E.Stirnal, H.Schwalbe, and J.Wöhnert (2006).
Phosphate-group recognition by the aptamer domain of the thiamine pyrophosphate sensing riboswitch.
  Chembiochem, 7, 1451-1456.  
16269545 B.H.Mooers, J.S.Logue, and J.A.Berglund (2005).
The structural basis of myotonic dystrophy from the crystal structure of CUG repeats.
  Proc Natl Acad Sci U S A, 102, 16626-16631.
PDB code: 1zev
16131749 B.Heras, and J.L.Martin (2005).
Post-crystallization treatments for improving diffraction quality of protein crystals.
  Acta Crystallogr D Biol Crystallogr, 61, 1173-1180.  
15856481 J.Roach, S.Sharma, M.Kapustina, and C.W.Carter (2005).
Structure alignment via Delaunay tetrahedralization.
  Proteins, 60, 66-81.  
15923375 S.Francisci, C.DE Luca, R.Oliva, V.Morea, A.Tramontano, and L.Frontali (2005).
Aminoacylation and conformational properties of yeast mitochondrial tRNA mutants with respiratory deficiency.
  RNA, 11, 914-927.  
15665870 S.Yoshizawa, L.Rasubala, T.Ose, D.Kohda, D.Fourmy, and K.Maenaka (2005).
Structural basis for mRNA recognition by elongation factor SelB.
  Nat Struct Mol Biol, 12, 198-203.
PDB code: 1wsu
16113113 Y.Wang, and R.L.Jernigan (2005).
Comparison of tRNA motions in the free and ribosomal bound structures.
  Biophys J, 89, 3399-3409.  
15155766 C.Butan, H.Van Der Zandt, and P.A.Tucker (2004).
Structure and assembly of the RNA binding domain of bluetongue virus non-structural protein 2.
  J Biol Chem, 279, 37613-37621.
PDB code: 1uty
14729701 G.Jäger, R.Leipuviene, M.G.Pollard, Q.Qian, and G.R.Björk (2004).
The conserved Cys-X1-X2-Cys motif present in the TtcA protein is required for the thiolation of cytidine in position 32 of tRNA from Salmonella enterica serovar Typhimurium.
  J Bacteriol, 186, 750-757.  
15452355 N.T.Uter, and J.J.Perona (2004).
Long-range intramolecular signaling in a tRNA synthetase complex revealed by pre-steady-state kinetics.
  Proc Natl Acad Sci U S A, 101, 14396-14401.  
14764088 R.Banerjee, D.Y.Dubois, J.Gauthier, S.X.Lin, S.Roy, and J.Lapointe (2004).
The zinc-binding site of a class I aminoacyl-tRNA synthetase is a SWIM domain that modulates amino acid binding via the tRNA acceptor arm.
  Eur J Biochem, 271, 724-733.  
15100435 W.H.McClain, K.Gabriel, D.Lee, and S.Otten (2004).
Structure-function analysis of tRNA(Gln) in an Escherichia coli knockout strain.
  RNA, 10, 795-804.  
12737824 L.D.Sherlin, and J.J.Perona (2003).
tRNA-dependent active site assembly in a class I aminoacyl-tRNA synthetase.
  Structure, 11, 591-603.
PDB code: 1nyl
12907713 R.Geslain, F.Martin, A.Camasses, and G.Eriani (2003).
A yeast knockout strain to discriminate between active and inactive tRNA molecules.
  Nucleic Acids Res, 31, 4729-4737.  
14690419 R.Geslain, G.Bey, J.Cavarelli, and G.Eriani (2003).
Limited set of amino acid residues in a class Ia aminoacyl-tRNA synthetase is crucial for tRNA binding.
  Biochemistry, 42, 15092-15101.  
12554880 S.Fukai, O.Nureki, S.Sekine, A.Shimada, D.G.Vassylyev, and S.Yokoyama (2003).
Mechanism of molecular interactions for tRNA(Val) recognition by valyl-tRNA synthetase.
  RNA, 9, 100-111.
PDB codes: 1ivs 1iyw
12554668 S.Sekine, O.Nureki, D.Y.Dubois, S.Bernier, R.Chênevert, J.Lapointe, D.G.Vassylyev, and S.Yokoyama (2003).
ATP binding by glutamyl-tRNA synthetase is switched to the productive mode by tRNA binding.
  EMBO J, 22, 676-688.
PDB codes: 1j09 1n75 1n77 1n78
12949492 W.Xie, X.Liu, and R.H.Huang (2003).
Chemical trapping and crystal structure of a catalytic tRNA guanine transglycosylase covalent intermediate.
  Nat Struct Biol, 10, 781-788.
PDB codes: 1q2r 1q2s
11752346 P.S.Klosterman, M.Tamura, S.R.Holbrook, and S.E.Brenner (2002).
SCOR: a Structural Classification of RNA database.
  Nucleic Acids Res, 30, 392-394.  
12444263 R.B.Lanz, B.Razani, A.D.Goldberg, and B.W.O'Malley (2002).
Distinct RNA motifs are important for coactivation of steroid hormone receptors by steroid receptor RNA activator (SRA).
  Proc Natl Acad Sci U S A, 99, 16081-16086.  
11698642 A.Shimada, O.Nureki, M.Goto, S.Takahashi, and S.Yokoyama (2001).
Structural and mutational studies of the recognition of the arginine tRNA-specific major identity element, A20, by arginyl-tRNA synthetase.
  Proc Natl Acad Sci U S A, 98, 13537-13542.
PDB codes: 1iq0 1ir4
11389593 I.J.MacRae, I.H.Segel, and A.J.Fisher (2001).
Crystal structure of ATP sulfurylase from Penicillium chrysogenum: insights into the allosteric regulation of sulfate assimilation.
  Biochemistry, 40, 6795-6804.
PDB code: 1i2d
11987160 J.J.Salama, I.Donaldson, and C.W.Hogue (2001).
Automatic annotation of BIND molecular interactions from three-dimensional structures.
  Biopolymers, 61, 111-120.  
12762019 O.Nureki, S.Fukai, S.Sekine, A.Shimada, T.Terada, T.Nakama, M.Shirouzu, D.G.Vassylyev, and S.Yokoyama (2001).
Structural basis for amino acid and tRNA recognition by class I aminoacyl-tRNA synthetases.
  Cold Spring Harb Symp Quant Biol, 66, 167-173.  
10679466 A.A.Antson (2000).
Single-stranded-RNA binding proteins.
  Curr Opin Struct Biol, 10, 87-94.  
10676814 H.A.Lewis, K.Musunuru, K.B.Jensen, C.Edo, H.Chen, R.B.Darnell, and S.K.Burley (2000).
Sequence-specific RNA binding by a Nova KH domain: implications for paraneoplastic disease and the fragile X syndrome.
  Cell, 100, 323-332.
PDB code: 1ec6
10986466 I.D'Angelo, N.Raffaelli, V.Dabusti, T.Lorenzi, G.Magni, and M.Rizzi (2000).
Structure of nicotinamide mononucleotide adenylyltransferase: a key enzyme in NAD(+) biosynthesis.
  Structure, 8, 993.
PDB code: 1f9a
10673435 I.Sugiura, O.Nureki, Y.Ugaji-Yoshikawa, S.Kuwabara, A.Shimada, M.Tateno, B.Lorber, R.Giegé, D.Moras, S.Yokoyama, and M.Konno (2000).
The 2.0 A crystal structure of Thermus thermophilus methionyl-tRNA synthetase reveals two RNA-binding modules.
  Structure, 8, 197-208.
PDB code: 1a8h
10821696 J.Wientges, J.Pütz, R.Giegé, C.Florentz, and A.Schwienhorst (2000).
Selection of viral RNA-derived tRNA-like structures with improved valylation activities.
  Biochemistry, 39, 6207-6218.  
10713991 K.A.Denessiouk, and M.S.Johnson (2000).
When fold is not important: a common structural framework for adenine and AMP binding in 12 unrelated protein families.
  Proteins, 38, 310-326.  
10966471 M.Ibba, and D.Soll (2000).
Aminoacyl-tRNA synthesis.
  Annu Rev Biochem, 69, 617-650.  
11118226 M.Kaminska, M.Deniziak, P.Kerjan, J.Barciszewski, and M.Mirande (2000).
A recurrent general RNA binding domain appended to plant methionyl-tRNA synthetase acts as a cis-acting cofactor for aminoacylation.
  EMBO J, 19, 6908-6917.  
10677223 V.Guez, S.Nair, A.Chaffotte, and H.Bedouelle (2000).
The anticodon-binding domain of tyrosyl-tRNA synthetase: state of folding and origin of the crystallographic disorder.
  Biochemistry, 39, 1739-1747.  
10771429 V.R.Samygina, S.V.Antonyuk, V.S.Lamzin, and A.N.Popov (2000).
Improving the X-ray resolution by reversible flash-cooling combined with concentration screening, as exemplified with PPase.
  Acta Crystallogr D Biol Crystallogr, 56, 595-603.  
10913310 X.Chen, J.A.McDowell, R.Kierzek, T.R.Krugh, and D.H.Turner (2000).
Nuclear magnetic resonance spectroscopy and molecular modeling reveal that different hydrogen bonding patterns are possible for G.U pairs: one hydrogen bond for each G.U pair in r(GGCGUGCC)(2) and two for each G.U pair in r(GAGUGCUC)(2).
  Biochemistry, 39, 8970-8982.
PDB codes: 1eka 1ekd
10630994 Y.Xin, W.Li, and E.A.First (2000).
The 'KMSKS' motif in tyrosyl-tRNA synthetase participates in the initial binding of tRNA(Tyr).
  Biochemistry, 39, 340-347.  
10220370 D.R.Liu, and P.G.Schultz (1999).
Progress toward the evolution of an organism with an expanded genetic code.
  Proc Natl Acad Sci U S A, 96, 4780-4785.  
10368286 H.A.Lewis, H.Chen, C.Edo, R.J.Buckanovich, Y.Y.Yang, K.Musunuru, R.Zhong, R.B.Darnell, and S.K.Burley (1999).
Crystal structures of Nova-1 and Nova-2 K-homology RNA-binding domains.
  Structure, 7, 191-203.
PDB codes: 1dt4 1dtj
10562563 M.Stoldt, J.Wöhnert, O.Ohlenschläger, M.Görlach, and L.R.Brown (1999).
The NMR structure of the 5S rRNA E-domain-protein L25 complex shows preformed and induced recognition.
  EMBO J, 18, 6508-6521.
PDB code: 1d6k
10737860 P.J.Beuning, and K.Musier-Forsyth (1999).
Transfer RNA recognition by aminoacyl-tRNA synthetases.
  Biopolymers, 52, 1.  
10430867 S.Maas, A.P.Gerber, and A.Rich (1999).
Identification and characterization of a human tRNA-specific adenosine deaminase related to the ADAR family of pre-mRNA editing enzymes.
  Proc Natl Acad Sci U S A, 96, 8895-8900.  
10024171 S.S.Ashraf, E.Sochacka, R.Cain, R.Guenther, A.Malkiewicz, and P.F.Agris (1999).
Single atom modification (O-->S) of tRNA confers ribosome binding.
  RNA, 5, 188-194.  
10215844 S.Sekine, O.Nureki, M.Tateno, and S.Yokoyama (1999).
The identity determinants required for the discrimination between tRNAGlu and tRNAAsp by glutamyl-tRNA synthetase from Escherichia coli.
  Eur J Biochem, 261, 354-360.  
10094311 T.A.Nissan, B.Oliphant, and J.J.Perona (1999).
An engineered class I transfer RNA with a class II tertiary fold.
  RNA, 5, 434-445.  
10205156 T.Izard, and A.Geerlof (1999).
The crystal structure of a novel bacterial adenylyltransferase reveals half of sites reactivity.
  EMBO J, 18, 2021-2030.
PDB code: 1b6t
9811818 C.C.Correll, A.Munishkin, Y.L.Chan, Z.Ren, I.G.Wool, and T.A.Steitz (1998).
Crystal structure of the ribosomal RNA domain essential for binding elongation factors.
  Proc Natl Acad Sci U S A, 95, 13436-13441.
PDB code: 430d
9848650 F.Tsai, and J.F.Curran (1998).
tRNA(2Gln) mutants that translate the CGA arginine codon as glutamine in Escherichia coli.
  RNA, 4, 1514-1522.  
9497276 M.E.Saks, J.R.Sampson, and J.Abelson (1998).
Evolution of a transfer RNA gene through a point mutation in the anticodon.
  Science, 279, 1665-1670.  
9545221 M.H.Kolk, M.van der Graaf, S.S.Wijmenga, C.W.Pleij, H.A.Heus, and C.W.Hilbers (1998).
NMR structure of a classical pseudoknot: interplay of single- and double-stranded RNA.
  Science, 280, 434-438.
PDB code: 1a60
9622124 M.Sissler, R.Giegé, and C.Florentz (1998).
The RNA sequence context defines the mechanistic routes by which yeast arginyl-tRNA synthetase charges tRNA.
  RNA, 4, 647-657.  
9799245 M.Stoldt, J.Wöhnert, M.Görlach, and L.R.Brown (1998).
The NMR structure of Escherichia coli ribosomal protein L25 shows homology to general stress proteins and glutaminyl-tRNA synthetases.
  EMBO J, 17, 6377-6384.
PDB code: 1b75
9606201 P.Y.Shi, N.Maizels, and A.M.Weiner (1998).
CCA addition by tRNA nucleotidyltransferase: polymerization without translocation?
  EMBO J, 17, 3197-3206.  
9748544 Q.S.Zhang, E.D.Wang, and Y.L.Wang (1998).
The role of tryptophan residues in Escherichia coli arginyl-tRNA synthetase.
  Biochim Biophys Acta, 1387, 136-142.  
10333745 R.N.De Guzman, R.B.Turner, and M.F.Summers (1998).
Protein-RNA recognition.
  Biopolymers, 48, 181-195.  
9770466 R.W.Alexander, B.E.Nordin, and P.Schimmel (1998).
Activation of microhelix charging by localized helix destabilization.
  Proc Natl Acad Sci U S A, 95, 12214-12219.  
9493271 S.Cusack, A.Yaremchuk, I.Krikliviy, and M.Tukalo (1998).
tRNA(Pro) anticodon recognition by Thermus thermophilus prolyl-tRNA synthetase.
  Structure, 6, 101-108.  
9562563 V.L.Rath, L.F.Silvian, B.Beijer, B.S.Sproat, and T.A.Steitz (1998).
How glutaminyl-tRNA synthetase selects glutamine.
  Structure, 6, 439-449.
PDB code: 1qtq
9435214 W.H.McClain, J.Schneider, S.Bhattacharya, and K.Gabriel (1998).
The importance of tRNA backbone-mediated interactions with synthetase for aminoacylation.
  Proc Natl Acad Sci U S A, 95, 460-465.  
9501914 Z.Cai, A.Gorin, R.Frederick, X.Ye, W.Hu, A.Majumdar, A.Kettani, and D.J.Patel (1998).
Solution structure of P22 transcriptional antitermination N peptide-boxB RNA complex.
  Nat Struct Biol, 5, 203-212.
PDB code: 1a4t
9153306 A.Ramos, and G.Varani (1997).
Structure of the acceptor stem of Escherichia coli tRNA Ala: role of the G3.U70 base pair in synthetase recognition.
  Nucleic Acids Res, 25, 2083-2090.
PDB code: 1ikd
9353343 B.J.Hamilton, C.M.Burns, R.C.Nichols, and W.F.Rigby (1997).
Modulation of AUUUA response element binding by heterogeneous nuclear ribonucleoprotein A1 in human T lymphocytes. The roles of cytoplasmic location, transcription, and phosphorylation.
  J Biol Chem, 272, 28732-28741.  
9185564 B.Lustig, S.Arora, and R.L.Jernigan (1997).
RNA base-amino acid interaction strengths derived from structures and sequences.
  Nucleic Acids Res, 25, 2562-2565.  
9062123 C.Stehlin, D.H.Heacock, H.Liu, and K.Musier-Forsyth (1997).
Chemical modification and site-directed mutagenesis of the single cysteine in motif 3 of class II Escherichia coli prolyl-tRNA synthetase.
  Biochemistry, 36, 2932-2938.  
9016721 D.Grate, and C.Wilson (1997).
Role REVersal: understanding how RRE RNA binds its peptide ligand.
  Structure, 5, 7.  
9294168 D.R.Liu, T.J.Magliery, M.Pastrnak, and P.G.Schultz (1997).
Engineering a tRNA and aminoacyl-tRNA synthetase for the site-specific incorporation of unnatural amino acids into proteins in vivo.
  Proc Natl Acad Sci U S A, 94, 10092-10097.  
9184240 E.F.Whelihan, and P.Schimmel (1997).
Rescuing an essential enzyme-RNA complex with a non-essential appended domain.
  EMBO J, 16, 2968-2974.  
9312034 F.H.Allain, P.W.Howe, D.Neuhaus, and G.Varani (1997).
Structural basis of the RNA-binding specificity of human U1A protein.
  EMBO J, 16, 5764-5772.
PDB code: 1aud
9261082 H.Savage, G.Montoya, C.Svensson, J.D.Schwenn, and I.Sinning (1997).
Crystal structure of phosphoadenylyl sulphate (PAPS) reductase: a new family of adenine nucleotide alpha hydrolases.
  Structure, 5, 895-906.
PDB code: 1sur
9131996 J.Augustine, and C.Francklyn (1997).
Design of an active fragment of a class II aminoacyl-tRNA synthetase and its significance for synthetase evolution.
  Biochemistry, 36, 3473-3482.  
  9372178 J.L.Riechmann, and E.M.Meyerowitz (1997).
MADS domain proteins in plant development.
  Biol Chem, 378, 1079-1101.  
9342332 K.Harada, S.S.Martin, R.Tan, and A.D.Frankel (1997).
Molding a peptide into an RNA site by in vivo peptide evolution.
  Proc Natl Acad Sci U S A, 94, 11887-11892.  
9070426 L.Jiang, A.K.Suri, R.Fiala, and D.J.Patel (1997).
Saccharide-RNA recognition in an aminoglycoside antibiotic-RNA aptamer complex.
  Chem Biol, 4, 35-50.
PDB code: 1tob
9016605 M.J.Laforest, I.Roewer, and B.F.Lang (1997).
Mitochondrial tRNAs in the lower fungus Spizellomyces punctatus: tRNA editing and UAG 'stop' codons recognized as leucine.
  Nucleic Acids Res, 25, 626-632.  
9396792 M.Liu, W.C.Chu, J.C.Liu, and J.Horowitz (1997).
Role of acceptor stem conformation in tRNAVal recognition by its cognate synthetase.
  Nucleic Acids Res, 25, 4883-4890.  
9396794 M.Sissler, G.Eriani, F.Martin, R.Giegé, and C.Florentz (1997).
Mirror image alternative interaction patterns of the same tRNA with either class I arginyl-tRNA synthetase or class II aspartyl-tRNA synthetase.
  Nucleic Acids Res, 25, 4899-4906.  
9016717 Y.Goldgur, L.Mosyak, L.Reshetnikova, V.Ankilova, O.Lavrik, S.Khodyreva, and M.Safro (1997).
The crystal structure of phenylalanyl-tRNA synthetase from thermus thermophilus complexed with cognate tRNAPhe.
  Structure, 5, 59-68.
PDB code: 1eiy
8617762 B.R.Henderson, E.Menotti, and L.C.Kühn (1996).
Iron regulatory proteins 1 and 2 bind distinct sets of RNA target sequences.
  J Biol Chem, 271, 4900-4908.  
8805260 D.Moras, and A.Poterszman (1996).
Getting into the major groove. Protein-RNA interactions.
  Curr Biol, 6, 530-532.  
9636312 H.U.Thomann, M.Ibba, K.W.Hong, and D.Söll (1996).
Homologous expression and purification of mutants of an essential protein by reverse epitope-tagging.
  Biotechnology (N Y), 14, 50-55.  
8942633 J.G.Arnez, and T.A.Steitz (1996).
Crystal structures of three misacylating mutants of Escherichia coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP.
  Biochemistry, 35, 14725-14733.
PDB codes: 1qrs 1qrt 1qru
8790391 J.P.Vigneron, N.Oudrhiri, M.Fauquet, L.Vergely, J.C.Bradley, M.Basseville, P.Lehn, and J.M.Lehn (1996).
Guanidinium-cholesterol cationic lipids: efficient vectors for the transfection of eukaryotic cells.
  Proc Natl Acad Sci U S A, 93, 9682-9686.  
8696973 K.Nagai (1996).
RNA-protein complexes.
  Curr Opin Struct Biol, 6, 53-61.  
  8617245 K.W.Hong, M.Ibba, I.Weygand-Durasevic, M.J.Rogers, H.U.Thomann, and D.Söll (1996).
Transfer RNA-dependent cognate amino acid recognition by an aminoacyl-tRNA synthetase.
  EMBO J, 15, 1983-1991.  
8736559 L.Jovine, C.Oubridge, J.M.Avis, and K.Nagai (1996).
Two structurally different RNA molecules are bound by the spliceosomal protein U1A using the same recognition strategy.
  Structure, 4, 621-631.
PDB code: 3utr
8798511 M.E.Saks, J.R.Sampson, M.W.Nowak, P.C.Kearney, F.Du, J.N.Abelson, H.A.Lester, and D.A.Dougherty (1996).
An engineered Tetrahymena tRNAGln for in vivo incorporation of unnatural amino acids into proteins by nonsense suppression.
  J Biol Chem, 271, 23169-23175.  
8917315 M.Kitabatake, M.Ibba, K.W.Hong, D.Söll, and H.Inokuchi (1996).
Genetic analysis of functional connectivity between substrate recognition domains of Escherichia coli glutaminyl-tRNA synthetase.
  Mol Gen Genet, 252, 717-722.  
  8890180 M.Sissler, R.Giegé, and C.Florentz (1996).
Arginine aminoacylation identity is context-dependent and ensured by alternate recognition sets in the anticodon loop of accepting tRNA transcripts.
  EMBO J, 15, 5069-5076.  
  8890181 P.Ansel-McKinney, S.W.Scott, M.Swanson, X.Ge, and L.Gehrke (1996).
A plant viral coat protein RNA binding consensus sequence contains a crucial arginine.
  EMBO J, 15, 5077-5084.  
8639604 W.Yan, J.Augustine, and C.Francklyn (1996).
A tRNA identity switch mediated by the binding interaction between a tRNA anticodon and the accessory domain of a class II aminoacyl-tRNA synthetase.
  Biochemistry, 35, 6559-6568.  
8758993 Y.X.Wang, S.Huang, and D.E.Draper (1996).
Structure of a U.U pair within a conserved ribosomal RNA hairpin.
  Nucleic Acids Res, 24, 2666-2672.  
  7891721 A.H.Swirnoff, and J.Milbrandt (1995).
DNA-binding specificity of NGFI-A and related zinc finger transcription factors.
  Mol Cell Biol, 15, 2275-2287.  
7540101 D.Moras, and A.Poterszman (1995).
RNA-protein interactions. Diverse modes of recognition.
  Curr Biol, 5, 249-251.  
7708493 F.Martin, G.Eriani, J.Reinbolt, G.Dirheimer, and J.Gangloff (1995).
Genetic selection for active E.coli amber tRNA(Asn) exclusively led to glutamine inserting suppressors.
  Nucleic Acids Res, 23, 779-784.  
  7556055 J.G.Arnez, D.C.Harris, A.Mitschler, B.Rees, C.S.Francklyn, and D.Moras (1995).
Crystal structure of histidyl-tRNA synthetase from Escherichia coli complexed with histidyl-adenylate.
  EMBO J, 14, 4143-4155.
PDB code: 1htt
7543225 K.Nagai, C.Oubridge, N.Ito, J.Avis, and P.Evans (1995).
The RNP domain: a sequence-specific RNA-binding domain involved in processing and transport of RNA.
  Trends Biochem Sci, 20, 235-240.  
7761451 L.Chen, and A.D.Frankel (1995).
A peptide interaction in the major groove of RNA resembles protein interactions in the minor groove of DNA.
  Proc Natl Acad Sci U S A, 92, 5077-5081.  
7735832 M.S.Chapman, and M.G.Rossmann (1995).
Single-stranded DNA-protein interactions in canine parvovirus.
  Structure, 3, 151-162.
PDB code: 3dpv
7600584 P.Schimmel, and L.Ribas de Pouplana (1995).
Transfer RNA: from minihelix to genetic code.
  Cell, 81, 983-986.  
7543360 B.Wimberly (1994).
A common RNA loop motif as a docking module and its function in the hammerhead ribozyme.
  Nat Struct Biol, 1, 820-827.  
7545073 I.Majerfeld, and M.Yarus (1994).
An RNA pocket for an aliphatic hydrophobe.
  Nat Struct Biol, 1, 287-292.  
  8313877 J.Cavarelli, G.Eriani, B.Rees, M.Ruff, M.Boeglin, A.Mitschler, F.Martin, J.Gangloff, J.C.Thierry, and D.Moras (1994).
The active site of yeast aspartyl-tRNA synthetase: structural and functional aspects of the aminoacylation reaction.
  EMBO J, 13, 327-337.
PDB code: 1asz
7634096 J.Pütz, C.Florentz, F.Benseler, and R.Giegé (1994).
A single methyl group prevents the mischarging of a tRNA.
  Nat Struct Biol, 1, 580-582.  
7506418 M.J.Rogers, T.Adachi, H.Inokuchi, and D.Söll (1994).
Functional communication in the recognition of tRNA by Escherichia coli glutaminyl-tRNA synthetase.
  Proc Natl Acad Sci U S A, 91, 291-295.  
7972050 P.Schimmel, and B.Henderson (1994).
Possible role of aminoacyl-RNA complexes in noncoded peptide synthesis and origin of coded synthesis.
  Proc Natl Acad Sci U S A, 91, 11283-11286.  
8127693 W.H.McClain, J.Schneider, and K.Gabriel (1994).
Distinctive acceptor-end structure and other determinants of Escherichia coli tRNAPro identity.
  Nucleic Acids Res, 22, 522-529.  
  7505222 E.Schwob, and D.Söll (1993).
Selection of a 'minimal' glutaminyl-tRNA synthetase and the evolution of class I synthetases.
  EMBO J, 12, 5201-5208.  
8500177 I.W.Mattaj (1993).
RNA recognition: a family matter?
  Cell, 73, 837-840.  
7680483 I.Weygand-Durasević, E.Schwob, and D.Söll (1993).
Acceptor end binding domain interactions ensure correct aminoacylation of transfer RNA.
  Proc Natl Acad Sci U S A, 90, 2010-2014.  
8441619 J.D.Puglisi, J.Pütz, C.Florentz, and R.Giegé (1993).
Influence of tRNA tertiary structure and stability on aminoacylation by yeast aspartyl-tRNA synthetase.
  Nucleic Acids Res, 21, 41-49.  
7682716 J.D.Puglisi, L.Chen, A.D.Frankel, and J.R.Williamson (1993).
Role of RNA structure in arginine recognition of TAR RNA.
  Proc Natl Acad Sci U S A, 90, 3680-3684.  
  8335008 J.Pütz, J.D.Puglisi, C.Florentz, and R.Giegé (1993).
Additive, cooperative and anti-cooperative effects between identity nucleotides of a tRNA.
  EMBO J, 12, 2949-2957.  
7694078 K.Nagai (1993).
Recent advances in RNA-protein interaction studies.
  Mol Biol Rep, 18, 105-112.  
8274143 M.Delarue, and D.Moras (1993).
The aminoacyl-tRNA synthetase family: modules at work.
  Bioessays, 15, 675-687.  
  8344267 M.J.Berry, L.Banu, J.W.Harney, and P.R.Larsen (1993).
Functional characterization of the eukaryotic SECIS elements which direct selenocysteine insertion at UGA codons.
  EMBO J, 12, 3315-3322.  
7692438 P.Schimmel, R.Giegé, D.Moras, and S.Yokoyama (1993).
An operational RNA code for amino acids and possible relationship to genetic code.
  Proc Natl Acad Sci U S A, 90, 8763-8768.  
7684657 R.Tan, L.Chen, J.A.Buettner, D.Hudson, and A.D.Frankel (1993).
RNA recognition by an isolated alpha helix.
  Cell, 73, 1031-1040.  
7509479 S.Rodin, S.Ohno, and A.Rodin (1993).
On concerted origin of transfer RNAs with complementary anticodons.
  Orig Life Evol Biosph, 23, 393-418.  
8506325 S.Rodin, S.Ohno, and A.Rodin (1993).
Transfer RNAs with complementary anticodons: could they reflect early evolution of discriminative genetic code adaptors?
  Proc Natl Acad Sci U S A, 90, 4723-4727.  
8256282 Y.M.Hou (1993).
The tertiary structure of tRNA and the development of the genetic code.
  Trends Biochem Sci, 18, 362-364.  
  1304886 A.D.Frankel (1992).
Peptide models of the Tat-TAR protein-RNA interaction.
  Protein Sci, 1, 1539-1542.  
1438273 B.Senger, L.Despons, P.Walter, and F.Fasiolo (1992).
The anticodon triplet is not sufficient to confer methionine acceptance to a transfer RNA.
  Proc Natl Acad Sci U S A, 89, 10768-10771.  
  1501271 C.H.Tsai, and T.W.Dreher (1992).
Second-site suppressor mutations assist in studying the function of the 3' noncoding region of turnip yellow mosaic virus RNA.
  J Virol, 66, 5190-5199.  
1585461 D.Moras (1992).
Structural and functional relationships between aminoacyl-tRNA synthetases.
  Trends Biochem Sci, 17, 159-164.  
1454353 J.C.Lacey, N.S.Wickramasinghe, G.W.Cook, and J.C.Lacey (1992).
Experimental studies on the origin of the genetic code and the process of protein synthesis: a review update.
  Orig Life Evol Biosph, 22, 243-275.  
1377381 J.M.Sherman, M.J.Rogers, and D.Söll (1992).
Competition of aminoacyl-tRNA synthetases for tRNA ensures the accuracy of aminoacylation.
  Nucleic Acids Res, 20, 2847-2852.  
16617497 J.M.Sherman, M.J.Rogers, and D.Söll (1992).
Competition of aminoacyl-tRNA synthetases for tRNA ensures the accuracy of aminoacylation.
  Nucleic Acids Res, 20, 1547-1552.  
1608979 J.Normanly, T.Ollick, and J.Abelson (1992).
Eight base changes are sufficient to convert a leucine-inserting tRNA into a serine-inserting tRNA.
  Proc Natl Acad Sci U S A, 89, 5680-5684.  
1557378 J.Tao, and A.D.Frankel (1992).
Specific binding of arginine to TAR RNA.
  Proc Natl Acad Sci U S A, 89, 2723-2726.  
1579489 K.B.Hall, and L.W.McLaughlin (1992).
Properties of pseudouridine N1 imino protons located in the major groove of an A-form RNA duplex.
  Nucleic Acids Res, 20, 1883-1889.  
1565639 M.J.Rogers, T.Adachi, H.Inokuchi, and D.Söll (1992).
Switching tRNA(Gln) identity from glutamine to tryptophan.
  Proc Natl Acad Sci U S A, 89, 3463-3467.  
  1303756 P.Schimmel, A.Shepard, and K.Shiba (1992).
Intron locations and functional deletions in relation to the design and evolution of a subgroup of class I tRNA synthetases.
  Protein Sci, 1, 1387-1391.  
1729719 S.A.Martinis, and P.Schimmel (1992).
Enzymatic aminoacylation of sequence-specific RNA minihelices and hybrid duplexes with methionine.
  Proc Natl Acad Sci U S A, 89, 65-69.  
1579445 S.Beresten, M.Jahn, and D.Söll (1992).
Aminoacyl-tRNA synthetase-induced cleavage of tRNA.
  Nucleic Acids Res, 20, 1523-1530.  
  1396597 Y.Hayase, M.Jahn, M.J.Rogers, L.A.Sylvers, M.Koizumi, H.Inoue, E.Ohtsuka, and D.Söll (1992).
Recognition of bases in Escherichia coli tRNA(Gln) by glutaminyl-tRNA synthetase: a complete identity set.
  EMBO J, 11, 4159-4165.  
1763051 C.P.Lee, and U.L.RajBhandary (1991).
Mutants of Escherichia coli initiator tRNA that suppress amber codons in Saccharomyces cerevisiae and are aminoacylated with tyrosine by yeast extracts.
  Proc Natl Acad Sci U S A, 88, 11378-11382.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.