|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
(+ 6 more)
326 a.a.
|
 |
|
|
|
|
|
|
|
(+ 6 more)
173 a.a.
|
 |
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Chaperone/hydrolase
|
 |
|
Title:
|
 |
Crystal structure of the hsluv protease-chaperone complex
|
|
Structure:
|
 |
Atp-dependent hslu protease atp-binding subunit hslu. Chain: a, b, c, d, e, f, s, t, u, v, w, x. Synonym: hslu. Engineered: yes. Atp-dependent protease hslv. Chain: g, h, i, j, k, l, m, n, o, p, q, r. Synonym: hslv. Engineered: yes
|
|
Source:
|
 |
Haemophilus influenzae. Organism_taxid: 727. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
|
|
Biol. unit:
|
 |
24mer (from
)
|
|
Resolution:
|
 |
|
3.41Å
|
R-factor:
|
0.240
|
R-free:
|
0.284
|
|
|
Authors:
|
 |
M.C.Sousa,C.B.Trame,H.Tsuruta,S.M.Wilbanks,V.S.Reddy,D.B.Mckay
|
Key ref:
|
 |
M.C.Sousa
et al.
(2000).
Crystal and solution structures of an HslUV protease-chaperone complex.
Cell,
103,
633-643.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
24-Oct-00
|
Release date:
|
22-Nov-00
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class 2:
|
 |
Chains A, B, C, D, E, F, S, T, U, V, W, X:
E.C.?
|
|
 |
 |
 |
 |
 |
Enzyme class 3:
|
 |
Chains G, H, I, J, K, L, M, N, O, P, Q, R:
E.C.3.4.25.2
- HslU--HslV peptidase.
|
|
 |
 |
 |
 |
 |
 |
 |
|
Note, where more than one E.C. class is given (as above), each may
correspond to a different protein domain or, in the case of polyprotein
precursors, to a different mature protein.
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Cell
103:633-643
(2000)
|
|
PubMed id:
|
|
|
|
|
| |
|
Crystal and solution structures of an HslUV protease-chaperone complex.
|
|
M.C.Sousa,
C.B.Trame,
H.Tsuruta,
S.M.Wilbanks,
V.S.Reddy,
D.B.McKay.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
HslUV is a "prokaryotic proteasome" composed of the HslV protease and
the HslU ATPase, a chaperone of the Clp/Hsp100 family. The 3.4 A crystal
structure of an HslUV complex is presented here. Two hexameric ATP binding rings
of HslU bind intimately to opposite sides of the HslV protease; the HslU
"intermediate domains" extend outward from the complex. The solution
structure of HslUV, derived from small angle X-ray scattering data under
conditions where the complex is assembled and active, agrees with this
crystallographic structure. When the complex forms, the carboxy-terminal helices
of HslU distend and bind between subunits of HslV, and the apical helices of
HslV shift substantially, transmitting a conformational change to the active
site region of the protease.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 1.
Figure 1. Representative Electron Density MapsStereo views
of F[o] − F[c] simulated annealing omit maps, computed with
phases calculated from models in which the atoms of interest
were deleted from the model used in refinement.(A) the ATP
binding site of HslU, contoured at 5σ. Protein is shown as a
ribbon diagram; ATP from the final HslUV model (average B factor
29.3) is shown as a ball and stick representation.(B)
Carboxy-terminal segment of HslU (average B factor 119.1),
contoured at 3σ (magenta) and 6σ (cyan). Residues of HslU
which were omitted are shown in green, oriented with the
carboxy-terminal Leu-444 at the bottom of the figure;
neighboring residues of HslV are shown in standard colors
(oxygen, red; nitrogen, blue; carbon, gray). Figure was prepared
with BOBSCRIPT ([7 and 8]). The rendering and stereo pair
generation of all figures was done with RASTER3D ( [25]) and
IMAGEMAGIK
(http://www.wizards.dupont.com/cristy/ImageMagick.html).
|
 |
Figure 6.
Figure 6. Conformational Changes around the Catalytic Site
of HslVStereo ribbon drawing of the active site region. The
HslUV structure is colored green. The segment of uncomplexed
HslV that differs substantially from the complex (see Figure 3A)
is colored magenta. Selected residue side chains and polypeptide
backbone are shown in the ball and stick representation.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Cell Press:
Cell
(2000,
103,
633-643)
copyright 2000.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
S.E.Glynn,
A.R.Nager,
T.A.Baker,
and
R.T.Sauer
(2012).
Dynamic and static components power unfolding in topologically closed rings of a AAA+ proteolytic machine.
|
| |
Nat Struct Mol Biol,
19,
616-622.
|
 |
|
|
|
|
 |
D.M.Smith,
H.Fraga,
C.Reis,
G.Kafri,
and
A.L.Goldberg
(2011).
ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycle.
|
| |
Cell,
144,
526-538.
|
 |
|
|
|
|
 |
E.Gur,
D.Biran,
and
E.Z.Ron
(2011).
Regulated proteolysis in Gram-negative bacteria--how and when?
|
| |
Nat Rev Microbiol,
9,
839-848.
|
 |
|
|
|
|
 |
O.Mueller-Cajar,
M.Stotz,
P.Wendler,
F.U.Hartl,
A.Bracher,
and
M.Hayer-Hartl
(2011).
Structure and function of the AAA+ protein CbbX, a red-type Rubisco activase.
|
| |
Nature,
479,
194-199.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
B.G.Lee,
E.Y.Park,
K.E.Lee,
H.Jeon,
K.H.Sung,
H.Paulsen,
H.Rübsamen-Schaeff,
H.Brötz-Oesterhelt,
and
H.K.Song
(2010).
Structures of ClpP in complex with acyldepsipeptide antibiotics reveal its activation mechanism.
|
| |
Nat Struct Mol Biol,
17,
471-478.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
E.A.Niskanen,
T.O.Ihalainen,
O.Kalliolinna,
M.M.Häkkinen,
and
M.Vihinen-Ranta
(2010).
Effect of ATP binding and hydrolysis on dynamics of canine parvovirus NS1.
|
| |
J Virol,
84,
5391-5403.
|
 |
|
|
|
|
 |
G.Effantin,
T.Ishikawa,
G.M.De Donatis,
M.R.Maurizi,
and
A.C.Steven
(2010).
Local and global mobility in the ClpA AAA+ chaperone detected by cryo-electron microscopy: functional connotations.
|
| |
Structure,
18,
553-562.
|
 |
|
|
|
|
 |
J.F.Xia,
X.M.Zhao,
J.Song,
and
D.S.Huang
(2010).
APIS: accurate prediction of hot spots in protein interfaces by combining protrusion index with solvent accessibility.
|
| |
BMC Bioinformatics,
11,
174.
|
 |
|
|
|
|
 |
N.Gallastegui,
and
M.Groll
(2010).
The 26S proteasome: assembly and function of a destructive machine.
|
| |
Trends Biochem Sci,
35,
634-642.
|
 |
|
|
|
|
 |
C.Bieniossek,
B.Niederhauser,
and
U.M.Baumann
(2009).
The crystal structure of apo-FtsH reveals domain movements necessary for substrate unfolding and translocation.
|
| |
Proc Natl Acad Sci U S A,
106,
21579-21584.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.Finley
(2009).
Recognition and processing of ubiquitin-protein conjugates by the proteasome.
|
| |
Annu Rev Biochem,
78,
477-513.
|
 |
|
|
|
|
 |
F.Striebel,
W.Kress,
and
E.Weber-Ban
(2009).
Controlled destruction: AAA+ ATPases in protein degradation from bacteria to eukaryotes.
|
| |
Curr Opin Struct Biol,
19,
209-217.
|
 |
|
|
|
|
 |
H.Y.Lien,
R.S.Shy,
S.S.Peng,
Y.L.Wu,
Y.T.Weng,
H.H.Chen,
P.C.Su,
W.F.Ng,
Y.C.Chen,
P.Y.Chang,
and
W.F.Wu
(2009).
Characterization of the Escherichia coli ClpY (HslU) substrate recognition site in the ClpYQ (HslUV) protease using the yeast two-hybrid system.
|
| |
J Bacteriol,
191,
4218-4231.
|
 |
|
|
|
|
 |
J.Kirstein,
N.Molière,
D.A.Dougan,
and
K.Turgay
(2009).
Adapting the machine: adaptor proteins for Hsp100/Clp and AAA+ proteases.
|
| |
Nat Rev Microbiol,
7,
589-599.
|
 |
|
|
|
|
 |
J.W.Lee,
E.Park,
M.S.Jeong,
Y.J.Jeon,
S.H.Eom,
J.H.Seol,
and
C.H.Chung
(2009).
HslVU ATP-dependent protease utilizes maximally six among twelve threonine active sites during proteolysis.
|
| |
J Biol Chem,
284,
33475-33484.
|
 |
|
|
|
|
 |
N.Koga,
T.Kameda,
K.Okazaki,
and
S.Takada
(2009).
Paddling mechanism for the substrate translocation by AAA+ motor revealed by multiscale molecular simulations.
|
| |
Proc Natl Acad Sci U S A,
106,
18237-18242.
|
 |
|
|
|
|
 |
N.Medalia,
A.Beer,
P.Zwickl,
O.Mihalache,
M.Beck,
O.Medalia,
and
A.Navon
(2009).
Architecture and molecular mechanism of PAN, the archaeal proteasome regulatory ATPase.
|
| |
J Biol Chem,
284,
22952-22960.
|
 |
|
|
|
|
 |
S.E.Glynn,
A.Martin,
A.R.Nager,
T.A.Baker,
and
R.T.Sauer
(2009).
Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine.
|
| |
Cell,
139,
744-756.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Hare,
P.Cherepanov,
and
J.Wang
(2009).
Application of general formulas for the correction of a lattice-translocation defect in crystals of a lentiviral integrase in complex with LEDGF.
|
| |
Acta Crystallogr D Biol Crystallogr,
65,
966-973.
|
 |
|
|
|
|
 |
S.M.Doyle,
and
S.Wickner
(2009).
Hsp104 and ClpB: protein disaggregating machines.
|
| |
Trends Biochem Sci,
34,
40-48.
|
 |
|
|
|
|
 |
A.Martin,
T.A.Baker,
and
R.T.Sauer
(2008).
Diverse pore loops of the AAA+ ClpX machine mediate unassisted and adaptor-dependent recognition of ssrA-tagged substrates.
|
| |
Mol Cell,
29,
441-450.
|
 |
|
|
|
|
 |
E.Park,
J.W.Lee,
S.H.Eom,
J.H.Seol,
and
C.H.Chung
(2008).
Binding of MG132 or Deletion of the Thr Active Sites in HslV Subunits Increases the Affinity of HslV Protease for HslU ATPase and Makes This Interaction Nucleotide-independent.
|
| |
J Biol Chem,
283,
33258-33266.
|
 |
|
|
|
|
 |
J.A.Yakamavich,
T.A.Baker,
and
R.T.Sauer
(2008).
Asymmetric nucleotide transactions of the HslUV protease.
|
| |
J Mol Biol,
380,
946-957.
|
 |
|
|
|
|
 |
J.M.Davies,
A.T.Brunger,
and
W.I.Weis
(2008).
Improved structures of full-length p97, an AAA ATPase: implications for mechanisms of nucleotide-dependent conformational change.
|
| |
Structure,
16,
715-726.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
L.A.Simmons,
A.D.Grossman,
and
G.C.Walker
(2008).
Clp and Lon proteases occupy distinct subcellular positions in Bacillus subtilis.
|
| |
J Bacteriol,
190,
6758-6768.
|
 |
|
|
|
|
 |
L.Zhu,
J.O.Wrabl,
A.P.Hayashi,
L.S.Rose,
and
P.J.Thomas
(2008).
The torsin-family AAA+ protein OOC-5 contains a critical disulfide adjacent to Sensor-II that couples redox state to nucleotide binding.
|
| |
Mol Biol Cell,
19,
3599-3612.
|
 |
|
|
|
|
 |
M.D.Gonciarz,
F.G.Whitby,
D.M.Eckert,
C.Kieffer,
A.Heroux,
W.I.Sundquist,
and
C.P.Hill
(2008).
Biochemical and structural studies of yeast Vps4 oligomerization.
|
| |
J Mol Biol,
384,
878-895.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
N.D.Thomsen,
and
J.M.Berger
(2008).
Structural frameworks for considering microbial protein- and nucleic acid-dependent motor ATPases.
|
| |
Mol Microbiol,
69,
1071-1090.
|
 |
|
|
|
|
 |
R.Lum,
M.Niggemann,
and
J.R.Glover
(2008).
Peptide and Protein Binding in the Axial Channel of Hsp104: INSIGHTS INTO THE MECHANISM OF PROTEIN UNFOLDING.
|
| |
J Biol Chem,
283,
30139-30150.
|
 |
|
|
|
|
 |
S.H.Rho,
H.H.Park,
G.B.Kang,
Y.J.Im,
M.S.Kang,
B.K.Lim,
I.S.Seong,
J.Seol,
C.H.Chung,
J.Wang,
and
S.H.Eom
(2008).
Crystal structure of Bacillus subtilis CodW, a noncanonical HslV-like peptidase with an impaired catalytic apparatus.
|
| |
Proteins,
71,
1020-1026.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Sugimoto,
Abdullah-Al-Mahin,
and
K.Sonomoto
(2008).
Molecular chaperones in lactic acid bacteria: physiological consequences and biochemical properties.
|
| |
J Biosci Bioeng,
106,
324-336.
|
 |
|
|
|
|
 |
Z.Yu,
M.D.Gonciarz,
W.I.Sundquist,
C.P.Hill,
and
G.J.Jensen
(2008).
Cryo-EM structure of dodecameric Vps4p and its 2:1 complex with Vta1p.
|
| |
J Mol Biol,
377,
364-377.
|
 |
|
|
|
|
 |
A.A.Horwitz,
A.Navon,
M.Groll,
D.M.Smith,
C.Reis,
and
A.L.Goldberg
(2007).
ATP-induced structural transitions in PAN, the proteasome-regulatory ATPase complex in Archaea.
|
| |
J Biol Chem,
282,
22921-22929.
|
 |
|
|
|
|
 |
A.Martin,
T.A.Baker,
and
R.T.Sauer
(2007).
Distinct static and dynamic interactions control ATPase-peptidase communication in a AAA+ protease.
|
| |
Mol Cell,
27,
41-52.
|
 |
|
|
|
|
 |
C.D.Putnam,
M.Hammel,
G.L.Hura,
and
J.A.Tainer
(2007).
X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution.
|
| |
Q Rev Biophys,
40,
191-285.
|
 |
|
|
|
|
 |
M.K.Azim,
and
S.Noor
(2007).
Characterization of protomer interfaces in HslV protease; the bacterial homologue of 20S proteasome.
|
| |
Protein J,
26,
213-219.
|
 |
|
|
|
|
 |
S.M.Doyle,
J.R.Hoskins,
and
S.Wickner
(2007).
Collaboration between the ClpB AAA+ remodeling protein and the DnaK chaperone system.
|
| |
Proc Natl Acad Sci U S A,
104,
11138-11144.
|
 |
|
|
|
|
 |
B.DeLaBarre,
J.C.Christianson,
R.R.Kopito,
and
A.T.Brunger
(2006).
Central pore residues mediate the p97/VCP activity required for ERAD.
|
| |
Mol Cell,
22,
451-462.
|
 |
|
|
|
|
 |
C.Bieniossek,
T.Schalch,
M.Bumann,
M.Meister,
R.Meier,
and
U.Baumann
(2006).
The molecular architecture of the metalloprotease FtsH.
|
| |
Proc Natl Acad Sci U S A,
103,
3066-3071.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
F.I.Andersson,
R.Blakytny,
J.Kirstein,
K.Turgay,
B.Bukau,
A.Mogk,
and
A.K.Clarke
(2006).
Cyanobacterial ClpC/HSP100 protein displays intrinsic chaperone activity.
|
| |
J Biol Chem,
281,
5468-5475.
|
 |
|
|
|
|
 |
J.P.Erzberger,
and
J.M.Berger
(2006).
Evolutionary relationships and structural mechanisms of AAA+ proteins.
|
| |
Annu Rev Biophys Biomol Struct,
35,
93.
|
 |
|
|
|
|
 |
M.Rappas,
J.Schumacher,
H.Niwa,
M.Buck,
and
X.Zhang
(2006).
Structural basis of the nucleotide driven conformational changes in the AAA+ domain of transcription activator PspF.
|
| |
J Mol Biol,
357,
481-492.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.X.Ruiz-González,
and
I.Marín
(2006).
Proteasome-related HslU and HslV genes typical of eubacteria are widespread in eukaryotes.
|
| |
J Mol Evol,
63,
504-512.
|
 |
|
|
|
|
 |
P.C.Stirling,
S.F.Bakhoum,
A.B.Feigl,
and
M.R.Leroux
(2006).
Convergent evolution of clamp-like binding sites in diverse chaperones.
|
| |
Nat Struct Mol Biol,
13,
865-870.
|
 |
|
|
|
|
 |
S.M.Butler,
R.A.Festa,
M.J.Pearce,
and
K.H.Darwin
(2006).
Self-compartmentalized bacterial proteases and pathogenesis.
|
| |
Mol Microbiol,
60,
553-562.
|
 |
|
|
|
|
 |
T.A.Baker,
and
R.T.Sauer
(2006).
ATP-dependent proteases of bacteria: recognition logic and operating principles.
|
| |
Trends Biochem Sci,
31,
647-653.
|
 |
|
|
|
|
 |
T.V.Rotanova,
I.Botos,
E.E.Melnikov,
F.Rasulova,
A.Gustchina,
M.R.Maurizi,
and
A.Wlodawer
(2006).
Slicing a protease: structural features of the ATP-dependent Lon proteases gleaned from investigations of isolated domains.
|
| |
Protein Sci,
15,
1815-1828.
|
 |
|
|
|
|
 |
B.M.Burton,
and
T.A.Baker
(2005).
Remodeling protein complexes: insights from the AAA+ unfoldase ClpX and Mu transposase.
|
| |
Protein Sci,
14,
1945-1954.
|
 |
|
|
|
|
 |
E.Park,
Y.M.Rho,
O.J.Koh,
S.W.Ahn,
I.S.Seong,
J.J.Song,
O.Bang,
J.H.Seol,
J.Wang,
S.H.Eom,
and
C.H.Chung
(2005).
Role of the GYVG pore motif of HslU ATPase in protein unfolding and translocation for degradation by HslV peptidase.
|
| |
J Biol Chem,
280,
22892-22898.
|
 |
|
|
|
|
 |
G.L.Hersch,
R.E.Burton,
D.N.Bolon,
T.A.Baker,
and
R.T.Sauer
(2005).
Asymmetric interactions of ATP with the AAA+ ClpX6 unfoldase: allosteric control of a protein machine.
|
| |
Cell,
121,
1017-1027.
|
 |
|
|
|
|
 |
J.Hinnerwisch,
B.G.Reid,
W.A.Fenton,
and
A.L.Horwich
(2005).
Roles of the N-domains of the ClpA unfoldase in binding substrate proteins and in stable complex formation with the ClpP protease.
|
| |
J Biol Chem,
280,
40838-40844.
|
 |
|
|
|
|
 |
J.Shen,
D.Gai,
A.Patrick,
W.B.Greenleaf,
and
X.S.Chen
(2005).
The roles of the residues on the channel beta-hairpin and loop structures of simian virus 40 hexameric helicase.
|
| |
Proc Natl Acad Sci U S A,
102,
11248-11253.
|
 |
|
|
|
|
 |
J.Wang,
S.H.Rho,
H.H.Park,
and
S.H.Eom
(2005).
Correction of X-ray intensities from an HslV-HslU co-crystal containing lattice-translocation defects.
|
| |
Acta Crystallogr D Biol Crystallogr,
61,
932-941.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Groll,
M.Bochtler,
H.Brandstetter,
T.Clausen,
and
R.Huber
(2005).
Molecular machines for protein degradation.
|
| |
Chembiochem,
6,
222-256.
|
 |
|
|
|
|
 |
M.K.Azim,
W.Goehring,
H.K.Song,
R.Ramachandran,
M.Bochtler,
and
P.Goettig
(2005).
Characterization of the HslU chaperone affinity for HslV protease.
|
| |
Protein Sci,
14,
1357-1362.
|
 |
|
|
|
|
 |
P.I.Hanson,
and
S.W.Whiteheart
(2005).
AAA+ proteins: have engine, will work.
|
| |
Nat Rev Mol Cell Biol,
6,
519-529.
|
 |
|
|
|
|
 |
R.E.Burton,
T.A.Baker,
and
R.T.Sauer
(2005).
Nucleotide-dependent substrate recognition by the AAA+ HslUV protease.
|
| |
Nat Struct Mol Biol,
12,
245-251.
|
 |
|
|
|
|
 |
S.Sharma,
J.R.Hoskins,
and
S.Wickner
(2005).
Binding and degradation of heterodimeric substrates by ClpAP and ClpXP.
|
| |
J Biol Chem,
280,
5449-5455.
|
 |
|
|
|
|
 |
C.M.Pickart,
and
R.E.Cohen
(2004).
Proteasomes and their kin: proteases in the machine age.
|
| |
Nat Rev Mol Cell Biol,
5,
177-187.
|
 |
|
|
|
|
 |
C.Schlieker,
J.Weibezahn,
H.Patzelt,
P.Tessarz,
C.Strub,
K.Zeth,
A.Erbse,
J.Schneider-Mergener,
J.W.Chin,
P.G.Schultz,
B.Bukau,
and
A.Mogk
(2004).
Substrate recognition by the AAA+ chaperone ClpB.
|
| |
Nat Struct Mol Biol,
11,
607-615.
|
 |
|
|
|
|
 |
J.M.Tkach,
and
J.R.Glover
(2004).
Amino acid substitutions in the C-terminal AAA+ module of Hsp104 prevent substrate recognition by disrupting oligomerization and cause high temperature inactivation.
|
| |
J Biol Chem,
279,
35692-35701.
|
 |
|
|
|
|
 |
M.R.Maurizi,
and
D.Xia
(2004).
Protein binding and disruption by Clp/Hsp100 chaperones.
|
| |
Structure,
12,
175-183.
|
 |
|
|
|
|
 |
P.Laksanalamai,
T.A.Whitehead,
and
F.T.Robb
(2004).
Minimal protein-folding systems in hyperthermophilic archaea.
|
| |
Nat Rev Microbiol,
2,
315-324.
|
 |
|
|
|
|
 |
R.Lum,
J.M.Tkach,
E.Vierling,
and
J.R.Glover
(2004).
Evidence for an unfolding/threading mechanism for protein disaggregation by Saccharomyces cerevisiae Hsp104.
|
| |
J Biol Chem,
279,
29139-29146.
|
 |
|
|
|
|
 |
R.T.Sauer,
D.N.Bolon,
B.M.Burton,
R.E.Burton,
J.M.Flynn,
R.A.Grant,
G.L.Hersch,
S.A.Joshi,
J.A.Kenniston,
I.Levchenko,
S.B.Neher,
E.S.Oakes,
S.M.Siddiqui,
D.A.Wah,
and
T.A.Baker
(2004).
Sculpting the proteome with AAA(+) proteases and disassembly machines.
|
| |
Cell,
119,
9.
|
 |
|
|
|
|
 |
S.A.Joshi,
G.L.Hersch,
T.A.Baker,
and
R.T.Sauer
(2004).
Communication between ClpX and ClpP during substrate processing and degradation.
|
| |
Nat Struct Mol Biol,
11,
404-411.
|
 |
|
|
|
|
 |
S.Prakash,
and
A.Matouschek
(2004).
Protein unfolding in the cell.
|
| |
Trends Biochem Sci,
29,
593-600.
|
 |
|
|
|
|
 |
A.Mogk,
C.Schlieker,
C.Strub,
W.Rist,
J.Weibezahn,
and
B.Bukau
(2003).
Roles of individual domains and conserved motifs of the AAA+ chaperone ClpB in oligomerization, ATP hydrolysis, and chaperone activity.
|
| |
J Biol Chem,
278,
17615-17624.
|
 |
|
|
|
|
 |
D.Li,
R.Zhao,
W.Lilyestrom,
D.Gai,
R.Zhang,
J.A.DeCaprio,
E.Fanning,
A.Jochimiak,
G.Szakonyi,
and
X.S.Chen
(2003).
Structure of the replicative helicase of the oncoprotein SV40 large tumour antigen.
|
| |
Nature,
423,
512-518.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.Y.Kim,
and
K.K.Kim
(2003).
Crystal structure of ClpX molecular chaperone from Helicobacter pylori.
|
| |
J Biol Chem,
278,
50664-50670.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.K.Song,
and
M.J.Eck
(2003).
Structural basis of degradation signal recognition by SspB, a specificity-enhancing factor for the ClpXP proteolytic machine.
|
| |
Mol Cell,
12,
75-86.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
I.Nagy,
T.Banerjee,
T.Tamura,
G.Schoofs,
A.Gils,
P.Proost,
N.Tamura,
W.Baumeister,
and
R.De Mot
(2003).
Characterization of a novel intracellular endopeptidase of the alpha/beta hydrolase family from Streptomyces coelicolor A3(2).
|
| |
J Bacteriol,
185,
496-503.
|
 |
|
|
|
|
 |
J.A.James,
C.R.Escalante,
M.Yoon-Robarts,
T.A.Edwards,
R.M.Linden,
and
A.K.Aggarwal
(2003).
Crystal structure of the SF3 helicase from adeno-associated virus type 2.
|
| |
Structure,
11,
1025-1035.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Li,
and
B.Sha
(2003).
Crystal structure of the E. coli Hsp100 ClpB N-terminal domain.
|
| |
Structure,
11,
323-328.
|
 |
|
|
|
|
 |
M.Groll,
and
R.Huber
(2003).
Substrate access and processing by the 20S proteasome core particle.
|
| |
Int J Biochem Cell Biol,
35,
606-616.
|
 |
|
|
|
|
 |
M.Groll,
and
T.Clausen
(2003).
Molecular shredders: how proteasomes fulfill their role.
|
| |
Curr Opin Struct Biol,
13,
665-673.
|
 |
|
|
|
|
 |
M.S.Kang,
S.R.Kim,
P.Kwack,
B.K.Lim,
S.W.Ahn,
Y.M.Rho,
I.S.Seong,
S.C.Park,
S.H.Eom,
G.W.Cheong,
and
C.H.Chung
(2003).
Molecular architecture of the ATP-dependent CodWX protease having an N-terminal serine active site.
|
| |
EMBO J,
22,
2893-2902.
|
 |
|
|
|
|
 |
S.A.Joshi,
T.A.Baker,
and
R.T.Sauer
(2003).
C-terminal domain mutations in ClpX uncouple substrate binding from an engagement step required for unfolding.
|
| |
Mol Microbiol,
48,
67-76.
|
 |
|
|
|
|
 |
S.Y.Lee,
A.De La Torre,
D.Yan,
S.Kustu,
B.T.Nixon,
and
D.E.Wemmer
(2003).
Regulation of the transcriptional activator NtrC1: structural studies of the regulatory and AAA+ ATPase domains.
|
| |
Genes Dev,
17,
2552-2563.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
W.Sakamoto
(2003).
Leaf-variegated mutations and their responsible genes in Arabidopsis thaliana.
|
| |
Genes Genet Syst,
78,
1-9.
|
 |
|
|
|
|
 |
Y.K.Wang,
S.Park,
B.T.Nixon,
and
T.R.Hoover
(2003).
Nucleotide-dependent conformational changes in the sigma54-dependent activator DctD.
|
| |
J Bacteriol,
185,
6215-6219.
|
 |
|
|
|
|
 |
A.G.Cashikar,
E.C.Schirmer,
D.A.Hattendorf,
J.R.Glover,
M.S.Ramakrishnan,
D.M.Ware,
and
S.L.Lindquist
(2002).
Defining a pathway of communication from the C-terminal peptide binding domain to the N-terminal ATPase domain in a AAA protein.
|
| |
Mol Cell,
9,
751-760.
|
 |
|
|
|
|
 |
A.V.Kajava
(2002).
What curves alpha-solenoids? Evidence for an alpha-helical toroid structure of Rpn1 and Rpn2 proteins of the 26 S proteasome.
|
| |
J Biol Chem,
277,
49791-49798.
|
 |
|
|
|
|
 |
D.A.Dougan,
B.G.Reid,
A.L.Horwich,
and
B.Bukau
(2002).
ClpS, a substrate modulator of the ClpAP machine.
|
| |
Mol Cell,
9,
673-683.
|
 |
|
|
|
|
 |
D.A.Hattendorf,
and
S.L.Lindquist
(2002).
Cooperative kinetics of both Hsp104 ATPase domains and interdomain communication revealed by AAA sensor-1 mutants.
|
| |
EMBO J,
21,
12-21.
|
 |
|
|
|
|
 |
D.A.Hattendorf,
and
S.L.Lindquist
(2002).
Analysis of the AAA sensor-2 motif in the C-terminal ATPase domain of Hsp104 with a site-specific fluorescent probe of nucleotide binding.
|
| |
Proc Natl Acad Sci U S A,
99,
2732-2737.
|
 |
|
|
|
|
 |
D.A.Wah,
I.Levchenko,
T.A.Baker,
and
R.T.Sauer
(2002).
Characterization of a specificity factor for an AAA+ ATPase: assembly of SspB dimers with ssrA-tagged proteins and the ClpX hexamer.
|
| |
Chem Biol,
9,
1237-1245.
|
 |
|
|
|
|
 |
F.Guo,
M.R.Maurizi,
L.Esser,
and
D.Xia
(2002).
Crystal structure of ClpA, an Hsp100 chaperone and regulator of ClpAP protease.
|
| |
J Biol Chem,
277,
46743-46752.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.Niwa,
D.Tsuchiya,
H.Makyio,
M.Yoshida,
and
K.Morikawa
(2002).
Hexameric ring structure of the ATPase domain of the membrane-integrated metalloprotease FtsH from Thermus thermophilus HB8.
|
| |
Structure,
10,
1415-1423.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
I.Rouiller,
B.DeLaBarre,
A.P.May,
W.I.Weis,
A.T.Brunger,
R.A.Milligan,
and
E.M.Wilson-Kubalek
(2002).
Conformational changes of the multifunction p97 AAA ATPase during its ATPase cycle.
|
| |
Nat Struct Biol,
9,
950-957.
|
 |
|
|
|
|
 |
I.S.Seong,
M.S.Kang,
M.K.Choi,
J.W.Lee,
O.J.Koh,
J.Wang,
S.H.Eom,
and
C.H.Chung
(2002).
The C-terminal tails of HslU ATPase act as a molecular switch for activation of HslV peptidase.
|
| |
J Biol Chem,
277,
25976-25982.
|
 |
|
|
|
|
 |
J.Ortega,
H.S.Lee,
M.R.Maurizi,
and
A.C.Steven
(2002).
Alternating translocation of protein substrates from both ends of ClpXP protease.
|
| |
EMBO J,
21,
4938-4949.
|
 |
|
|
|
|
 |
K.Zeth,
D.A.Dougan,
S.Cusack,
B.Bukau,
and
R.B.Ravelli
(2002).
Crystallization and preliminary X-ray analysis of the Escherichia coli adaptor protein ClpS, free and in complex with the N-terminal domain of ClpA.
|
| |
Acta Crystallogr D Biol Crystallogr,
58,
1207-1210.
|
 |
|
|
|
|
 |
K.Zeth,
R.B.Ravelli,
K.Paal,
S.Cusack,
B.Bukau,
and
D.A.Dougan
(2002).
Structural analysis of the adaptor protein ClpS in complex with the N-terminal domain of ClpA.
|
| |
Nat Struct Biol,
9,
906-911.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.A.Osmulski,
and
M.Gaczynska
(2002).
Nanoenzymology of the 20S proteasome: proteasomal actions are controlled by the allosteric transition.
|
| |
Biochemistry,
41,
7047-7053.
|
 |
|
|
|
|
 |
P.Beinker,
S.Schlee,
Y.Groemping,
R.Seidel,
and
J.Reinstein
(2002).
The N terminus of ClpB from Thermus thermophilus is not essential for the chaperone activity.
|
| |
J Biol Chem,
277,
47160-47166.
|
 |
|
|
|
|
 |
S.Krzywda,
A.M.Brzozowski,
K.Karata,
T.Ogura,
and
A.J.Wilkinson
(2002).
Crystallization of the AAA domain of the ATP-dependent protease FtsH of Escherichia coli.
|
| |
Acta Crystallogr D Biol Crystallogr,
58,
1066-1067.
|
 |
|
|
|
|
 |
T.Fukui,
T.Eguchi,
H.Atomi,
and
T.Imanaka
(2002).
A membrane-bound archaeal Lon protease displays ATP-independent proteolytic activity towards unfolded proteins and ATP-dependent activity for folded proteins.
|
| |
J Bacteriol,
184,
3689-3698.
|
 |
|
|
|
|
 |
W.Sakamoto,
T.Tamura,
Y.Hanba-Tomita,
and
M.Murata
(2002).
The VAR1 locus of Arabidopsis encodes a chloroplastic FtsH and is responsible for leaf variegation in the mutant alleles.
|
| |
Genes Cells,
7,
769-780.
|
 |
|
|
|
|
 |
X.Zhang,
F.Beuron,
and
P.S.Freemont
(2002).
Machinery of protein folding and unfolding.
|
| |
Curr Opin Struct Biol,
12,
231-238.
|
 |
|
|
|
|
 |
Y.H.Watanabe,
K.Motohashi,
and
M.Yoshida
(2002).
Roles of the two ATP binding sites of ClpB from Thermus thermophilus.
|
| |
J Biol Chem,
277,
5804-5809.
|
 |
|
|
|
|
 |
A.Borodovsky,
B.M.Kessler,
R.Casagrande,
H.S.Overkleeft,
K.D.Wilkinson,
and
H.L.Ploegh
(2001).
A novel active site-directed probe specific for deubiquitylating enzymes reveals proteasome association of USP14.
|
| |
EMBO J,
20,
5187-5196.
|
 |
|
|
|
|
 |
B.G.Reid,
W.A.Fenton,
A.L.Horwich,
and
E.U.Weber-Ban
(2001).
ClpA mediates directional translocation of substrate proteins into the ClpP protease.
|
| |
Proc Natl Acad Sci U S A,
98,
3768-3772.
|
 |
|
|
|
|
 |
C.B.Trame,
and
D.B.McKay
(2001).
Structure of Haemophilus influenzae HslU protein in crystals with one-dimensional disorder twinning.
|
| |
Acta Crystallogr D Biol Crystallogr,
57,
1079-1090.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.Lee,
M.P.Schwartz,
S.Prakash,
M.Iwakura,
and
A.Matouschek
(2001).
ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal.
|
| |
Mol Cell,
7,
627-637.
|
 |
|
|
|
|
 |
J.Li,
and
B.Sha
(2001).
Cloning, expression, purification and preliminary X-ray crystallographic studies of Escherichia coli Hsp100 ClpB nucleotide-binding domain 1 (NBD1).
|
| |
Acta Crystallogr D Biol Crystallogr,
57,
909-911.
|
 |
|
|
|
|
 |
J.Li,
and
B.Sha
(2001).
Cloning, expression, purification and preliminary X-ray crystallographic studies of Escherichia coli Hsp100 ClpB N-terminal domain.
|
| |
Acta Crystallogr D Biol Crystallogr,
57,
1933-1935.
|
 |
|
|
|
|
 |
J.R.Glover,
and
J.M.Tkach
(2001).
Crowbars and ratchets: hsp100 chaperones as tools in reversing protein aggregation.
|
| |
Biochem Cell Biol,
79,
557-568.
|
 |
|
|
|
|
 |
J.Wang,
J.J.Song,
I.S.Seong,
M.C.Franklin,
S.Kamtekar,
S.H.Eom,
and
C.H.Chung
(2001).
Nucleotide-dependent conformational changes in a protease-associated ATPase HsIU.
|
| |
Structure,
9,
1107-1116.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Wang,
J.J.Song,
M.C.Franklin,
S.Kamtekar,
Y.J.Im,
S.H.Rho,
I.S.Seong,
C.S.Lee,
C.H.Chung,
and
S.H.Eom
(2001).
Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism.
|
| |
Structure,
9,
177-184.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.Turgay,
M.Persuh,
J.Hahn,
and
D.Dubnau
(2001).
Roles of the two ClpC ATP binding sites in the regulation of competence and the stress response.
|
| |
Mol Microbiol,
42,
717-727.
|
 |
|
|
|
|
 |
M.C.Sousa,
and
D.B.McKay
(2001).
Structure of Haemophilus influenzae HslV protein at 1.9 A resolution, revealing a cation-binding site near the catalytic site.
|
| |
Acta Crystallogr D Biol Crystallogr,
57,
1950-1954.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Dalal,
and
P.I.Hanson
(2001).
Membrane traffic: what drives the AAA motor?
|
| |
Cell,
104,
5-8.
|
 |
|
|
|
|
 |
T.Ishikawa,
F.Beuron,
M.Kessel,
S.Wickner,
M.R.Maurizi,
and
A.C.Steven
(2001).
Translocation pathway of protein substrates in ClpAP protease.
|
| |
Proc Natl Acad Sci U S A,
98,
4328-4333.
|
 |
|
|
|
|
 |
T.Ogura,
and
A.J.Wilkinson
(2001).
AAA+ superfamily ATPases: common structure--diverse function.
|
| |
Genes Cells,
6,
575-597.
|
 |
|
|
|
|
 |
H.K.Song,
C.Hartmann,
R.Ramachandran,
M.Bochtler,
R.Behrendt,
L.Moroder,
and
R.Huber
(2000).
Mutational studies on HslU and its docking mode with HslV.
|
| |
Proc Natl Acad Sci U S A,
97,
14103-14108.
|
 |
|
PDB code:
|
 |
|
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |