PDBsum entry 1ejl

Go to PDB code: 
protein ligands links
Protein binding PDB id
Jmol PyMol
Protein chain
426 a.a. *
* Residue conservation analysis
PDB id:
Name: Protein binding
Title: Mouse importin alpha-sv40 large t antigen nls peptide complex
Structure: Sv40 large t antigen nls peptide. Chain: a, b. Fragment: nls (nuclear localization signal) monopartite peptide, residues 126-132. Engineered: yes. Importin alpha. Chain: i. Fragment: nls-binding domain, residues 70-529. Synonym: karyopherin alpha.
Source: Synthetic: yes. Other_details: the peptide was chemically synthesized. The sequence of this peptide is naturally found in simian virus 40 t antigen (sv40).. Mus musculus. House mouse. Organism_taxid: 10090. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Trimer (from PQS)
2.80Å     R-factor:   0.215     R-free:   0.254
Authors: M.R.Fontes,T.Teh,B.Kobe
Key ref:
M.R.Fontes et al. (2000). Structural basis of recognition of monopartite and bipartite nuclear localization sequences by mammalian importin-alpha. J Mol Biol, 297, 1183-1194. PubMed id: 10764582 DOI: 10.1006/jmbi.2000.3642
03-Mar-00     Release date:   24-Apr-00    
Go to PROCHECK summary

Protein chain
Pfam   ArchSchema ?
P52293  (IMA2_MOUSE) -  Importin subunit alpha-1
529 a.a.
426 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     cytoplasm   3 terms 
  Biological process     protein import into nucleus   2 terms 
  Biochemical function     protein transporter activity     2 terms  


DOI no: 10.1006/jmbi.2000.3642 J Mol Biol 297:1183-1194 (2000)
PubMed id: 10764582  
Structural basis of recognition of monopartite and bipartite nuclear localization sequences by mammalian importin-alpha.
M.R.Fontes, T.Teh, B.Kobe.
Importin-alpha is the nuclear import receptor that recognizes cargo proteins which contain classical monopartite and bipartite nuclear localization sequences (NLSs), and facilitates their transport into the nucleus. To determine the structural basis of the recognition of the two classes of NLSs by mammalian importin-alpha, we co-crystallized an N-terminally truncated mouse receptor protein with peptides corresponding to the monopartite NLS from the simian virus 40 (SV40) large T-antigen, and the bipartite NLS from nucleoplasmin. We show that the monopartite SV40 large T-antigen NLS binds to two binding sites on the receptor, similar to what was observed in yeast importin-alpha. The nucleoplasmin NLS-importin-alpha complex shows, for the first time, the mode of binding of bipartite NLSs to the receptor. The two basic clusters in the NLS occupy the two binding sites used by the monopartite NLS, while the sequence linking the two basic clusters is poorly ordered, consistent with its tolerance to mutations. The structures explain the structural basis for binding of diverse NLSs to the sole receptor protein.
  Selected figure(s)  
Figure 2.
Figure 2. (a) Structure of the Impa(70-529)-SV40 NLS complex. Importin-a is shown as a ribbon diagram (lavender; drawn with program RIBBONS [Carson 1997]). The superhelical axis of the repetitive part of the molecule is approximately horizontal. The two SV40 NLS peptides are shown in a ball-and-stick representation; the peptide bound to the major site is colored yellow, and the peptide bound to the minor site is colored orange. (b) Structure of Impa(70-529)-nucleoplasmin NLS complex, shown as in (a). The nucleoplasmin NLS peptide is colored cyan.
Figure 4.
Figure 4. Schematic diagram of the interactions of NLS peptides with importin-a. The NLS backbone is shown as a black line, with the side-chains shown as perpendicular lines radiating from it. Individual Arm repeats of importin-a are separated by tilted lines. Some importin-a side-chains interacting with the NLS peptides are indicated: the invariant asparagine residues in magenta, the invariant tryptophan residues in green, and some nearby negatively charged residues are shown in red. Y277 and R315 that interrupt the regular asparagine and tryptophan array are also shown.
  The above figures are reprinted by permission from Elsevier: J Mol Biol (2000, 297, 1183-1194) copyright 2000.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21138946 F.Iwamoto, T.Umemoto, K.Motojima, and Y.Fujiki (2011).
Nuclear transport of peroxisome-proliferator activated receptor α.
  J Biochem, 149, 311-319.  
20335181 A.Giesecke, and M.Stewart (2010).
Novel binding of the mitotic regulator TPX2 (target protein for xenopus kinesin-like protein 2) to importin-alpha.
  J Biol Chem, 285, 17628-17635.
PDB code: 3knd
20028483 A.Lange, L.M.McLane, R.E.Mills, S.E.Devine, and A.H.Corbett (2010).
Expanding the definition of the classical bipartite nuclear localization signal.
  Traffic, 11, 311-323.  
20701745 J.B.Kelley, A.M.Talley, A.Spencer, D.Gioeli, and B.M.Paschal (2010).
Karyopherin alpha7 (KPNA7), a divergent member of the importin alpha family of nuclear import receptors.
  BMC Cell Biol, 11, 63.  
21182795 J.D.Nardozzi, K.Lott, and G.Cingolani (2010).
Phosphorylation meets nuclear import: a review.
  Cell Commun Signal, 8, 32.  
20567258 Q.Liu, J.Yu, X.Zhuo, Q.Jiang, and C.Zhang (2010).
Pericentrin contains five NESs and an NLS essential for its nucleocytoplasmic trafficking during the cell cycle.
  Cell Res, 20, 948-962.  
20818336 R.Pawłowski, E.K.Rajakylä, M.K.Vartiainen, and R.Treisman (2010).
An actin-regulated importin α/β-dependent extended bipartite NLS directs nuclear import of MRTF-A.
  EMBO J, 29, 3448-3458.  
19626708 A.Gizak, E.Maciaszczyk-Dziubinska, M.Jurowicz, and D.Rakus (2009).
Muscle FBPase is targeted to nucleus by its 203KKKGK207 sequence.
  Proteins, 77, 262-267.  
19563654 A.N.Nguyen Ba, A.Pogoutse, N.Provart, and A.M.Moses (2009).
NLStradamus: a simple Hidden Markov Model for nuclear localization signal prediction.
  BMC Bioinformatics, 10, 202.  
19204005 J.Kahle, E.Piaia, S.Neimanis, M.Meisterernst, and D.Doenecke (2009).
Regulation of nuclear import and export of negative cofactor 2.
  J Biol Chem, 284, 9382-9393.  
19366694 K.E.Süel, and Y.M.Chook (2009).
Kap104p imports the PY-NLS-containing transcription factor Tfg2p into the nucleus.
  J Biol Chem, 284, 15416-15424.  
18984568 K.F.Pulliam, M.B.Fasken, L.M.McLane, J.V.Pulliam, and A.H.Corbett (2009).
The Classical Nuclear Localization Signal Receptor, Importin-{alpha}, Is Required for Efficient Transition Through the G1/S Stage of the Cell Cycle in Saccharomyces cerevisiae.
  Genetics, 181, 105-118.  
19514019 L.M.McLane, and A.H.Corbett (2009).
Nuclear localization signals and human disease.
  IUBMB Life, 61, 697-706.  
19519454 M.Miller (2009).
The importance of being flexible: the case of basic region leucine zipper transcriptional regulators.
  Curr Protein Pept Sci, 10, 244-269.  
20514217 N.Freitas, and C.Cunha (2009).
Mechanisms and signals for the nuclear import of proteins.
  Curr Genomics, 10, 550-557.  
19520826 S.Kosugi, M.Hasebe, M.Tomita, and H.Yanagawa (2009).
Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs.
  Proc Natl Acad Sci U S A, 106, 10171-10176.  
19001369 S.Kosugi, M.Hasebe, N.Matsumura, H.Takashima, E.Miyamoto-Sato, M.Tomita, and H.Yanagawa (2009).
Six Classes of Nuclear Localization Signals Specific to Different Binding Grooves of Importin {alpha}.
  J Biol Chem, 284, 478-485.  
19019947 S.L.Taylor, N.Frias-Staheli, A.García-Sastre, and C.S.Schmaljohn (2009).
Hantaan virus nucleocapsid protein binds to importin alpha proteins and inhibits tumor necrosis factor alpha-induced activation of nuclear factor kappa B.
  J Virol, 83, 1271-1279.  
19668212 S.M.Dias, K.F.Wilson, K.S.Rojas, A.L.Ambrosio, and R.A.Cerione (2009).
The molecular basis for the regulation of the cap-binding complex by the importins.
  Nat Struct Mol Biol, 16, 930-937.
PDB codes: 3fex 3fey
18165224 B.Ding, and P.Lengyel (2008).
p204 protein is a novel modulator of ras activity.
  J Biol Chem, 283, 5831-5848.  
18532879 K.E.Süel, H.Gu, and Y.M.Chook (2008).
Modular organization and combinatorial energetics of proline-tyrosine nuclear localization signals.
  PLoS Biol, 6, e137.  
18716025 M.Hatayama, T.Tomizawa, K.Sakai-Kato, P.Bouvagnet, S.Kose, N.Imamoto, S.Yokoyama, N.Utsunomiya-Tate, K.Mikoshiba, T.Kigawa, and J.Aruga (2008).
Functional and structural basis of the nuclear localization signal in the ZIC3 zinc finger domain.
  Hum Mol Genet, 17, 3459-3473.
PDB code: 2rpc
17661348 P.L.Yeung, L.Y.Chen, S.C.Tsai, A.Zhang, and J.D.Chen (2008).
Daxx contains two nuclear localization signals and interacts with importin alpha3.
  J Cell Biochem, 103, 456-470.  
18054235 P.Tompa, and M.Fuxreiter (2008).
Fuzzy complexes: polymorphism and structural disorder in protein-protein interactions.
  Trends Biochem Sci, 33, 2-8.  
18268017 Q.Li, N.Zhang, D.Zhang, Y.Wang, T.Lin, Y.Wang, H.Zhou, Z.Ye, F.Zhang, S.C.Lin, and J.Han (2008).
Determinants that control the distinct subcellular localization of p38alpha-PRAK and p38beta-PRAK complexes.
  J Biol Chem, 283, 11014-11023.  
18332147 V.Rogemond, C.Auger, P.Giraudon, M.Becchi, N.Auvergnon, M.F.Belin, J.Honnorat, and M.Moradi-Améli (2008).
Processing and nuclear localization of CRMP2 during brain development induce neurite outgrowth inhibition.
  J Biol Chem, 283, 14751-14761.  
17506639 A.Cook, F.Bono, M.Jinek, and E.Conti (2007).
Structural biology of nucleocytoplasmic transport.
  Annu Rev Biochem, 76, 647-671.  
17925019 A.Glassmann, S.Molly, L.Surchev, T.A.Nazwar, M.Holst, W.Hartmann, S.L.Baader, J.Oberdick, T.Pietsch, and K.Schilling (2007).
Developmental expression and differentiation-related neuron-specific splicing of metastasis suppressor 1 (Mtss1) in normal and transformed cerebellar cells.
  BMC Dev Biol, 7, 111.  
17170104 A.Lange, R.E.Mills, C.J.Lange, M.Stewart, S.E.Devine, and A.H.Corbett (2007).
Classical nuclear localization signals: definition, function, and interaction with importin alpha.
  J Biol Chem, 282, 5101-5105.  
17108329 B.Pal, N.C.Chan, L.Helfenbaum, K.Tan, W.P.Tansey, and M.J.Gething (2007).
SCFCdc4-mediated degradation of the Hac1p transcription factor regulates the unfolded protein response in Saccharomyces cerevisiae.
  Mol Biol Cell, 18, 426-440.  
17551513 G.Riddick, and I.G.Macara (2007).
The adapter importin-alpha provides flexible control of nuclear import at the expense of efficiency.
  Mol Syst Biol, 3, 118.  
17277370 K.E.Stevens, and R.S.Mann (2007).
A balance between two nuclear localization sequences and a nuclear export sequence governs extradenticle subcellular localization.
  Genetics, 175, 1625-1636.  
17376915 K.Melén, L.Kinnunen, R.Fagerlund, N.Ikonen, K.Y.Twu, R.M.Krug, and I.Julkunen (2007).
Nuclear and nucleolar targeting of influenza A virus NS1 protein: striking differences between different virus subtypes.
  J Virol, 81, 5995-6006.  
17287812 M.Stewart (2007).
Molecular mechanism of the nuclear protein import cycle.
  Nat Rev Mol Cell Biol, 8, 195-208.  
17163983 S.M.Stinnett, E.A.Espeso, L.Cobeño, L.Araújo-Bazán, and A.M.Calvo (2007).
Aspergillus nidulans VeA subcellular localization is dependent on the importin alpha carrier and on light.
  Mol Microbiol, 63, 242-255.  
17938174 S.Neimanis, W.Albig, D.Doenecke, and J.Kahle (2007).
Sequence elements in both subunits of the DNA fragmentation factor are essential for its nuclear transport.
  J Biol Chem, 282, 35821-35830.  
17928350 S.P.Reid, C.Valmas, O.Martinez, F.M.Sanchez, and C.F.Basler (2007).
Ebola virus VP24 proteins inhibit the interaction of NPI-1 subfamily karyopherin alpha proteins with activated STAT1.
  J Virol, 81, 13469-13477.  
16421734 A.S.Madrid, and K.Weis (2006).
Nuclear transport is becoming crystal clear.
  Chromosoma, 115, 98.  
17000757 B.Friedrich, C.Quensel, T.Sommer, E.Hartmann, and M.Köhler (2006).
Nuclear localization signal and protein context both mediate importin alpha specificity of nuclear import substrates.
  Mol Cell Biol, 26, 8697-8709.  
16552788 E.Blazek, and M.Meisterernst (2006).
A functional proteomics approach for the detection of nuclear proteins based on derepressed importin alpha.
  Proteomics, 6, 2070-2078.  
16567089 E.Conti, C.W.Müller, and M.Stewart (2006).
Karyopherin flexibility in nucleocytoplasmic transport.
  Curr Opin Struct Biol, 16, 237-244.  
17130174 F.M.García-Rodríguez, B.Schrammeijer, and P.J.Hooykaas (2006).
The Agrobacterium VirE3 effector protein: a potential plant transcriptional activator.
  Nucleic Acids Res, 34, 6496-6504.  
16809347 J.S.Hontz, M.T.Villar-Lecumberri, B.M.Potter, M.D.Yoder, L.A.Dreyfus, and J.H.Laity (2006).
Differences in crystal and solution structures of the cytolethal distending toxin B subunit: Relevance to nuclear translocation and functional activation.
  J Biol Chem, 281, 25365-25372.
PDB code: 2f1n
16623705 K.Tschöp, G.A.Müller, J.Grosche, and K.Engeland (2006).
Human cyclin B3. mRNA expression during the cell cycle and identification of three novel nonclassical nuclear localization signals.
  FEBS J, 273, 1681-1695.  
17035634 L.Goffin, S.Vodala, C.Fraser, J.Ryan, M.Timms, S.Meusburger, B.Catimel, E.C.Nice, P.A.Silver, C.Y.Xiao, D.A.Jans, and M.J.Gething (2006).
The unfolded protein response transducer Ire1p contains a nuclear localization sequence recognized by multiple beta importins.
  Mol Biol Cell, 17, 5309-5323.  
17151603 Q.Ye, R.M.Krug, and Y.J.Tao (2006).
The mechanism by which influenza A virus nucleoprotein forms oligomers and binds RNA.
  Nature, 444, 1078-1082.
PDB code: 2iqh
16439554 R.Kitamura, T.Sekimoto, S.Ito, S.Harada, H.Yamagata, H.Masai, Y.Yoneda, and K.Yanagi (2006).
Nuclear import of Epstein-Barr virus nuclear antigen 1 mediated by NPI-1 (Importin alpha5) is up- and down-regulated by phosphorylation of the nuclear localization signal for which Lys379 and Arg380 are essential.
  J Virol, 80, 1979-1991.  
16403019 T.Ilmarinen, K.Melén, H.Kangas, I.Julkunen, I.Ulmanen, and P.Eskelin (2006).
The monopartite nuclear localization signal of autoimmune regulator mediates its nuclear import and interaction with multiple importin alpha molecules.
  FEBS J, 273, 315-324.  
15807781 D.Gürlebeck, B.Szurek, and U.Bonas (2005).
Dimerization of the bacterial effector protein AvrBs3 in the plant cell cytoplasm prior to nuclear import.
  Plant J, 42, 175-187.  
16059958 J.P.Pellois, and T.W.Muir (2005).
A ligation and photorelease strategy for the temporal and spatial control of protein function in living cells.
  Angew Chem Int Ed Engl, 44, 5713-5717.  
15702987 L.F.Pemberton, and B.M.Paschal (2005).
Mechanisms of receptor-mediated nuclear import and nuclear export.
  Traffic, 6, 187-198.  
15919823 L.Liu, K.M.McBride, and N.C.Reich (2005).
STAT3 nuclear import is independent of tyrosine phosphorylation and mediated by importin-alpha3.
  Proc Natl Acad Sci U S A, 102, 8150-8155.  
15611084 M.H.Chen, I.Ben-Efraim, G.Mitrousis, N.Walker-Kopp, P.J.Sims, and G.Cingolani (2005).
Phospholipid scramblase 1 contains a nonclassical nuclear localization signal with unique binding site in importin alpha.
  J Biol Chem, 280, 10599-10606.
PDB code: 1y2a
16045768 M.Suzuki, M.Iijima, A.Nishimura, Y.Tomozoe, D.Kamei, and M.Yamada (2005).
Two separate regions essential for nuclear import of the hnRNP D nucleocytoplasmic shuttling sequence.
  FEBS J, 272, 3975-3987.  
15613354 R.Suzuki, S.Sakamoto, T.Tsutsumi, A.Rikimaru, K.Tanaka, T.Shimoike, K.Moriishi, T.Iwasaki, K.Mizumoto, Y.Matsuura, T.Miyamura, and T.Suzuki (2005).
Molecular determinants for subcellular localization of hepatitis C virus core protein.
  J Virol, 79, 1271-1281.  
16222336 Y.Matsuura, and M.Stewart (2005).
Nup50/Npap60 function in nuclear protein import complex disassembly and importin recycling.
  EMBO J, 24, 3681-3689.
PDB codes: 2c1m 2c1t
15284896 A.Prado, I.Ramos, L.J.Frehlick, A.Muga, and J.Ausió (2004).
Nucleoplasmin: a nuclear chaperone.
  Biochem Cell Biol, 82, 437-445.  
15350979 D.S.Goldfarb, A.H.Corbett, D.A.Mason, M.T.Harreman, and S.A.Adam (2004).
Importin alpha: a multipurpose nuclear-transport receptor.
  Trends Cell Biol, 14, 505-514.  
15485901 H.J.Kwon, E.H.Breese, E.Vig-Varga, Y.Luo, Y.Lee, M.G.Goebl, and M.A.Harrington (2004).
Tumor necrosis factor alpha induction of NF-kappaB requires the novel coactivator SIMPL.
  Mol Cell Biol, 24, 9317-9326.  
15361863 M.Jínek, J.Rehwinkel, B.D.Lazarus, E.Izaurralde, J.A.Hanover, and E.Conti (2004).
The superhelical TPR-repeat domain of O-linked GlcNAc transferase exhibits structural similarities to importin alpha.
  Nat Struct Mol Biol, 11, 1001-1007.
PDB code: 1w3b
15479450 M.Luo, C.W.Pang, A.E.Gerken, and T.G.Brock (2004).
Multiple nuclear localization sequences allow modulation of 5-lipoxygenase nuclear import.
  Traffic, 5, 847-854.  
14998990 M.T.Harreman, T.M.Kline, H.G.Milford, M.B.Harben, A.E.Hodel, and A.H.Corbett (2004).
Regulation of nuclear import by phosphorylation adjacent to nuclear localization signals.
  J Biol Chem, 279, 20613-20621.  
15057270 T.Sekimoto, M.Fukumoto, and Y.Yoneda (2004).
14-3-3 suppresses the nuclear localization of threonine 157-phosphorylated p27(Kip1).
  EMBO J, 23, 1934-1942.  
15342649 W.Wang, X.Yang, T.Kawai, I.López de Silanes, K.Mazan-Mamczarz, P.Chen, Y.M.Chook, C.Quensel, M.Köhler, and M.Gorospe (2004).
AMP-activated protein kinase-regulated phosphorylation and acetylation of importin alpha1: involvement in the nuclear import of RNA-binding protein HuR.
  J Biol Chem, 279, 48376-48388.  
12631736 A.C.Maiyar, M.L.Leong, and G.L.Firestone (2003).
Importin-alpha mediates the regulated nuclear targeting of serum- and glucocorticoid-inducible protein kinase (Sgk) by recognition of a nuclear localization signal in the kinase central domain.
  Mol Biol Cell, 14, 1221-1239.  
12740372 K.Melen, R.Fagerlund, J.Franke, M.Kohler, L.Kinnunen, and I.Julkunen (2003).
Importin alpha nuclear localization signal binding sites for STAT1, STAT2, and influenza A virus nucleoprotein.
  J Biol Chem, 278, 28193-28200.  
14536023 M.Grynberg, L.Jaroszewski, and A.Godzik (2003).
Domain analysis of the tubulin cofactor system: a model for tubulin folding and dimerization.
  BMC Bioinformatics, 4, 46.  
12609034 M.K.Kandasamy, E.C.McKinney, and R.B.Meagher (2003).
Cell cycle-dependent association of Arabidopsis actin-related proteins AtARP4 and AtARP7 with the nucleus.
  Plant J, 33, 939-948.  
12649294 M.M.Nalaskowski, U.Bertsch, W.Fanick, M.C.Stockebrand, H.Schmale, and G.W.Mayr (2003).
Rat inositol 1,4,5-trisphosphate 3-kinase C is enzymatically specialized for basal cellular inositol trisphosphate phosphorylation and shuttles actively between nucleus and cytoplasm.
  J Biol Chem, 278, 19765-19776.  
12695505 M.R.Fontes, T.Teh, D.Jans, R.I.Brinkworth, and B.Kobe (2003).
Structural basis for the specificity of bipartite nuclear localization sequence binding by importin-alpha.
  J Biol Chem, 278, 27981-27987.
PDB codes: 1pjm 1pjn
12525477 S.M.Jones, M.Luo, M.Peters-Golden, and T.G.Brock (2003).
Identification of two novel nuclear import sequences on the 5-lipoxygenase protein.
  J Biol Chem, 278, 10257-10263.  
12917403 S.W.Leung, M.T.Harreman, M.R.Hodel, A.E.Hodel, and A.H.Corbett (2003).
Dissection of the karyopherin alpha nuclear localization signal (NLS)-binding groove: functional requirements for NLS binding.
  J Biol Chem, 278, 41947-41953.  
14532109 Y.Matsuura, A.Lange, M.T.Harreman, A.H.Corbett, and M.Stewart (2003).
Structural basis for Nup2p function in cargo release and karyopherin recycling in nuclear import.
  EMBO J, 22, 5358-5369.
PDB code: 1un0
12221121 K.G.Geles, J.J.Johnson, S.Jong, and S.A.Adam (2002).
A role for Caenorhabditis elegans importin IMA-2 in germ line and embryonic mitosis.
  Mol Biol Cell, 13, 3138-3147.  
11927559 K.M.McBride, G.Banninger, C.McDonald, and N.C.Reich (2002).
Regulated nuclear import of the STAT1 transcription factor by direct binding of importin-alpha.
  EMBO J, 21, 1754-1763.  
12393868 K.Nakashima, T.Hagiwara, and M.Yamada (2002).
Nuclear localization of peptidylarginine deiminase V and histone deimination in granulocytes.
  J Biol Chem, 277, 49562-49568.  
12176322 M.E.Lindsay, K.Plafker, A.E.Smith, B.E.Clurman, and I.G.Macara (2002).
Npap60/Nup50 is a tri-stable switch that stimulates importin-alpha:beta-mediated nuclear protein import.
  Cell, 110, 349-360.  
12047381 M.G.Romanelli, and C.Morandi (2002).
Importin alpha binds to an unusual bipartite nuclear localization signal in the heterogeneous ribonucleoprotein type I.
  Eur J Biochem, 269, 2727-2734.  
12048190 R.Fagerlund, K.Mélen, L.Kinnunen, and I.Julkunen (2002).
Arginine/lysine-rich nuclear localization signals mediate interactions between dimeric STATs and importin alpha 5.
  J Biol Chem, 277, 30072-30078.  
12140292 S.M.Jones, M.Luo, A.M.Healy, M.Peters-Golden, and T.G.Brock (2002).
Structural and functional criteria reveal a new nuclear import sequence on the 5-lipoxygenase protein.
  J Biol Chem, 277, 38550-38556.  
12204600 T.Merdan, J.Kopecek, and T.Kissel (2002).
Prospects for cationic polymers in gene and oligonucleotide therapy against cancer.
  Adv Drug Deliv Rev, 54, 715-758.  
11796712 T.Wolff, G.Unterstab, G.Heins, J.A.Richt, and M.Kann (2002).
Characterization of an unusual importin alpha binding motif in the borna disease virus p10 protein that directs nuclear import.
  J Biol Chem, 277, 12151-12157.  
12411501 Y.Miyamoto, M.Hieda, M.T.Harreman, M.Fukumoto, T.Saiwaki, A.E.Hodel, A.H.Corbett, and Y.Yoneda (2002).
Importin alpha can migrate into the nucleus in an importin beta- and Ran-independent manner.
  EMBO J, 21, 5833-5842.  
11348595 A.H.Huber, and W.I.Weis (2001).
The structure of the beta-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by beta-catenin.
  Cell, 105, 391-402.
PDB codes: 1i7w 1i7x
11343901 E.Conti, and E.Izaurralde (2001).
Nucleocytoplasmic transport enters the atomic age.
  Curr Opin Cell Biol, 13, 310-319.  
11689703 F.Zhang, R.L.White, and K.L.Neufeld (2001).
Cell density and phosphorylation control the subcellular localization of adenomatous polyposis coli protein.
  Mol Cell Biol, 21, 8143-8156.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.