PDBsum entry 1cjc

Go to PDB code: 
protein ligands links
Oxidoreductase PDB id
Protein chain
455 a.a. *
Waters ×583
* Residue conservation analysis
PDB id:
Name: Oxidoreductase
Title: Structure of adrenodoxin reductase of mitochondrial p450 sys
Structure: Protein (adrenodoxin reductase). Chain: a. Synonym: adr, nadph: adrenodoxin oxidoreductase. Engineered: yes. Other_details: cofactor fad is non-covalently bound
Source: Bos taurus. Cattle. Organism_taxid: 9913. Tissue: steroidogenic tissues. Organelle: mitochondria. Cellular_location: mitochondrial matrix. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008. Other_details: expression in e.Coli was increased by coexpr
1.70Å     R-factor:   0.188     R-free:   0.223
Authors: G.A.Ziegler,C.Vonrhein,G.E.Schulz
Key ref:
G.A.Ziegler et al. (1999). The structure of adrenodoxin reductase of mitochondrial P450 systems: electron transfer for steroid biosynthesis. J Mol Biol, 289, 981-990. PubMed id: 10369776 DOI: 10.1006/jmbi.1999.2807
12-Apr-99     Release date:   30-Apr-99    
Go to PROCHECK summary

Protein chain
P08165  (ADRO_BOVIN) -  NADPH:adrenodoxin oxidoreductase, mitochondrial
492 a.a.
455 a.a.
Key:    Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.  - Adrenodoxin-NADP(+) reductase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: 2 reduced adrenodoxin + NADP+ = 2 oxidized adrenodoxin + NADPH
2 × reduced adrenodoxin
+ NADP(+)
= 2 × oxidized adrenodoxin
      Cofactor: FAD
Bound ligand (Het Group name = FAD) corresponds exactly
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     mitochondrion   2 terms 
  Biological process     oxidation-reduction process   5 terms 
  Biochemical function     protein binding     5 terms  


DOI no: 10.1006/jmbi.1999.2807 J Mol Biol 289:981-990 (1999)
PubMed id: 10369776  
The structure of adrenodoxin reductase of mitochondrial P450 systems: electron transfer for steroid biosynthesis.
G.A.Ziegler, C.Vonrhein, I.Hanukoglu, G.E.Schulz.
Adrenodoxin reductase is a monomeric 51 kDa flavoenzyme that is involved in the biosynthesis of all steroid hormones. The structure of the native bovine enzyme was determined at 2.8 A resolution, and the structure of the respective recombinant enzyme at 1.7 A resolution. Adrenodoxin reductase receives a two-electron package from NADPH and converts it to two single electrons that are transferred via adrenodoxin to all mitochondrial cytochromes P 450. The structure suggests how the observed flavin semiquinone is stabilized. A striking feature is the asymmetric charge distribution, which most likely controls the approach of the electron carrier adrenodoxin. A model for the interaction is proposed. Adrenodoxin reductase shows clear sequence homology to half a dozen proteins identified in genome analysis projects, but neither sequence nor structural homology to established, functionally related electron transferases. Yet, the structure revealed a relationship to the disulfide oxidoreductases, permitting the assignment of the NADP-binding site.
  Selected figure(s)  
Figure 1.
Figure 1. Stereo view of the AdR chain fold. The termini and some a-helices are labeled. The prosthetic group FAD (yellow) and the subdi- vision into FAD-domain (red) and ``NADP''-domain (blue) are shown.
Figure 6.
Figure 6. Surface representation of AdR and of an adrenodoxin molecule (Mü ller et al., 1998) colored according to the electrostatic potential from blue (positive) to red (negative) (Nicholls et al., 1991). The view of AdR at the right- hand-side is rotated by 180 ° around a vertical axis. The adrenodoxin molecule is oriented according to the following observations: (i) Asp76 (label 1) and Asp79 (label 3) match with Arg244 (label 2) and Arg240 (label 4), respectively; (ii) Lys66 (label 5) can be cross-linked with Glu4 (label 6); (iii) the C-terminal residue of the truncated adrenodoxin structure (label 7) and the C-terminal end of the homologous putidaredoxin structure (Pochapsky et al., 1994) (label 8) point to a groove between a9 and b12 at the surface of AdR (label 9). This groove is a specialty of AdR and could readily accommodate the long, presumably mobile C-terminal chain end of adrenodoxin. In the proposed complex, the electrostatic interactions of the respective surfaces of AdR and adrenodoxin are favorable.
  The above figures are reprinted by permission from Elsevier: J Mol Biol (1999, 289, 981-990) copyright 1999.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21497579 S.P.Wu, M.Bellei, S.S.Mansy, G.Battistuzzi, M.Sola, and J.A.Cowan (2011).
Redox chemistry of the Schizosaccharomyces pombe ferredoxin electron-transfer domain and influence of Cys to Ser substitutions.
  J Inorg Biochem, 105, 806-811.  
20878669 H.Komori, D.Seo, T.Sakurai, and Y.Higuchi (2010).
Crystal structure analysis of Bacillus subtilis ferredoxin-NADP(+) oxidoreductase and the structural basis for its substrate selectivity.
  Protein Sci, 19, 2279-2290.
PDB codes: 3lzw 3lzx
20221604 V.Subramanian, H.Doddapaneni, K.Syed, and J.S.Yadav (2010).
P450 redox enzymes in the white rot fungus Phanerochaete chrysosporium: gene transcription, heterologous expression, and activity analysis on the purified proteins.
  Curr Microbiol, 61, 306-314.  
19243237 T.Senda, M.Senda, S.Kimura, and T.Ishida (2009).
Redox control of protein conformation in flavoproteins.
  Antioxid Redox Signal, 11, 1741-1766.  
18399988 K.M.Ewen, B.Schiffler, H.Uhlmann-Schiffler, R.Bernhardt, and F.Hannemann (2008).
The endogenous adrenodoxin reductase-like flavoprotein arh1 supports heterologous cytochrome P450-dependent substrate conversions in Schizosaccharomyces pombe.
  FEMS Yeast Res, 8, 432-441.  
  18323604 N.Muraki, D.Seo, T.Shiba, T.Sakurai, and G.Kurisu (2008).
Crystallization and preliminary X-ray studies of ferredoxin-NAD(P)+ reductase from Chlorobium tepidum.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 64, 186-189.  
18473359 T.Terada, D.Satoh, T.Mikawa, Y.Ito, and K.Shimizu (2008).
Understanding the roles of amino acid residues in tertiary structure formation of chignolin by using molecular dynamics simulation.
  Proteins, 73, 621-631.
PDB code: 2e4e
16684776 K.Ito, M.Nakanishi, W.C.Lee, H.Sasaki, S.Zenno, K.Saigo, Y.Kitade, and M.Tanokura (2006).
Three-dimensional structure of AzoR from Escherichia coli. An oxidereductase conserved in microorganisms.
  J Biol Chem, 281, 20567-20576.
PDB codes: 1v4b 2d5i
15252706 D.Seo, K.Kamino, K.Inoue, and H.Sakurai (2004).
Purification and characterization of ferredoxin-NADP+ reductase encoded by Bacillus subtilis yumC.
  Arch Microbiol, 182, 80-89.  
15386621 M.Prudêncio, and M.Ubbink (2004).
Transient complexes of redox proteins: structural and dynamic details from NMR studies.
  J Mol Recognit, 17, 524-539.  
15211518 R.Alves, E.Herrero, and A.Sorribas (2004).
Predictive reconstruction of the mitochondrial iron-sulfur cluster assembly metabolism: I. The role of the protein pair ferredoxin-ferredoxin reductase (Yah1-Arh1).
  Proteins, 56, 354-366.  
15340917 Y.Sargisova, F.M.Pierfederici, A.Scirè, E.Bertoli, F.Tanfani, F.Febbraio, R.Briante, Y.Karapetyan, and S.Mardanyan (2004).
Computational, spectroscopic, and resonant mirror biosensor analysis of the interaction of adrenodoxin with native and tryptophan-modified NADPH-adrenodoxin reductase.
  Proteins, 57, 302-310.  
12192068 C.A.Bottoms, P.E.Smith, and J.J.Tanner (2002).
A structurally conserved water molecule in Rossmann dinucleotide-binding domains.
  Protein Sci, 11, 2125-2137.  
12198487 H.Ye, C.Cande, N.C.Stephanou, S.Jiang, S.Gurbuxani, N.Larochette, E.Daugas, C.Garrido, G.Kroemer, and H.Wu (2002).
DNA binding is required for the apoptogenic action of apoptosis inducing factor.
  Nat Struct Biol, 9, 680-684.
PDB code: 1m6i
12452430 M.Bureik, M.Lisurek, and R.Bernhardt (2002).
The human steroid hydroxylases CYP1B1 and CYP11B2.
  Biol Chem, 383, 1537-1551.  
11756429 M.Jones, F.Talfournier, A.Bobrov, J.G.Grossmann, N.Vekshin, M.J.Sutcliffe, and N.S.Scrutton (2002).
Electron transfer and conformational change in complexes of trimethylamine dehydrogenase and electron transferring flavoprotein.
  J Biol Chem, 277, 8457-8465.  
12370173 V.Pandini, G.Caprini, N.Thomsen, A.Aliverti, F.Seeber, and G.Zanetti (2002).
Ferredoxin-NADP+ reductase and ferredoxin of the protozoan parasite Toxoplasma gondii interact productively in Vitro and in Vivo.
  J Biol Chem, 277, 48463-48471.  
11248704 E.C.Müller, A.Lapko, A.Otto, J.J.Müller, K.Ruckpaul, and U.Heinemann (2001).
Covalently crosslinked complexes of bovine adrenodoxin with adrenodoxin reductase and cytochrome P450scc. Mass spectrometry and Edman degradation of complexes of the steroidogenic hydroxylase system.
  Eur J Biochem, 268, 1837-1843.  
11455601 K.A.Denessiouk, V.V.Rantanen, and M.S.Johnson (2001).
Adenine recognition: a motif present in ATP-, CoA-, NAD-, NADP-, and FAD-dependent proteins.
  Proteins, 44, 282-291.  
11514662 O.Dym, and D.Eisenberg (2001).
Sequence-structure analysis of FAD-containing proteins.
  Protein Sci, 10, 1712-1728.  
10899784 A.V.Grinberg, F.Hannemann, B.Schiffler, J.Müller, U.Heinemann, and R.Bernhardt (2000).
Adrenodoxin: structure, stability, and electron transfer properties.
  Proteins, 40, 590-612.  
10975456 A.W.Munro, P.Taylor, and M.D.Walkinshaw (2000).
Structures of redox enzymes.
  Curr Opin Biotechnol, 11, 369-376.  
10998235 G.A.Ziegler, and G.E.Schulz (2000).
Crystal structures of adrenodoxin reductase in complex with NADP+ and NADPH suggesting a mechanism for the electron transfer of an enzyme family.
  Biochemistry, 39, 10986-10995.
PDB codes: 1e1k 1e1l 1e1m 1e1n
10525147 Y.Sagara, Y.Watanabe, H.Kodama, and H.Aramaki (1999).
cDNA cloning, overproduction and characterization of rat adrenodoxin reductase.
  Biochim Biophys Acta, 1434, 284-295.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.